""" We need to somehow work with the typing objects. Since the typing objects are pretty bare we need to add all the Jedi customizations to make them work as values. This file deals with all the typing.py cases. """ import itertools from jedi._compatibility import unicode from jedi import debug from jedi.inference.compiled import builtin_from_name, create_simple_object from jedi.inference.base_value import ValueSet, NO_VALUES, Value, \ LazyValueWrapper from jedi.inference.lazy_value import LazyKnownValues from jedi.inference.arguments import repack_with_argument_clinic from jedi.inference.filters import FilterWrapper from jedi.inference.names import NameWrapper, ValueName from jedi.inference.value.klass import ClassMixin from jedi.inference.gradual.base import BaseTypingValue, \ BaseTypingClassWithGenerics, BaseTypingInstance from jedi.inference.gradual.type_var import TypeVarClass from jedi.inference.gradual.generics import LazyGenericManager, TupleGenericManager _PROXY_CLASS_TYPES = 'Tuple Generic Protocol Callable Type'.split() _TYPE_ALIAS_TYPES = { 'List': 'builtins.list', 'Dict': 'builtins.dict', 'Set': 'builtins.set', 'FrozenSet': 'builtins.frozenset', 'ChainMap': 'collections.ChainMap', 'Counter': 'collections.Counter', 'DefaultDict': 'collections.defaultdict', 'Deque': 'collections.deque', } _PROXY_TYPES = 'Optional Union ClassVar'.split() class TypingModuleName(NameWrapper): def infer(self): return ValueSet(self._remap()) def _remap(self): name = self.string_name inference_state = self.parent_context.inference_state try: actual = _TYPE_ALIAS_TYPES[name] except KeyError: pass else: yield TypeAlias.create_cached( inference_state, self.parent_context, self.tree_name, actual) return if name in _PROXY_CLASS_TYPES: yield ProxyTypingClassValue.create_cached( inference_state, self.parent_context, self.tree_name) elif name in _PROXY_TYPES: yield ProxyTypingValue.create_cached( inference_state, self.parent_context, self.tree_name) elif name == 'runtime': # We don't want anything here, not sure what this function is # supposed to do, since it just appears in the stubs and shouldn't # have any effects there (because it's never executed). return elif name == 'TypeVar': yield TypeVarClass.create_cached( inference_state, self.parent_context, self.tree_name) elif name == 'Any': yield AnyClass.create_cached( inference_state, self.parent_context, self.tree_name) elif name == 'TYPE_CHECKING': # This is needed for e.g. imports that are only available for type # checking or are in cycles. The user can then check this variable. yield builtin_from_name(inference_state, u'True') elif name == 'overload': yield OverloadFunction.create_cached( inference_state, self.parent_context, self.tree_name) elif name == 'NewType': yield NewTypeFunction.create_cached( inference_state, self.parent_context, self.tree_name) elif name == 'cast': yield CastFunction.create_cached( inference_state, self.parent_context, self.tree_name) elif name == 'TypedDict': # TODO doesn't even exist in typeshed/typing.py, yet. But will be # added soon. yield TypedDictClass.create_cached( inference_state, self.parent_context, self.tree_name) elif name in ('no_type_check', 'no_type_check_decorator'): # This is not necessary, as long as we are not doing type checking. for c in self._wrapped_name.infer(): # Fuck my life Python 2 yield c else: # Everything else shouldn't be relevant for type checking. for c in self._wrapped_name.infer(): # Fuck my life Python 2 yield c class TypingModuleFilterWrapper(FilterWrapper): name_wrapper_class = TypingModuleName class ProxyWithGenerics(BaseTypingClassWithGenerics): def execute_annotation(self): string_name = self._tree_name.value if string_name == 'Union': # This is kind of a special case, because we have Unions (in Jedi # ValueSets). return self.gather_annotation_classes().execute_annotation() elif string_name == 'Optional': # Optional is basically just saying it's either None or the actual # type. return self.gather_annotation_classes().execute_annotation() \ | ValueSet([builtin_from_name(self.inference_state, u'None')]) elif string_name == 'Type': # The type is actually already given in the index_value return self._generics_manager[0] elif string_name == 'ClassVar': # For now don't do anything here, ClassVars are always used. return self._generics_manager[0].execute_annotation() mapped = { 'Tuple': Tuple, 'Generic': Generic, 'Protocol': Protocol, 'Callable': Callable, } cls = mapped[string_name] return ValueSet([cls( self.parent_context, self, self._tree_name, generics_manager=self._generics_manager, )]) def gather_annotation_classes(self): return ValueSet.from_sets(self._generics_manager.to_tuple()) def _create_instance_with_generics(self, generics_manager): return ProxyWithGenerics( self.parent_context, self._tree_name, generics_manager ) def infer_type_vars(self, value_set): annotation_generics = self.get_generics() if not annotation_generics: return {} annotation_name = self.py__name__() if annotation_name == 'Optional': # Optional[T] is equivalent to Union[T, None]. In Jedi unions # are represented by members within a ValueSet, so we extract # the T from the Optional[T] by removing the None value. none = builtin_from_name(self.inference_state, u'None') return annotation_generics[0].infer_type_vars( value_set.filter(lambda x: x != none), ) return {} class ProxyTypingValue(BaseTypingValue): index_class = ProxyWithGenerics def with_generics(self, generics_tuple): return self.index_class.create_cached( self.inference_state, self.parent_context, self._tree_name, generics_manager=TupleGenericManager(generics_tuple) ) def py__getitem__(self, index_value_set, contextualized_node): return ValueSet( self.index_class.create_cached( self.inference_state, self.parent_context, self._tree_name, generics_manager=LazyGenericManager( context_of_index=contextualized_node.context, index_value=index_value, ) ) for index_value in index_value_set ) class _TypingClassMixin(ClassMixin): def py__bases__(self): return [LazyKnownValues( self.inference_state.builtins_module.py__getattribute__('object') )] def get_metaclasses(self): return [] @property def name(self): return ValueName(self, self._tree_name) class TypingClassWithGenerics(ProxyWithGenerics, _TypingClassMixin): def infer_type_vars(self, value_set): type_var_dict = {} annotation_generics = self.get_generics() if not annotation_generics: return type_var_dict annotation_name = self.py__name__() if annotation_name == 'Type': return annotation_generics[0].infer_type_vars( # This is basically a trick to avoid extra code: We execute the # incoming classes to be able to use the normal code for type # var inference. value_set.execute_annotation(), ) elif annotation_name == 'Callable': if len(annotation_generics) == 2: return annotation_generics[1].infer_type_vars( value_set.execute_annotation(), ) elif annotation_name == 'Tuple': tuple_annotation, = self.execute_annotation() return tuple_annotation.infer_type_vars(value_set) return type_var_dict def _create_instance_with_generics(self, generics_manager): return TypingClassWithGenerics( self.parent_context, self._tree_name, generics_manager ) class ProxyTypingClassValue(ProxyTypingValue, _TypingClassMixin): index_class = TypingClassWithGenerics class TypeAlias(LazyValueWrapper): def __init__(self, parent_context, origin_tree_name, actual): self.inference_state = parent_context.inference_state self.parent_context = parent_context self._origin_tree_name = origin_tree_name self._actual = actual # e.g. builtins.list @property def name(self): return ValueName(self, self._origin_tree_name) def py__name__(self): return self.name.string_name def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self._actual) def _get_wrapped_value(self): module_name, class_name = self._actual.split('.') if self.inference_state.environment.version_info.major == 2 and module_name == 'builtins': module_name = '__builtin__' # TODO use inference_state.import_module? from jedi.inference.imports import Importer module, = Importer( self.inference_state, [module_name], self.inference_state.builtins_module ).follow() classes = module.py__getattribute__(class_name) # There should only be one, because it's code that we control. assert len(classes) == 1, classes cls = next(iter(classes)) return cls def gather_annotation_classes(self): return ValueSet([self._get_wrapped_value()]) class Callable(BaseTypingInstance): def py__call__(self, arguments): """ def x() -> Callable[[Callable[..., _T]], _T]: ... """ # The 0th index are the arguments. try: param_values = self._generics_manager[0] result_values = self._generics_manager[1] except IndexError: debug.warning('Callable[...] defined without two arguments') return NO_VALUES else: from jedi.inference.gradual.annotation import infer_return_for_callable return infer_return_for_callable(arguments, param_values, result_values) class Tuple(BaseTypingInstance): def _is_homogenous(self): # To specify a variable-length tuple of homogeneous type, Tuple[T, ...] # is used. return self._generics_manager.is_homogenous_tuple() def py__simple_getitem__(self, index): if self._is_homogenous(): return self._generics_manager.get_index_and_execute(0) else: if isinstance(index, int): return self._generics_manager.get_index_and_execute(index) debug.dbg('The getitem type on Tuple was %s' % index) return NO_VALUES def py__iter__(self, contextualized_node=None): if self._is_homogenous(): yield LazyKnownValues(self._generics_manager.get_index_and_execute(0)) else: for v in self._generics_manager.to_tuple(): yield LazyKnownValues(v.execute_annotation()) def py__getitem__(self, index_value_set, contextualized_node): if self._is_homogenous(): return self._generics_manager.get_index_and_execute(0) return ValueSet.from_sets( self._generics_manager.to_tuple() ).execute_annotation() def _get_wrapped_value(self): tuple_, = self.inference_state.builtins_module \ .py__getattribute__('tuple').execute_annotation() return tuple_ @property def name(self): return self._wrapped_value.name def infer_type_vars(self, value_set): # Circular from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts value_set = value_set.filter( lambda x: x.py__name__().lower() == 'tuple', ) if self._is_homogenous(): # The parameter annotation is of the form `Tuple[T, ...]`, # so we treat the incoming tuple like a iterable sequence # rather than a positional container of elements. return self._class_value.get_generics()[0].infer_type_vars( value_set.merge_types_of_iterate(), ) else: # The parameter annotation has only explicit type parameters # (e.g: `Tuple[T]`, `Tuple[T, U]`, `Tuple[T, U, V]`, etc.) so we # treat the incoming values as needing to match the annotation # exactly, just as we would for non-tuple annotations. type_var_dict = {} for element in value_set: try: method = element.get_annotated_class_object except AttributeError: # This might still happen, because the tuple name matching # above is not 100% correct, so just catch the remaining # cases here. continue py_class = method() merge_type_var_dicts( type_var_dict, merge_pairwise_generics(self._class_value, py_class), ) return type_var_dict class Generic(BaseTypingInstance): pass class Protocol(BaseTypingInstance): pass class AnyClass(BaseTypingValue): def execute_annotation(self): debug.warning('Used Any - returned no results') return NO_VALUES class OverloadFunction(BaseTypingValue): @repack_with_argument_clinic('func, /') def py__call__(self, func_value_set): # Just pass arguments through. return func_value_set class NewTypeFunction(BaseTypingValue): def py__call__(self, arguments): ordered_args = arguments.unpack() next(ordered_args, (None, None)) _, second_arg = next(ordered_args, (None, None)) if second_arg is None: return NO_VALUES return ValueSet( NewType( self.inference_state, contextualized_node.context, contextualized_node.node, second_arg.infer(), ) for contextualized_node in arguments.get_calling_nodes()) class NewType(Value): def __init__(self, inference_state, parent_context, tree_node, type_value_set): super(NewType, self).__init__(inference_state, parent_context) self._type_value_set = type_value_set self.tree_node = tree_node def py__class__(self): c, = self._type_value_set.py__class__() return c def py__call__(self, arguments): return self._type_value_set.execute_annotation() @property def name(self): from jedi.inference.compiled.value import CompiledValueName return CompiledValueName(self, 'NewType') class CastFunction(BaseTypingValue): @repack_with_argument_clinic('type, object, /') def py__call__(self, type_value_set, object_value_set): return type_value_set.execute_annotation() class TypedDictClass(BaseTypingValue): """ This class has no responsibilities and is just here to make sure that typed dicts can be identified. """ class TypedDict(LazyValueWrapper): """Represents the instance version of ``TypedDictClass``.""" def __init__(self, definition_class): self.inference_state = definition_class.inference_state self.parent_context = definition_class.parent_context self.tree_node = definition_class.tree_node self._definition_class = definition_class @property def name(self): return ValueName(self, self.tree_node.name) def py__simple_getitem__(self, index): if isinstance(index, unicode): return ValueSet.from_sets( name.infer() for filter in self._definition_class.get_filters(is_instance=True) for name in filter.get(index) ) return NO_VALUES def get_key_values(self): filtered_values = itertools.chain.from_iterable(( f.values() for f in self._definition_class.get_filters(is_instance=True) )) return ValueSet({ create_simple_object(self.inference_state, v.string_name) for v in filtered_values }) def _get_wrapped_value(self): d, = self.inference_state.builtins_module.py__getattribute__('dict') result, = d.execute_with_values() return result