import cv2 import numpy as np import sys,os,numpy from glob import glob from skimage import io #read test photo pwd = sys.path[0] img = cv2.imread(pwd + "/Facial_test_images/6.jpg") grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) resize_fx = 1 resize_fy = 1 grey = cv2.resize(grey, dsize=None, fx=resize_fx, fy=resize_fy, interpolation = cv2.INTER_AREA) classfier = cv2.CascadeClassifier(pwd + "/Facial_models/haarcascade_frontalface_alt2.xml") faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=1, minSize=(16, 16)) color = (0, 255, 0) if len(faceRects) > 0: for faceRect in faceRects: x, y, w, h = faceRect x = int(x/resize_fx) y = int(y/resize_fy) w = int(w/resize_fx) h = int(h/resize_fy) cv2.rectangle(img, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 5) cv2.imwrite(pwd + "/Facial_test_images/output-a.jpg",img) cv2.imshow("face_image_a",img) image = cv2.imread(pwd + "/Facial_test_images/6.jpg") net = cv2.dnn.readNetFromCaffe(pwd+"/Facial_models/deploy.prototxt", pwd+"/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel") blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) net.setInput(blob) detections = net.forward() h,w,c=image.shape for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > 0.65: box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") text = "{:.2f}%".format(confidence * 100) y = startY - 10 if startY - 10 > 10 else startY + 10 cv2.rectangle(image, (startX, startY), (endX, endY),(0, 255,0), 5) cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 1.00, (0, 255, 0), 3) cv2.imwrite(pwd + "/Facial_test_images/output-b.jpg", image) cv2.imshow("face_image_b",image) cv2.waitKey(0)