import pytest np = pytest.importorskip("numpy") npt = pytest.importorskip("numpy.testing") scipy = pytest.importorskip("scipy") import networkx as nx from networkx.generators.degree_seq import havel_hakimi_graph class TestModularity: @classmethod def setup_class(cls): deg = [3, 2, 2, 1, 0] cls.G = havel_hakimi_graph(deg) # Graph used as an example in Sec. 4.1 of Langville and Meyer, # "Google's PageRank and Beyond". (Used for test_directed_laplacian) cls.DG = nx.DiGraph() cls.DG.add_edges_from( ( (1, 2), (1, 3), (3, 1), (3, 2), (3, 5), (4, 5), (4, 6), (5, 4), (5, 6), (6, 4), ) ) def test_modularity(self): "Modularity matrix" # fmt: off B = np.array([[-1.125, 0.25, 0.25, 0.625, 0.], [0.25, -0.5, 0.5, -0.25, 0.], [0.25, 0.5, -0.5, -0.25, 0.], [0.625, -0.25, -0.25, -0.125, 0.], [0., 0., 0., 0., 0.]]) # fmt: on permutation = [4, 0, 1, 2, 3] npt.assert_equal(nx.modularity_matrix(self.G), B) npt.assert_equal( nx.modularity_matrix(self.G, nodelist=permutation), B[np.ix_(permutation, permutation)], ) def test_modularity_weight(self): "Modularity matrix with weights" # fmt: off B = np.array([[-1.125, 0.25, 0.25, 0.625, 0.], [0.25, -0.5, 0.5, -0.25, 0.], [0.25, 0.5, -0.5, -0.25, 0.], [0.625, -0.25, -0.25, -0.125, 0.], [0., 0., 0., 0., 0.]]) # fmt: on G_weighted = self.G.copy() for n1, n2 in G_weighted.edges(): G_weighted.edges[n1, n2]["weight"] = 0.5 # The following test would fail in networkx 1.1 npt.assert_equal(nx.modularity_matrix(G_weighted), B) # The following test that the modularity matrix get rescaled accordingly npt.assert_equal(nx.modularity_matrix(G_weighted, weight="weight"), 0.5 * B) def test_directed_modularity(self): "Directed Modularity matrix" # fmt: off B = np.array([[-0.2, 0.6, 0.8, -0.4, -0.4, -0.4], [0., 0., 0., 0., 0., 0.], [0.7, 0.4, -0.3, -0.6, 0.4, -0.6], [-0.2, -0.4, -0.2, -0.4, 0.6, 0.6], [-0.2, -0.4, -0.2, 0.6, -0.4, 0.6], [-0.1, -0.2, -0.1, 0.8, -0.2, -0.2]]) # fmt: on node_permutation = [5, 1, 2, 3, 4, 6] idx_permutation = [4, 0, 1, 2, 3, 5] mm = nx.directed_modularity_matrix(self.DG, nodelist=sorted(self.DG)) npt.assert_equal(mm, B) npt.assert_equal( nx.directed_modularity_matrix(self.DG, nodelist=node_permutation), B[np.ix_(idx_permutation, idx_permutation)], )