# -*- coding: utf-8 -*- # # SelfTest/PublicKey/test_DSA.py: Self-test for the DSA primitive # # Written in 2008 by Dwayne C. Litzenberger # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== """Self-test suite for Crypto.PublicKey.DSA""" import os from Crypto.Util.py3compat import * import unittest from Crypto.SelfTest.st_common import list_test_cases, a2b_hex, b2a_hex def _sws(s): """Remove whitespace from a text or byte string""" if isinstance(s,str): return "".join(s.split()) else: return b("").join(s.split()) class DSATest(unittest.TestCase): # Test vector from "Appendix 5. Example of the DSA" of # "Digital Signature Standard (DSS)", # U.S. Department of Commerce/National Institute of Standards and Technology # FIPS 186-2 (+Change Notice), 2000 January 27. # http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf y = _sws("""19131871 d75b1612 a819f29d 78d1b0d7 346f7aa7 7bb62a85 9bfd6c56 75da9d21 2d3a36ef 1672ef66 0b8c7c25 5cc0ec74 858fba33 f44c0669 9630a76b 030ee333""") g = _sws("""626d0278 39ea0a13 413163a5 5b4cb500 299d5522 956cefcb 3bff10f3 99ce2c2e 71cb9de5 fa24babf 58e5b795 21925c9c c42e9f6f 464b088c c572af53 e6d78802""") p = _sws("""8df2a494 492276aa 3d25759b b06869cb eac0d83a fb8d0cf7 cbb8324f 0d7882e5 d0762fc5 b7210eaf c2e9adac 32ab7aac 49693dfb f83724c2 ec0736ee 31c80291""") q = _sws("""c773218c 737ec8ee 993b4f2d ed30f48e dace915f""") x = _sws("""2070b322 3dba372f de1c0ffc 7b2e3b49 8b260614""") k = _sws("""358dad57 1462710f 50e254cf 1a376b2b deaadfbf""") k_inverse = _sws("""0d516729 8202e49b 4116ac10 4fc3f415 ae52f917""") m = b2a_hex(b("abc")) m_hash = _sws("""a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d""") r = _sws("""8bac1ab6 6410435c b7181f95 b16ab97c 92b341c0""") s = _sws("""41e2345f 1f56df24 58f426d1 55b4ba2d b6dcd8c8""") def setUp(self): global DSA, Random, bytes_to_long, size from Crypto.PublicKey import DSA from Crypto import Random from Crypto.Util.number import bytes_to_long, inverse, size self.dsa = DSA def test_generate_1arg(self): """DSA (default implementation) generated key (1 argument)""" dsaObj = self.dsa.generate(1024) self._check_private_key(dsaObj) pub = dsaObj.publickey() self._check_public_key(pub) def test_generate_2arg(self): """DSA (default implementation) generated key (2 arguments)""" dsaObj = self.dsa.generate(1024, Random.new().read) self._check_private_key(dsaObj) pub = dsaObj.publickey() self._check_public_key(pub) def test_construct_4tuple(self): """DSA (default implementation) constructed key (4-tuple)""" (y, g, p, q) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q)] dsaObj = self.dsa.construct((y, g, p, q)) self._test_verification(dsaObj) def test_construct_5tuple(self): """DSA (default implementation) constructed key (5-tuple)""" (y, g, p, q, x) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q, self.x)] dsaObj = self.dsa.construct((y, g, p, q, x)) self._test_signing(dsaObj) self._test_verification(dsaObj) def test_construct_bad_key4(self): (y, g, p, q) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q)] tup = (y, g, p+1, q) self.assertRaises(ValueError, self.dsa.construct, tup) tup = (y, g, p, q+1) self.assertRaises(ValueError, self.dsa.construct, tup) tup = (y, 1, p, q) self.assertRaises(ValueError, self.dsa.construct, tup) def test_construct_bad_key5(self): (y, g, p, q, x) = [bytes_to_long(a2b_hex(param)) for param in (self.y, self.g, self.p, self.q, self.x)] tup = (y, g, p, q, x+1) self.assertRaises(ValueError, self.dsa.construct, tup) tup = (y, g, p, q, q+10) self.assertRaises(ValueError, self.dsa.construct, tup) def _check_private_key(self, dsaObj): # Check capabilities self.assertEqual(1, dsaObj.has_private()) self.assertEqual(1, dsaObj.can_sign()) self.assertEqual(0, dsaObj.can_encrypt()) # Sanity check key data self.assertEqual(1, dsaObj.p > dsaObj.q) # p > q self.assertEqual(160, size(dsaObj.q)) # size(q) == 160 bits self.assertEqual(0, (dsaObj.p - 1) % dsaObj.q) # q is a divisor of p-1 self.assertEqual(dsaObj.y, pow(dsaObj.g, dsaObj.x, dsaObj.p)) # y == g**x mod p self.assertEqual(1, 0 < dsaObj.x < dsaObj.q) # 0 < x < q def _check_public_key(self, dsaObj): k = bytes_to_long(a2b_hex(self.k)) m_hash = bytes_to_long(a2b_hex(self.m_hash)) # Check capabilities self.assertEqual(0, dsaObj.has_private()) self.assertEqual(1, dsaObj.can_sign()) self.assertEqual(0, dsaObj.can_encrypt()) # Check that private parameters are all missing self.assertEqual(0, hasattr(dsaObj, 'x')) # Sanity check key data self.assertEqual(1, dsaObj.p > dsaObj.q) # p > q self.assertEqual(160, size(dsaObj.q)) # size(q) == 160 bits self.assertEqual(0, (dsaObj.p - 1) % dsaObj.q) # q is a divisor of p-1 # Public-only key objects should raise an error when .sign() is called self.assertRaises(TypeError, dsaObj._sign, m_hash, k) # Check __eq__ and __ne__ self.assertEqual(dsaObj.publickey() == dsaObj.publickey(),True) # assert_ self.assertEqual(dsaObj.publickey() != dsaObj.publickey(),False) # failIf def _test_signing(self, dsaObj): k = bytes_to_long(a2b_hex(self.k)) m_hash = bytes_to_long(a2b_hex(self.m_hash)) r = bytes_to_long(a2b_hex(self.r)) s = bytes_to_long(a2b_hex(self.s)) (r_out, s_out) = dsaObj._sign(m_hash, k) self.assertEqual((r, s), (r_out, s_out)) def _test_verification(self, dsaObj): m_hash = bytes_to_long(a2b_hex(self.m_hash)) r = bytes_to_long(a2b_hex(self.r)) s = bytes_to_long(a2b_hex(self.s)) self.assertTrue(dsaObj._verify(m_hash, (r, s))) self.assertFalse(dsaObj._verify(m_hash + 1, (r, s))) class DSADomainTest(unittest.TestCase): def test_domain1(self): """Verify we can generate new keys in a given domain""" dsa_key_1 = DSA.generate(1024) domain_params = dsa_key_1.domain() dsa_key_2 = DSA.generate(1024, domain=domain_params) self.assertEqual(dsa_key_1.p, dsa_key_2.p) self.assertEqual(dsa_key_1.q, dsa_key_2.q) self.assertEqual(dsa_key_1.g, dsa_key_2.g) self.assertEqual(dsa_key_1.domain(), dsa_key_2.domain()) def _get_weak_domain(self): from Crypto.Math.Numbers import Integer from Crypto.Math import Primality p = Integer(4) while p.size_in_bits() != 1024 or Primality.test_probable_prime(p) != Primality.PROBABLY_PRIME: q1 = Integer.random(exact_bits=80) q2 = Integer.random(exact_bits=80) q = q1 * q2 z = Integer.random(exact_bits=1024-160) p = z * q + 1 h = Integer(2) g = 1 while g == 1: g = pow(h, z, p) h += 1 return (p, q, g) def test_generate_error_weak_domain(self): """Verify that domain parameters with composite q are rejected""" domain_params = self._get_weak_domain() self.assertRaises(ValueError, DSA.generate, 1024, domain=domain_params) def test_construct_error_weak_domain(self): """Verify that domain parameters with composite q are rejected""" from Crypto.Math.Numbers import Integer p, q, g = self._get_weak_domain() y = pow(g, 89, p) self.assertRaises(ValueError, DSA.construct, (y, g, p, q)) def get_tests(config={}): tests = [] tests += list_test_cases(DSATest) tests += list_test_cases(DSADomainTest) return tests if __name__ == '__main__': suite = lambda: unittest.TestSuite(get_tests()) unittest.main(defaultTest='suite') # vim:set ts=4 sw=4 sts=4 expandtab: