import numpy as np from scipy.sparse import csr_matrix import pytest from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal, assert_raises from sklearn.metrics.pairwise import kernel_metrics from sklearn.kernel_approximation import RBFSampler from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.kernel_approximation import SkewedChi2Sampler from sklearn.kernel_approximation import Nystroem from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel, chi2_kernel # generate data rng = np.random.RandomState(0) X = rng.random_sample(size=(300, 50)) Y = rng.random_sample(size=(300, 50)) X /= X.sum(axis=1)[:, np.newaxis] Y /= Y.sum(axis=1)[:, np.newaxis] def _linear_kernel(X, Y): return np.dot(X, Y.T) def test_additive_chi2_sampler(): # test that AdditiveChi2Sampler approximates kernel on random data # compute exact kernel # abbreviations for easier formula X_ = X[:, np.newaxis, :] Y_ = Y[np.newaxis, :, :] large_kernel = 2 * X_ * Y_ / (X_ + Y_) # reduce to n_samples_x x n_samples_y by summing over features kernel = (large_kernel.sum(axis=2)) # approximate kernel mapping transform = AdditiveChi2Sampler(sample_steps=3) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) X_sp_trans = transform.fit_transform(csr_matrix(X)) Y_sp_trans = transform.transform(csr_matrix(Y)) assert_array_equal(X_trans, X_sp_trans.A) assert_array_equal(Y_trans, Y_sp_trans.A) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) # test error on invalid sample_steps transform = AdditiveChi2Sampler(sample_steps=4) assert_raises(ValueError, transform.fit, X) # test that the sample interval is set correctly sample_steps_available = [1, 2, 3] for sample_steps in sample_steps_available: # test that the sample_interval is initialized correctly transform = AdditiveChi2Sampler(sample_steps=sample_steps) assert transform.sample_interval is None # test that the sample_interval is changed in the fit method transform.fit(X) assert transform.sample_interval_ is not None # test that the sample_interval is set correctly sample_interval = 0.3 transform = AdditiveChi2Sampler(sample_steps=4, sample_interval=sample_interval) assert transform.sample_interval == sample_interval transform.fit(X) assert transform.sample_interval_ == sample_interval def test_skewed_chi2_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel c = 0.03 # set on negative component but greater than c to ensure that the kernel # approximation is valid on the group (-c; +\infty) endowed with the skewed # multiplication. Y[0, 0] = -c / 2. # abbreviations for easier formula X_c = (X + c)[:, np.newaxis, :] Y_c = (Y + c)[np.newaxis, :, :] # we do it in log-space in the hope that it's more stable # this array is n_samples_x x n_samples_y big x n_features log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) - np.log(X_c + Y_c)) # reduce to n_samples_x x n_samples_y by summing over features in log-space kernel = np.exp(log_kernel.sum(axis=2)) # approximate kernel mapping transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) assert np.isfinite(kernel).all(), \ 'NaNs found in the Gram matrix' assert np.isfinite(kernel_approx).all(), \ 'NaNs found in the approximate Gram matrix' # test error is raised on when inputs contains values smaller than -c Y_neg = Y.copy() Y_neg[0, 0] = -c * 2. assert_raises(ValueError, transform.transform, Y_neg) def test_additive_chi2_sampler_exceptions(): """Ensures correct error message""" transformer = AdditiveChi2Sampler() X_neg = X.copy() X_neg[0, 0] = -1 with pytest.raises(ValueError, match="X in AdditiveChi2Sampler.fit"): transformer.fit(X_neg) with pytest.raises(ValueError, match="X in AdditiveChi2Sampler.transform"): transformer.fit(X) transformer.transform(X_neg) def test_rbf_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel gamma = 10. kernel = rbf_kernel(X, Y, gamma=gamma) # approximate kernel mapping rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) X_trans = rbf_transform.fit_transform(X) Y_trans = rbf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert np.abs(np.mean(error)) <= 0.01 # close to unbiased np.abs(error, out=error) assert np.max(error) <= 0.1 # nothing too far off assert np.mean(error) <= 0.05 # mean is fairly close def test_input_validation(): # Regression test: kernel approx. transformers should work on lists # No assertions; the old versions would simply crash X = [[1, 2], [3, 4], [5, 6]] AdditiveChi2Sampler().fit(X).transform(X) SkewedChi2Sampler().fit(X).transform(X) RBFSampler().fit(X).transform(X) X = csr_matrix(X) RBFSampler().fit(X).transform(X) def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert X_transformed.shape == (X.shape[0], 2) # test callable kernel trans = Nystroem(n_components=2, kernel=_linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert X_transformed.shape == (X.shape[0], 2) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert X_transformed.shape == (X.shape[0], 2) def test_nystroem_default_parameters(): rnd = np.random.RandomState(42) X = rnd.uniform(size=(10, 4)) # rbf kernel should behave as gamma=None by default # aka gamma = 1 / n_features nystroem = Nystroem(n_components=10) X_transformed = nystroem.fit_transform(X) K = rbf_kernel(X, gamma=None) K2 = np.dot(X_transformed, X_transformed.T) assert_array_almost_equal(K, K2) # chi2 kernel should behave as gamma=1 by default nystroem = Nystroem(kernel='chi2', n_components=10) X_transformed = nystroem.fit_transform(X) K = chi2_kernel(X, gamma=1) K2 = np.dot(X_transformed, X_transformed.T) assert_array_almost_equal(K, K2) def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert np.all(np.isfinite(Y)) def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert len(kernel_log) == n_samples * (n_samples - 1) / 2 # if degree, gamma or coef0 is passed, we raise a warning msg = "Don't pass gamma, coef0 or degree to Nystroem" params = ({'gamma': 1}, {'coef0': 1}, {'degree': 2}) for param in params: ny = Nystroem(kernel=_linear_kernel, **param) with pytest.raises(ValueError, match=msg): ny.fit(X) def test_nystroem_precomputed_kernel(): # Non-regression: test Nystroem on precomputed kernel. # PR - 14706 rnd = np.random.RandomState(12) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=2, coef0=.1) nystroem = Nystroem(kernel='precomputed', n_components=X.shape[0]) X_transformed = nystroem.fit_transform(K) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) # if degree, gamma or coef0 is passed, we raise a ValueError msg = "Don't pass gamma, coef0 or degree to Nystroem" params = ({'gamma': 1}, {'coef0': 1}, {'degree': 2}) for param in params: ny = Nystroem(kernel='precomputed', n_components=X.shape[0], **param) with pytest.raises(ValueError, match=msg): ny.fit(K)