import os import dlib import cv2 import sys import numpy as np try: import cPickle # Python2. except ImportError: import _pickle as cPickle # Python3. def enroll_face_dataset(): pwd = sys.path[0] PREDICTOR_PATH = pwd + '/Facial_models/shape_predictor_68_face_landmarks.dat' FACE_RECOGNITION_MODEL_PATH = pwd + '/Facial_models/dlib_face_recognition_resnet_model_v1.dat' faceDetector = dlib.get_frontal_face_detector() shapePredictor = dlib.shape_predictor(PREDICTOR_PATH) faceRecognizer = dlib.face_recognition_model_v1(FACE_RECOGNITION_MODEL_PATH) faceDatasetFolder = pwd + '/Facial_images/face_rec/train/' subfolders = [] for x in os.listdir(faceDatasetFolder): xpath = os.path.join(faceDatasetFolder, x) if os.path.isdir(xpath): subfolders.append(xpath) nameLabelMap = {} labels = [] imagePaths = [] for i, subfolder in enumerate(subfolders): for x in os.listdir(subfolder): xpath = os.path.join(subfolder, x) if x.endswith('jpg'): imagePaths.append(xpath) labels.append(i) nameLabelMap[xpath] = subfolder.split('/')[-1] index = {} i = 0 faceDescriptors = None for imagePath in imagePaths: print("processing: {}".format(imagePath)) img = cv2.imread(imagePath) faces = faceDetector(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) print("{} Face(s) found".format(len(faces))) for k, face in enumerate(faces): shape = shapePredictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), face) landmarks = [(p.x, p.y) for p in shape.parts()] faceDescriptor = faceRecognizer.compute_face_descriptor(img, shape) faceDescriptorList = [x for x in faceDescriptor] faceDescriptorNdarray = np.asarray(faceDescriptorList, dtype=np.float64) faceDescriptorNdarray = faceDescriptorNdarray[np.newaxis, :] if faceDescriptors is None: faceDescriptors = faceDescriptorNdarray else: faceDescriptors = np.concatenate((faceDescriptors, faceDescriptorNdarray), axis=0) index[i] = nameLabelMap[imagePath] i += 1 # Write descriors and index to disk np.save(pwd+'/Facial_models/descriptors.npy', faceDescriptors) with open(pwd+'/Facial_models/index.pkl', 'wb') as f: cPickle.dump(index, f)