import pytest import numpy as np from numpy.testing import assert_allclose from scipy.integrate import quad_vec quadrature_params = pytest.mark.parametrize('quadrature', [None, "gk15", "gk21", "trapz"]) @quadrature_params def test_quad_vec_simple(quadrature): n = np.arange(10) f = lambda x: x**n for epsabs in [0.1, 1e-3, 1e-6]: if quadrature == 'trapz' and epsabs < 1e-4: # slow: skip continue kwargs = dict(epsabs=epsabs, quadrature=quadrature) exact = 2**(n+1)/(n + 1) res, err = quad_vec(f, 0, 2, norm='max', **kwargs) assert_allclose(res, exact, rtol=0, atol=epsabs) res, err = quad_vec(f, 0, 2, norm='2', **kwargs) assert np.linalg.norm(res - exact) < epsabs res, err = quad_vec(f, 0, 2, norm='max', points=(0.5, 1.0), **kwargs) assert_allclose(res, exact, rtol=0, atol=epsabs) res, err, *rest = quad_vec(f, 0, 2, norm='max', epsrel=1e-8, full_output=True, limit=10000, **kwargs) assert_allclose(res, exact, rtol=0, atol=epsabs) @quadrature_params def test_quad_vec_simple_inf(quadrature): f = lambda x: 1 / (1 + np.float64(x)**2) for epsabs in [0.1, 1e-3, 1e-6]: if quadrature == 'trapz' and epsabs < 1e-4: # slow: skip continue kwargs = dict(norm='max', epsabs=epsabs, quadrature=quadrature) res, err = quad_vec(f, 0, np.inf, **kwargs) assert_allclose(res, np.pi/2, rtol=0, atol=max(epsabs, err)) res, err = quad_vec(f, 0, -np.inf, **kwargs) assert_allclose(res, -np.pi/2, rtol=0, atol=max(epsabs, err)) res, err = quad_vec(f, -np.inf, 0, **kwargs) assert_allclose(res, np.pi/2, rtol=0, atol=max(epsabs, err)) res, err = quad_vec(f, np.inf, 0, **kwargs) assert_allclose(res, -np.pi/2, rtol=0, atol=max(epsabs, err)) res, err = quad_vec(f, -np.inf, np.inf, **kwargs) assert_allclose(res, np.pi, rtol=0, atol=max(epsabs, err)) res, err = quad_vec(f, np.inf, -np.inf, **kwargs) assert_allclose(res, -np.pi, rtol=0, atol=max(epsabs, err)) res, err = quad_vec(f, np.inf, np.inf, **kwargs) assert_allclose(res, 0, rtol=0, atol=max(epsabs, err)) res, err = quad_vec(f, -np.inf, -np.inf, **kwargs) assert_allclose(res, 0, rtol=0, atol=max(epsabs, err)) res, err = quad_vec(f, 0, np.inf, points=(1.0, 2.0), **kwargs) assert_allclose(res, np.pi/2, rtol=0, atol=max(epsabs, err)) f = lambda x: np.sin(x + 2) / (1 + x**2) exact = np.pi / np.e * np.sin(2) epsabs = 1e-5 res, err, info = quad_vec(f, -np.inf, np.inf, limit=1000, norm='max', epsabs=epsabs, quadrature=quadrature, full_output=True) assert info.status == 1 assert_allclose(res, exact, rtol=0, atol=max(epsabs, 1.5 * err)) def _lorenzian(x): return 1 / (1 + x**2) def test_quad_vec_pool(): from multiprocessing.dummy import Pool f = _lorenzian res, err = quad_vec(f, -np.inf, np.inf, norm='max', epsabs=1e-4, workers=4) assert_allclose(res, np.pi, rtol=0, atol=1e-4) with Pool(10) as pool: f = lambda x: 1 / (1 + x**2) res, err = quad_vec(f, -np.inf, np.inf, norm='max', epsabs=1e-4, workers=pool.map) assert_allclose(res, np.pi, rtol=0, atol=1e-4) @quadrature_params def test_num_eval(quadrature): def f(x): count[0] += 1 return x**5 count = [0] res = quad_vec(f, 0, 1, norm='max', full_output=True, quadrature=quadrature) assert res[2].neval == count[0] def test_info(): def f(x): return np.ones((3, 2, 1)) res, err, info = quad_vec(f, 0, 1, norm='max', full_output=True) assert info.success == True assert info.status == 0 assert info.message == 'Target precision reached.' assert info.neval > 0 assert info.intervals.shape[1] == 2 assert info.integrals.shape == (info.intervals.shape[0], 3, 2, 1) assert info.errors.shape == (info.intervals.shape[0],) def test_nan_inf(): def f_nan(x): return np.nan def f_inf(x): return np.inf if x < 0.1 else 1/x res, err, info = quad_vec(f_nan, 0, 1, full_output=True) assert info.status == 3 res, err, info = quad_vec(f_inf, 0, 1, full_output=True) assert info.status == 3 @pytest.mark.parametrize('a,b', [(0, 1), (0, np.inf), (np.inf, 0), (-np.inf, np.inf), (np.inf, -np.inf)]) def test_points(a, b): # Check that initial interval splitting is done according to # `points`, by checking that consecutive sets of 15 point (for # gk15) function evaluations lie between `points` points = (0, 0.25, 0.5, 0.75, 1.0) points += tuple(-x for x in points) quadrature_points = 15 interval_sets = [] count = 0 def f(x): nonlocal count if count % quadrature_points == 0: interval_sets.append(set()) count += 1 interval_sets[-1].add(float(x)) return 0.0 quad_vec(f, a, b, points=points, quadrature='gk15', limit=0) # Check that all point sets lie in a single `points` interval for p in interval_sets: j = np.searchsorted(sorted(points), tuple(p)) assert np.all(j == j[0])