import warnings from ..base import BaseEstimator, TransformerMixin from ..utils.validation import _allclose_dense_sparse from ..utils.validation import _deprecate_positional_args def _identity(X): """The identity function. """ return X class FunctionTransformer(TransformerMixin, BaseEstimator): """Constructs a transformer from an arbitrary callable. A FunctionTransformer forwards its X (and optionally y) arguments to a user-defined function or function object and returns the result of this function. This is useful for stateless transformations such as taking the log of frequencies, doing custom scaling, etc. Note: If a lambda is used as the function, then the resulting transformer will not be pickleable. .. versionadded:: 0.17 Read more in the :ref:`User Guide `. Parameters ---------- func : callable, optional default=None The callable to use for the transformation. This will be passed the same arguments as transform, with args and kwargs forwarded. If func is None, then func will be the identity function. inverse_func : callable, optional default=None The callable to use for the inverse transformation. This will be passed the same arguments as inverse transform, with args and kwargs forwarded. If inverse_func is None, then inverse_func will be the identity function. validate : bool, optional default=False Indicate that the input X array should be checked before calling ``func``. The possibilities are: - If False, there is no input validation. - If True, then X will be converted to a 2-dimensional NumPy array or sparse matrix. If the conversion is not possible an exception is raised. .. versionchanged:: 0.22 The default of ``validate`` changed from True to False. accept_sparse : boolean, optional Indicate that func accepts a sparse matrix as input. If validate is False, this has no effect. Otherwise, if accept_sparse is false, sparse matrix inputs will cause an exception to be raised. check_inverse : bool, default=True Whether to check that or ``func`` followed by ``inverse_func`` leads to the original inputs. It can be used for a sanity check, raising a warning when the condition is not fulfilled. .. versionadded:: 0.20 kw_args : dict, optional Dictionary of additional keyword arguments to pass to func. .. versionadded:: 0.18 inv_kw_args : dict, optional Dictionary of additional keyword arguments to pass to inverse_func. .. versionadded:: 0.18 Examples -------- >>> import numpy as np >>> from sklearn.preprocessing import FunctionTransformer >>> transformer = FunctionTransformer(np.log1p) >>> X = np.array([[0, 1], [2, 3]]) >>> transformer.transform(X) array([[0. , 0.6931...], [1.0986..., 1.3862...]]) """ @_deprecate_positional_args def __init__(self, func=None, inverse_func=None, *, validate=False, accept_sparse=False, check_inverse=True, kw_args=None, inv_kw_args=None): self.func = func self.inverse_func = inverse_func self.validate = validate self.accept_sparse = accept_sparse self.check_inverse = check_inverse self.kw_args = kw_args self.inv_kw_args = inv_kw_args def _check_input(self, X): if self.validate: return self._validate_data(X, accept_sparse=self.accept_sparse) return X def _check_inverse_transform(self, X): """Check that func and inverse_func are the inverse.""" idx_selected = slice(None, None, max(1, X.shape[0] // 100)) X_round_trip = self.inverse_transform(self.transform(X[idx_selected])) if not _allclose_dense_sparse(X[idx_selected], X_round_trip): warnings.warn("The provided functions are not strictly" " inverse of each other. If you are sure you" " want to proceed regardless, set" " 'check_inverse=False'.", UserWarning) def fit(self, X, y=None): """Fit transformer by checking X. If ``validate`` is ``True``, ``X`` will be checked. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. Returns ------- self """ X = self._check_input(X) if (self.check_inverse and not (self.func is None or self.inverse_func is None)): self._check_inverse_transform(X) return self def transform(self, X): """Transform X using the forward function. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. Returns ------- X_out : array-like, shape (n_samples, n_features) Transformed input. """ return self._transform(X, func=self.func, kw_args=self.kw_args) def inverse_transform(self, X): """Transform X using the inverse function. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. Returns ------- X_out : array-like, shape (n_samples, n_features) Transformed input. """ return self._transform(X, func=self.inverse_func, kw_args=self.inv_kw_args) def _transform(self, X, func=None, kw_args=None): X = self._check_input(X) if func is None: func = _identity return func(X, **(kw_args if kw_args else {})) def _more_tags(self): return {'no_validation': not self.validate, 'stateless': True}