from scipy.stats import betabinom, hypergeom, bernoulli, boltzmann import numpy as np from numpy.testing import assert_almost_equal, assert_equal, assert_allclose def test_hypergeom_logpmf(): # symmetries test # f(k,N,K,n) = f(n-k,N,N-K,n) = f(K-k,N,K,N-n) = f(k,N,n,K) k = 5 N = 50 K = 10 n = 5 logpmf1 = hypergeom.logpmf(k, N, K, n) logpmf2 = hypergeom.logpmf(n - k, N, N - K, n) logpmf3 = hypergeom.logpmf(K - k, N, K, N - n) logpmf4 = hypergeom.logpmf(k, N, n, K) assert_almost_equal(logpmf1, logpmf2, decimal=12) assert_almost_equal(logpmf1, logpmf3, decimal=12) assert_almost_equal(logpmf1, logpmf4, decimal=12) # test related distribution # Bernoulli distribution if n = 1 k = 1 N = 10 K = 7 n = 1 hypergeom_logpmf = hypergeom.logpmf(k, N, K, n) bernoulli_logpmf = bernoulli.logpmf(k, K/N) assert_almost_equal(hypergeom_logpmf, bernoulli_logpmf, decimal=12) def test_boltzmann_upper_bound(): k = np.arange(-3, 5) N = 1 p = boltzmann.pmf(k, 0.123, N) expected = k == 0 assert_equal(p, expected) lam = np.log(2) N = 3 p = boltzmann.pmf(k, lam, N) expected = [0, 0, 0, 4/7, 2/7, 1/7, 0, 0] assert_allclose(p, expected, rtol=1e-13) c = boltzmann.cdf(k, lam, N) expected = [0, 0, 0, 4/7, 6/7, 1, 1, 1] assert_allclose(c, expected, rtol=1e-13) def test_betabinom_a_and_b_unity(): # test limiting case that betabinom(n, 1, 1) is a discrete uniform # distribution from 0 to n n = 20 k = np.arange(n + 1) p = betabinom(n, 1, 1).pmf(k) expected = np.repeat(1 / (n + 1), n + 1) assert_almost_equal(p, expected) def test_betabinom_bernoulli(): # test limiting case that betabinom(1, a, b) = bernoulli(a / (a + b)) a = 2.3 b = 0.63 k = np.arange(2) p = betabinom(1, a, b).pmf(k) expected = bernoulli(a / (a + b)).pmf(k) assert_almost_equal(p, expected)