/* * /MathJax-v2/extensions/mml2jax.js * * Copyright (c) 2009-2018 The MathJax Consortium * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ MathJax.Extension.mml2jax={version:"2.7.9",config:{preview:"mathml"},MMLnamespace:"http://www.w3.org/1998/Math/MathML",PreProcess:function(e){if(!this.configured){this.config=MathJax.Hub.CombineConfig("mml2jax",this.config);if(this.config.Augment){MathJax.Hub.Insert(this,this.config.Augment)}this.InitBrowser();this.configured=true}if(typeof(e)==="string"){e=document.getElementById(e)}if(!e){e=document.body}var h=[];this.PushMathElements(h,e,"math");this.PushMathElements(h,e,"math",this.MMLnamespace);var d,b;if(typeof(document.namespaces)!=="undefined"){try{for(d=0,b=document.namespaces.length;d/i,"").replace(/<\?xml:namespace .*?\/>/i,"");b=b.replace(/ /g," ")}MathJax.HTML.setScript(a,b);d.removeChild(e)}else{var c=MathJax.HTML.Element("span");c.appendChild(e);MathJax.HTML.setScript(a,c.innerHTML)}if(this.config.preview!=="none"){this.createPreview(e,a)}},ProcessMathFlattened:function(f){var d=f.parentNode;if(!d||d.className===MathJax.Hub.config.preRemoveClass){return}var b=document.createElement("script");b.type="math/mml";d.insertBefore(b,f);var c="",e,a=f;while(f&&f.nodeName!=="/MATH"){e=f;f=f.nextSibling;c+=this.NodeHTML(e);e.parentNode.removeChild(e)}if(f&&f.nodeName==="/MATH"){f.parentNode.removeChild(f)}b.text=c+"";if(this.config.preview!=="none"){this.createPreview(a,b)}},NodeHTML:function(e){var c,b,a;if(e.nodeName==="#text"){c=this.quoteHTML(e.nodeValue)}else{if(e.nodeName==="#comment"){c=""}else{c="<"+e.nodeName.toLowerCase();for(b=0,a=e.attributes.length;b";if(e.outerHTML!=null&&e.outerHTML.match(/(.<\/[A-Z]+>|\/>)$/)){for(b=0,a=e.childNodes.length;b"}}}return c},OuterHTML:function(d){if(d.nodeName.charAt(0)==="#"){return this.NodeHTML(d)}if(!this.AttributeBug){return d.outerHTML}var c=this.NodeHTML(d);for(var b=0,a=d.childNodes.length;b";return c},quoteHTML:function(a){if(a==null){a=""}return a.replace(/&/g,"&").replace(//g,">").replace(/\"/g,""")},createPreview:function(g,f){var e=this.config.preview;if(e==="none"){return}var i=false;var c=MathJax.Hub.config.preRemoveClass;if((f.previousSibling||{}).className===c){return}if(e==="mathml"){i=true;if(this.MathTagBug){e="alttext"}else{e=g.cloneNode(true)}}if(e==="alttext"||e==="altimg"){i=true;var d=this.filterPreview(g.getAttribute("alttext"));if(e==="alttext"){if(d!=null){e=MathJax.HTML.TextNode(d)}else{e=null}}else{var a=g.getAttribute("altimg");if(a!=null){var b={width:g.getAttribute("altimg-width"),height:g.getAttribute("altimg-height")};e=MathJax.HTML.Element("img",{src:a,alt:d,style:b})}else{e=null}}}if(e){var h;if(i){h=MathJax.HTML.Element("span",{className:c});h.appendChild(e)}else{h=MathJax.HTML.Element("span",{className:c},e)}f.parentNode.insertBefore(h,f)}},filterPreview:function(a){return a},InitBrowser:function(){var b=MathJax.HTML.Element("span",{id:"<",className:"mathjax",innerHTML:"x"});var a=b.outerHTML||"";this.AttributeBug=a!==""&&!(a.match(/id="<"/)&&a.match(/class="mathjax"/)&&a.match(/<\/math>/));this.MathTagBug=b.childNodes.length>1;this.CleanupHTML=MathJax.Hub.Browser.isMSIE}};MathJax.Hub.Register.PreProcessor(["PreProcess",MathJax.Extension.mml2jax],5);MathJax.Ajax.loadComplete("[MathJax]/extensions/mml2jax.js");