import numpy as np from scipy.ndimage import map_coordinates from skimage.data import checkerboard, astronaut from skimage.util.dtype import img_as_float from skimage.color.colorconv import rgb2gray from skimage.draw.draw import circle_perimeter_aa from skimage.feature.peak import peak_local_max from skimage._shared import testing from skimage._shared.testing import (assert_almost_equal, assert_equal, test_parallel) from skimage._shared._warnings import expected_warnings from skimage.transform._warps import (_stackcopy, _linear_polar_mapping, _log_polar_mapping, warp, warp_coords, rotate, resize, rescale, warp_polar, swirl, downscale_local_mean) from skimage.transform._geometric import (AffineTransform, ProjectiveTransform, SimilarityTransform) np.random.seed(0) def test_stackcopy(): layers = 4 x = np.empty((3, 3, layers)) y = np.eye(3, 3) _stackcopy(x, y) for i in range(layers): assert_almost_equal(x[..., i], y) def test_warp_tform(): x = np.zeros((5, 5), dtype=np.double) x[2, 2] = 1 theta = - np.pi / 2 tform = SimilarityTransform(scale=1, rotation=theta, translation=(0, 4)) x90 = warp(x, tform, order=1) assert_almost_equal(x90, np.rot90(x)) x90 = warp(x, tform.inverse, order=1) assert_almost_equal(x90, np.rot90(x)) def test_warp_callable(): x = np.zeros((5, 5), dtype=np.double) x[2, 2] = 1 refx = np.zeros((5, 5), dtype=np.double) refx[1, 1] = 1 def shift(xy): return xy + 1 outx = warp(x, shift, order=1) assert_almost_equal(outx, refx) @test_parallel() def test_warp_matrix(): x = np.zeros((5, 5), dtype=np.double) x[2, 2] = 1 refx = np.zeros((5, 5), dtype=np.double) refx[1, 1] = 1 matrix = np.array([[1, 0, 1], [0, 1, 1], [0, 0, 1]]) # _warp_fast outx = warp(x, matrix, order=1) assert_almost_equal(outx, refx) # check for ndimage.map_coordinates outx = warp(x, matrix, order=5) def test_warp_nd(): for dim in range(2, 8): shape = dim * (5,) x = np.zeros(shape, dtype=np.double) x_c = dim * (2,) x[x_c] = 1 refx = np.zeros(shape, dtype=np.double) refx_c = dim * (1,) refx[refx_c] = 1 coord_grid = dim * (slice(0, 5, 1),) coords = np.array(np.mgrid[coord_grid]) + 1 outx = warp(x, coords, order=0, cval=0) assert_almost_equal(outx, refx) def test_warp_clip(): x = np.zeros((5, 5), dtype=np.double) x[2, 2] = 1 outx = rescale(x, 3, order=3, clip=False, multichannel=False, anti_aliasing=False, mode='constant') assert outx.min() < 0 outx = rescale(x, 3, order=3, clip=True, multichannel=False, anti_aliasing=False, mode='constant') assert_almost_equal(outx.min(), 0) assert_almost_equal(outx.max(), 1) def test_homography(): x = np.zeros((5, 5), dtype=np.double) x[1, 1] = 1 theta = -np.pi / 2 M = np.array([[np.cos(theta), - np.sin(theta), 0], [np.sin(theta), np.cos(theta), 4], [0, 0, 1]]) x90 = warp(x, inverse_map=ProjectiveTransform(M).inverse, order=1) assert_almost_equal(x90, np.rot90(x)) def test_rotate(): x = np.zeros((5, 5), dtype=np.double) x[1, 1] = 1 x90 = rotate(x, 90) assert_almost_equal(x90, np.rot90(x)) def test_rotate_resize(): x = np.zeros((10, 10), dtype=np.double) x45 = rotate(x, 45, resize=False) assert x45.shape == (10, 10) x45 = rotate(x, 45, resize=True) # new dimension should be d = sqrt(2 * (10/2)^2) assert x45.shape == (14, 14) def test_rotate_center(): x = np.zeros((10, 10), dtype=np.double) x[4, 4] = 1 refx = np.zeros((10, 10), dtype=np.double) refx[2, 5] = 1 x20 = rotate(x, 20, order=0, center=(0, 0)) assert_almost_equal(x20, refx) x0 = rotate(x20, -20, order=0, center=(0, 0)) assert_almost_equal(x0, x) def test_rotate_resize_center(): x = np.zeros((10, 10), dtype=np.double) x[0, 0] = 1 ref_x45 = np.zeros((14, 14), dtype=np.double) ref_x45[6, 0] = 1 ref_x45[7, 0] = 1 x45 = rotate(x, 45, resize=True, center=(3, 3), order=0) # new dimension should be d = sqrt(2 * (10/2)^2) assert x45.shape == (14, 14) assert_equal(x45, ref_x45) def test_rotate_resize_90(): x90 = rotate(np.zeros((470, 230), dtype=np.double), 90, resize=True) assert x90.shape == (230, 470) def test_rescale(): # same scale factor x = np.zeros((5, 5), dtype=np.double) x[1, 1] = 1 scaled = rescale(x, 2, order=0, multichannel=False, anti_aliasing=False, mode='constant') ref = np.zeros((10, 10)) ref[2:4, 2:4] = 1 assert_almost_equal(scaled, ref) # different scale factors x = np.zeros((5, 5), dtype=np.double) x[1, 1] = 1 scaled = rescale(x, (2, 1), order=0, multichannel=False, anti_aliasing=False, mode='constant') ref = np.zeros((10, 5)) ref[2:4, 1] = 1 assert_almost_equal(scaled, ref) def test_rescale_invalid_scale(): x = np.zeros((10, 10, 3)) with testing.raises(ValueError): rescale(x, (2, 2), multichannel=False, anti_aliasing=False, mode='constant') with testing.raises(ValueError): rescale(x, (2, 2, 2), multichannel=True, anti_aliasing=False, mode='constant') def test_rescale_multichannel(): # 1D + channels x = np.zeros((8, 3), dtype=np.double) scaled = rescale(x, 2, order=0, multichannel=True, anti_aliasing=False, mode='constant') assert_equal(scaled.shape, (16, 3)) # 2D scaled = rescale(x, 2, order=0, multichannel=False, anti_aliasing=False, mode='constant') assert_equal(scaled.shape, (16, 6)) # 2D + channels x = np.zeros((8, 8, 3), dtype=np.double) scaled = rescale(x, 2, order=0, multichannel=True, anti_aliasing=False, mode='constant') assert_equal(scaled.shape, (16, 16, 3)) # 3D scaled = rescale(x, 2, order=0, multichannel=False, anti_aliasing=False, mode='constant') assert_equal(scaled.shape, (16, 16, 6)) # 3D + channels x = np.zeros((8, 8, 8, 3), dtype=np.double) scaled = rescale(x, 2, order=0, multichannel=True, anti_aliasing=False, mode='constant') assert_equal(scaled.shape, (16, 16, 16, 3)) # 4D scaled = rescale(x, 2, order=0, multichannel=False, anti_aliasing=False, mode='constant') assert_equal(scaled.shape, (16, 16, 16, 6)) def test_rescale_multichannel_multiscale(): x = np.zeros((5, 5, 3), dtype=np.double) scaled = rescale(x, (2, 1), order=0, multichannel=True, anti_aliasing=False, mode='constant') assert_equal(scaled.shape, (10, 5, 3)) def test_rescale_multichannel_defaults(): x = np.zeros((8, 3), dtype=np.double) scaled = rescale(x, 2, order=0, anti_aliasing=False, mode='constant') assert_equal(scaled.shape, (16, 6)) x = np.zeros((8, 8, 3), dtype=np.double) scaled = rescale(x, 2, order=0, anti_aliasing=False, mode='constant') assert_equal(scaled.shape, (16, 16, 6)) def test_resize2d(): x = np.zeros((5, 5), dtype=np.double) x[1, 1] = 1 resized = resize(x, (10, 10), order=0, anti_aliasing=False, mode='constant') ref = np.zeros((10, 10)) ref[2:4, 2:4] = 1 assert_almost_equal(resized, ref) def test_resize3d_keep(): # keep 3rd dimension x = np.zeros((5, 5, 3), dtype=np.double) x[1, 1, :] = 1 resized = resize(x, (10, 10), order=0, anti_aliasing=False, mode='constant') with testing.raises(ValueError): # output_shape too short resize(x, (10, ), order=0, anti_aliasing=False, mode='constant') ref = np.zeros((10, 10, 3)) ref[2:4, 2:4, :] = 1 assert_almost_equal(resized, ref) resized = resize(x, (10, 10, 3), order=0, anti_aliasing=False, mode='constant') assert_almost_equal(resized, ref) def test_resize3d_resize(): # resize 3rd dimension x = np.zeros((5, 5, 3), dtype=np.double) x[1, 1, :] = 1 resized = resize(x, (10, 10, 1), order=0, anti_aliasing=False, mode='constant') ref = np.zeros((10, 10, 1)) ref[2:4, 2:4] = 1 assert_almost_equal(resized, ref) def test_resize3d_2din_3dout(): # 3D output with 2D input x = np.zeros((5, 5), dtype=np.double) x[1, 1] = 1 resized = resize(x, (10, 10, 1), order=0, anti_aliasing=False, mode='constant') ref = np.zeros((10, 10, 1)) ref[2:4, 2:4] = 1 assert_almost_equal(resized, ref) def test_resize2d_4d(): # resize with extra output dimensions x = np.zeros((5, 5), dtype=np.double) x[1, 1] = 1 out_shape = (10, 10, 1, 1) resized = resize(x, out_shape, order=0, anti_aliasing=False, mode='constant') ref = np.zeros(out_shape) ref[2:4, 2:4, ...] = 1 assert_almost_equal(resized, ref) def test_resize_nd(): for dim in range(1, 6): shape = 2 + np.arange(dim) * 2 x = np.ones(shape) out_shape = np.asarray(shape) * 1.5 resized = resize(x, out_shape, order=0, mode='reflect', anti_aliasing=False) expected_shape = 1.5 * shape assert_equal(resized.shape, expected_shape) assert np.all(resized == 1) def test_resize3d_bilinear(): # bilinear 3rd dimension x = np.zeros((5, 5, 2), dtype=np.double) x[1, 1, 0] = 0 x[1, 1, 1] = 1 resized = resize(x, (10, 10, 1), order=1, mode='constant', anti_aliasing=False) ref = np.zeros((10, 10, 1)) ref[1:5, 1:5, :] = 0.03125 ref[1:5, 2:4, :] = 0.09375 ref[2:4, 1:5, :] = 0.09375 ref[2:4, 2:4, :] = 0.28125 assert_almost_equal(resized, ref) def test_resize_dtype(): x = np.zeros((5, 5)) x_f32 = x.astype(np.float32) x_u8 = x.astype(np.uint8) x_b = x.astype(bool) assert resize(x, (10, 10), preserve_range=False).dtype == x.dtype assert resize(x, (10, 10), preserve_range=True).dtype == x.dtype assert resize(x_u8, (10, 10), preserve_range=False).dtype == np.double assert resize(x_u8, (10, 10), preserve_range=True).dtype == np.double assert resize(x_b, (10, 10), preserve_range=False).dtype == np.double assert resize(x_b, (10, 10), preserve_range=True).dtype == np.double assert resize(x_f32, (10, 10), preserve_range=False).dtype == x_f32.dtype assert resize(x_f32, (10, 10), preserve_range=True).dtype == x_f32.dtype def test_swirl(): image = img_as_float(checkerboard()) swirl_params = {'radius': 80, 'rotation': 0, 'order': 2, 'mode': 'reflect'} with expected_warnings(['Bi-quadratic.*bug']): swirled = swirl(image, strength=10, **swirl_params) unswirled = swirl(swirled, strength=-10, **swirl_params) assert np.mean(np.abs(image - unswirled)) < 0.01 swirl_params.pop('mode') with expected_warnings(['Bi-quadratic.*bug']): swirled = swirl(image, strength=10, **swirl_params) unswirled = swirl(swirled, strength=-10, **swirl_params) assert np.mean(np.abs(image[1:-1, 1:-1] - unswirled[1:-1, 1:-1])) < 0.01 def test_const_cval_out_of_range(): img = np.random.randn(100, 100) cval = - 10 warped = warp(img, AffineTransform(translation=(10, 10)), cval=cval) assert np.sum(warped == cval) == (2 * 100 * 10 - 10 * 10) def test_warp_identity(): img = img_as_float(rgb2gray(astronaut())) assert len(img.shape) == 2 assert np.allclose(img, warp(img, AffineTransform(rotation=0))) assert not np.allclose(img, warp(img, AffineTransform(rotation=0.1))) rgb_img = np.transpose(np.asarray([img, np.zeros_like(img), img]), (1, 2, 0)) warped_rgb_img = warp(rgb_img, AffineTransform(rotation=0.1)) assert np.allclose(rgb_img, warp(rgb_img, AffineTransform(rotation=0))) assert not np.allclose(rgb_img, warped_rgb_img) # assert no cross-talk between bands assert np.all(0 == warped_rgb_img[:, :, 1]) def test_warp_coords_example(): image = astronaut().astype(np.float32) assert 3 == image.shape[2] tform = SimilarityTransform(translation=(0, -10)) coords = warp_coords(tform, (30, 30, 3)) map_coordinates(image[:, :, 0], coords[:2]) def test_downsize(): x = np.zeros((10, 10), dtype=np.double) x[2:4, 2:4] = 1 scaled = resize(x, (5, 5), order=0, anti_aliasing=False, mode='constant') assert_equal(scaled.shape, (5, 5)) assert_equal(scaled[1, 1], 1) assert_equal(scaled[2:, :].sum(), 0) assert_equal(scaled[:, 2:].sum(), 0) def test_downsize_anti_aliasing(): x = np.zeros((10, 10), dtype=np.double) x[2, 2] = 1 scaled = resize(x, (5, 5), order=1, anti_aliasing=True, mode='constant') assert_equal(scaled.shape, (5, 5)) assert np.all(scaled[:3, :3] > 0) assert_equal(scaled[3:, :].sum(), 0) assert_equal(scaled[:, 3:].sum(), 0) sigma = 0.125 out_size = (5, 5) resize(x, out_size, order=1, mode='constant', anti_aliasing=True, anti_aliasing_sigma=sigma) resize(x, out_size, order=1, mode='edge', anti_aliasing=True, anti_aliasing_sigma=sigma) resize(x, out_size, order=1, mode='symmetric', anti_aliasing=True, anti_aliasing_sigma=sigma) resize(x, out_size, order=1, mode='reflect', anti_aliasing=True, anti_aliasing_sigma=sigma) resize(x, out_size, order=1, mode='wrap', anti_aliasing=True, anti_aliasing_sigma=sigma) with testing.raises(ValueError): # Unknown mode, or cannot translate mode resize(x, out_size, order=1, mode='non-existent', anti_aliasing=True, anti_aliasing_sigma=sigma) def test_downsize_anti_aliasing_invalid_stddev(): x = np.zeros((10, 10), dtype=np.double) with testing.raises(ValueError): resize(x, (5, 5), order=0, anti_aliasing=True, anti_aliasing_sigma=-1, mode='constant') with expected_warnings(["Anti-aliasing standard deviation greater"]): resize(x, (5, 15), order=0, anti_aliasing=True, anti_aliasing_sigma=(1, 1), mode="reflect") resize(x, (5, 15), order=0, anti_aliasing=True, anti_aliasing_sigma=(0, 1), mode="reflect") def test_downscale(): x = np.zeros((10, 10), dtype=np.double) x[2:4, 2:4] = 1 scaled = rescale(x, 0.5, order=0, anti_aliasing=False, multichannel=False, mode='constant') assert_equal(scaled.shape, (5, 5)) assert_equal(scaled[1, 1], 1) assert_equal(scaled[2:, :].sum(), 0) assert_equal(scaled[:, 2:].sum(), 0) def test_downscale_anti_aliasing(): x = np.zeros((10, 10), dtype=np.double) x[2, 2] = 1 scaled = rescale(x, 0.5, order=1, anti_aliasing=True, multichannel=False, mode='constant') assert_equal(scaled.shape, (5, 5)) assert np.all(scaled[:3, :3] > 0) assert_equal(scaled[3:, :].sum(), 0) assert_equal(scaled[:, 3:].sum(), 0) def test_downscale_local_mean(): image1 = np.arange(4 * 6).reshape(4, 6) out1 = downscale_local_mean(image1, (2, 3)) expected1 = np.array([[4., 7.], [16., 19.]]) assert_equal(expected1, out1) image2 = np.arange(5 * 8).reshape(5, 8) out2 = downscale_local_mean(image2, (4, 5)) expected2 = np.array([[14., 10.8], [8.5, 5.7]]) assert_equal(expected2, out2) def test_invalid(): with testing.raises(ValueError): warp(np.ones((4, 3, 3, 3)), SimilarityTransform()) def test_inverse(): tform = SimilarityTransform(scale=0.5, rotation=0.1) inverse_tform = SimilarityTransform(matrix=np.linalg.inv(tform.params)) image = np.arange(10 * 10).reshape(10, 10).astype(np.double) assert_equal(warp(image, inverse_tform), warp(image, tform.inverse)) def test_slow_warp_nonint_oshape(): image = np.random.rand(5, 5) with testing.raises(ValueError): warp(image, lambda xy: xy, output_shape=(13.1, 19.5)) warp(image, lambda xy: xy, output_shape=(13.0001, 19.9999)) def test_keep_range(): image = np.linspace(0, 2, 25).reshape(5, 5) out = rescale(image, 2, preserve_range=False, clip=True, order=0, mode='constant', multichannel=False, anti_aliasing=False) assert out.min() == 0 assert out.max() == 2 out = rescale(image, 2, preserve_range=True, clip=True, order=0, mode='constant', multichannel=False, anti_aliasing=False) assert out.min() == 0 assert out.max() == 2 out = rescale(image.astype(np.uint8), 2, preserve_range=False, mode='constant', multichannel=False, anti_aliasing=False, clip=True, order=0) assert out.min() == 0 assert out.max() == 2 / 255.0 def test_zero_image_size(): with testing.raises(ValueError): warp(np.zeros(0), SimilarityTransform()) with testing.raises(ValueError): warp(np.zeros((0, 10)), SimilarityTransform()) with testing.raises(ValueError): warp(np.zeros((10, 0)), SimilarityTransform()) with testing.raises(ValueError): warp(np.zeros((10, 10, 0)), SimilarityTransform()) def test_linear_polar_mapping(): output_coords = np.array([[0, 0], [0, 90], [0, 180], [0, 270], [99, 0], [99, 180], [99, 270], [99, 45]]) ground_truth = np.array([[100, 100], [100, 100], [100, 100], [100, 100], [199, 100], [1, 100], [100, 1], [170.00357134, 170.00357134]]) k_angle = 360 / (2 * np.pi) k_radius = 1 center = (100, 100) coords = _linear_polar_mapping(output_coords, k_angle, k_radius, center) assert np.allclose(coords, ground_truth) def test_log_polar_mapping(): output_coords = np.array([[0, 0], [0, 90], [0, 180], [0, 270], [99, 0], [99, 180], [99, 270], [99, 45]]) ground_truth = np.array([[101, 100], [100, 101], [99, 100], [100, 99], [195.4992586, 100], [4.5007414, 100], [100, 4.5007414], [167.52817336, 167.52817336]]) k_angle = 360 / (2 * np.pi) k_radius = 100 / np.log(100) center = (100, 100) coords = _log_polar_mapping(output_coords, k_angle, k_radius, center) assert np.allclose(coords, ground_truth) def test_linear_warp_polar(): radii = [5, 10, 15, 20] image = np.zeros([51, 51]) for rad in radii: rr, cc, val = circle_perimeter_aa(25, 25, rad) image[rr, cc] = val warped = warp_polar(image, radius=25) profile = warped.mean(axis=0) peaks = peak_local_max(profile) assert np.alltrue([peak in radii for peak in peaks]) def test_log_warp_polar(): radii = [np.exp(2), np.exp(3), np.exp(4), np.exp(5), np.exp(5)-1, np.exp(5)+1] radii = [int(x) for x in radii] image = np.zeros([301, 301]) for rad in radii: rr, cc, val = circle_perimeter_aa(150, 150, rad) image[rr, cc] = val warped = warp_polar(image, radius=200, scaling='log') profile = warped.mean(axis=0) peaks_coord = peak_local_max(profile) peaks_coord.sort(axis=0) gaps = peaks_coord[1:] - peaks_coord[:-1] assert np.alltrue([x >= 38 and x <= 40 for x in gaps]) def test_invalid_scaling_polar(): with testing.raises(ValueError): warp_polar(np.zeros((10, 10)), (5, 5), scaling='invalid') with testing.raises(ValueError): warp_polar(np.zeros((10, 10)), (5, 5), scaling=None) def test_invalid_dimensions_polar(): with testing.raises(ValueError): warp_polar(np.zeros((10, 10, 3)), (5, 5)) with testing.raises(ValueError): warp_polar(np.zeros((10, 10)), (5, 5), multichannel=True) with testing.raises(ValueError): warp_polar(np.zeros((10, 10, 10, 3)), (5, 5), multichannel=True) def test_bool_img_rescale(): img = np.ones((12, 18), dtype=bool) img[2:-2, 4:-4] = False res = rescale(img, 0.5) expected = np.ones((6, 9)) expected[1:-1, 2:-2] = False assert_equal(res, expected) def test_bool_img_resize(): img = np.ones((12, 18), dtype=bool) img[2:-2, 4:-4] = False res = resize(img, (6, 9)) expected = np.ones((6, 9)) expected[1:-1, 2:-2] = False assert_equal(res, expected) def test_boll_array_warnings(): img = np.zeros((10, 10), dtype=bool) with expected_warnings(['Input image dtype is bool']): rescale(img, 0.5, anti_aliasing=True) with expected_warnings(['Input image dtype is bool']): resize(img, (5, 5), anti_aliasing=True) with expected_warnings(['Input image dtype is bool']): rescale(img, 0.5, order=1) with expected_warnings(['Input image dtype is bool']): resize(img, (5, 5), order=1) with expected_warnings(['Input image dtype is bool']): warp(img, np.eye(3), order=1)