# =================================================================== # # Copyright (c) 2014, Legrandin # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # =================================================================== from Crypto.Util.number import long_to_bytes, bytes_to_long from Crypto.Util.py3compat import maxint class Integer(object): """A class to model a natural integer (including zero)""" def __init__(self, value): if isinstance(value, float): raise ValueError("A floating point type is not a natural number") try: self._value = value._value except AttributeError: self._value = value # Conversions def __int__(self): return self._value def __str__(self): return str(int(self)) def __repr__(self): return "Integer(%s)" % str(self) def to_bytes(self, block_size=0): if self._value < 0: raise ValueError("Conversion only valid for non-negative numbers") result = long_to_bytes(self._value, block_size) if len(result) > block_size > 0: raise ValueError("Value too large to encode") return result @staticmethod def from_bytes(byte_string): return Integer(bytes_to_long(byte_string)) # Relations def __eq__(self, term): try: result = self._value == term._value except AttributeError: result = self._value == term return result def __ne__(self, term): return not self.__eq__(term) def __lt__(self, term): try: result = self._value < term._value except AttributeError: result = self._value < term return result def __le__(self, term): return self.__lt__(term) or self.__eq__(term) def __gt__(self, term): return not self.__le__(term) def __ge__(self, term): return not self.__lt__(term) def __bool__(self): return self._value != 0 def is_negative(self): return self._value < 0 # Arithmetic operations def __add__(self, term): try: return Integer(self._value + term._value) except AttributeError: return Integer(self._value + term) def __sub__(self, term): try: diff = self._value - term._value except AttributeError: diff = self._value - term return Integer(diff) def __mul__(self, factor): try: return Integer(self._value * factor._value) except AttributeError: return Integer(self._value * factor) def __floordiv__(self, divisor): try: divisor_value = divisor._value except AttributeError: divisor_value = divisor return Integer(self._value // divisor_value) def __mod__(self, divisor): try: divisor_value = divisor._value except AttributeError: divisor_value = divisor if divisor_value < 0: raise ValueError("Modulus must be positive") return Integer(self._value % divisor_value) def inplace_pow(self, exponent, modulus=None): try: exp_value = exponent._value except AttributeError: exp_value = exponent if exp_value < 0: raise ValueError("Exponent must not be negative") try: mod_value = modulus._value except AttributeError: mod_value = modulus if mod_value is not None: if mod_value < 0: raise ValueError("Modulus must be positive") if mod_value == 0: raise ZeroDivisionError("Modulus cannot be zero") self._value = pow(self._value, exp_value, mod_value) return self def __pow__(self, exponent, modulus=None): result = Integer(self) return result.inplace_pow(exponent, modulus) def __abs__(self): return abs(self._value) def sqrt(self): # http://stackoverflow.com/questions/15390807/integer-square-root-in-python if self._value < 0: raise ValueError("Square root of negative value") x = self._value y = (x + 1) // 2 while y < x: x = y y = (x + self._value // x) // 2 return Integer(x) def __iadd__(self, term): try: self._value += term._value except AttributeError: self._value += term return self def __isub__(self, term): try: self._value -= term._value except AttributeError: self._value -= term return self def __imul__(self, term): try: self._value *= term._value except AttributeError: self._value *= term return self def __imod__(self, term): try: modulus = term._value except AttributeError: modulus = term if modulus == 0: raise ZeroDivisionError("Division by zero") if modulus < 0: raise ValueError("Modulus must be positive") self._value %= modulus return self # Boolean/bit operations def __and__(self, term): try: return Integer(self._value & term._value) except AttributeError: return Integer(self._value & term) def __or__(self, term): try: return Integer(self._value | term._value) except AttributeError: return Integer(self._value | term) def __rshift__(self, pos): try: try: return Integer(self._value >> pos._value) except AttributeError: return Integer(self._value >> pos) except OverflowError: raise ValueError("Incorrect shift count") def __irshift__(self, pos): try: try: self._value >>= pos._value except AttributeError: self._value >>= pos except OverflowError: raise ValueError("Incorrect shift count") return self def __lshift__(self, pos): try: try: return Integer(self._value << pos._value) except AttributeError: return Integer(self._value << pos) except OverflowError: raise ValueError("Incorrect shift count") def __ilshift__(self, pos): try: try: self._value <<= pos._value except AttributeError: self._value <<= pos except OverflowError: raise ValueError("Incorrect shift count") return self def get_bit(self, n): try: try: return (self._value >> n._value) & 1 except AttributeError: return (self._value >> n) & 1 except OverflowError: raise ValueError("Incorrect bit position") # Extra def is_odd(self): return (self._value & 1) == 1 def is_even(self): return (self._value & 1) == 0 def size_in_bits(self): if self._value < 0: raise ValueError("Conversion only valid for non-negative numbers") if self._value == 0: return 1 bit_size = 0 tmp = self._value while tmp: tmp >>= 1 bit_size += 1 return bit_size def size_in_bytes(self): return (self.size_in_bits() - 1) // 8 + 1 def is_perfect_square(self): if self._value < 0: return False if self._value in (0, 1): return True x = self._value // 2 square_x = x ** 2 while square_x > self._value: x = (square_x + self._value) // (2 * x) square_x = x ** 2 return self._value == x ** 2 def fail_if_divisible_by(self, small_prime): try: if (self._value % small_prime._value) == 0: raise ValueError("Value is composite") except AttributeError: if (self._value % small_prime) == 0: raise ValueError("Value is composite") def multiply_accumulate(self, a, b): if type(a) == Integer: a = a._value if type(b) == Integer: b = b._value self._value += a * b return self def set(self, source): if type(source) == Integer: self._value = source._value else: self._value = source def inplace_inverse(self, modulus): try: modulus = modulus._value except AttributeError: pass if modulus == 0: raise ZeroDivisionError("Modulus cannot be zero") if modulus < 0: raise ValueError("Modulus cannot be negative") r_p, r_n = self._value, modulus s_p, s_n = 1, 0 while r_n > 0: q = r_p // r_n r_p, r_n = r_n, r_p - q * r_n s_p, s_n = s_n, s_p - q * s_n if r_p != 1: raise ValueError("No inverse value can be computed" + str(r_p)) while s_p < 0: s_p += modulus self._value = s_p return self def inverse(self, modulus): result = Integer(self) result.inplace_inverse(modulus) return result def gcd(self, term): try: term = term._value except AttributeError: pass r_p, r_n = abs(self._value), abs(term) while r_n > 0: q = r_p // r_n r_p, r_n = r_n, r_p - q * r_n return Integer(r_p) def lcm(self, term): try: term = term._value except AttributeError: pass if self._value == 0 or term == 0: return Integer(0) return Integer(abs((self._value * term) // self.gcd(term)._value)) @staticmethod def jacobi_symbol(a, n): if isinstance(a, Integer): a = a._value if isinstance(n, Integer): n = n._value if (n & 1) == 0: raise ValueError("n must be even for the Jacobi symbol") # Step 1 a = a % n # Step 2 if a == 1 or n == 1: return 1 # Step 3 if a == 0: return 0 # Step 4 e = 0 a1 = a while (a1 & 1) == 0: a1 >>= 1 e += 1 # Step 5 if (e & 1) == 0: s = 1 elif n % 8 in (1, 7): s = 1 else: s = -1 # Step 6 if n % 4 == 3 and a1 % 4 == 3: s = -s # Step 7 n1 = n % a1 # Step 8 return s * Integer.jacobi_symbol(n1, a1)