Updated the Integration. Tested the system, it works.
|
@ -4,99 +4,105 @@ import cv2
|
|||
import numpy as np
|
||||
import DBHelper
|
||||
|
||||
try:
|
||||
import cPickle # Python 2
|
||||
except ImportError:
|
||||
import _pickle as cPickle # Python 3
|
||||
|
||||
pwd = sys.path[0]
|
||||
PREDICTOR_PATH = pwd + '/Facial_models/shape_predictor_68_face_landmarks.dat'
|
||||
FACE_RECOGNITION_MODEL_PATH = pwd + '/Facial_models/dlib_face_recognition_resnet_model_v1.dat'
|
||||
def inference():
|
||||
try:
|
||||
import cPickle # Python 2
|
||||
except ImportError:
|
||||
import _pickle as cPickle # Python 3
|
||||
|
||||
SKIP_FRAMES = 1
|
||||
THRESHOLD = 0.4
|
||||
pwd = sys.path[0]
|
||||
PREDICTOR_PATH = pwd + '/Facial_models/shape_predictor_68_face_landmarks.dat'
|
||||
FACE_RECOGNITION_MODEL_PATH = pwd + '/Facial_models/dlib_face_recognition_resnet_model_v1.dat'
|
||||
|
||||
faceDetector = dlib.get_frontal_face_detector()
|
||||
shapePredictor = dlib.shape_predictor(PREDICTOR_PATH)
|
||||
faceRecognizer = dlib.face_recognition_model_v1(FACE_RECOGNITION_MODEL_PATH)
|
||||
SKIP_FRAMES = 1
|
||||
THRESHOLD = 0.4
|
||||
|
||||
index = np.load(pwd + '/Facial_models/index.pkl', allow_pickle=True)
|
||||
faceDescriptorsEnrolled = np.load(pwd + '/Facial_models/descriptors.npy')
|
||||
faceDetector = dlib.get_frontal_face_detector()
|
||||
shapePredictor = dlib.shape_predictor(PREDICTOR_PATH)
|
||||
faceRecognizer = dlib.face_recognition_model_v1(FACE_RECOGNITION_MODEL_PATH)
|
||||
|
||||
cam = cv2.VideoCapture(0)
|
||||
count = 0
|
||||
index = np.load(pwd + '/Facial_models/index.pkl', allow_pickle=True)
|
||||
faceDescriptorsEnrolled = np.load(pwd + '/Facial_models/descriptors.npy')
|
||||
|
||||
x1 = x2 = y1 = y2 = 0
|
||||
cam = cv2.VideoCapture(0)
|
||||
count = 0
|
||||
|
||||
cond = False
|
||||
x1 = x2 = y1 = y2 = 0
|
||||
|
||||
while DBHelper.get_power() == "on":
|
||||
t = time.time()
|
||||
success, im = cam.read()
|
||||
cond = False
|
||||
|
||||
if not success:
|
||||
print('cannot capture input from camera')
|
||||
break
|
||||
while DBHelper.get_power() == "on":
|
||||
t = time.time()
|
||||
success, im = cam.read()
|
||||
|
||||
if (count % SKIP_FRAMES) == 0:
|
||||
if not success:
|
||||
print('cannot capture input from camera')
|
||||
break
|
||||
|
||||
img = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
||||
faces = faceDetector(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
||||
if (count % SKIP_FRAMES) == 0:
|
||||
|
||||
for face in faces:
|
||||
img = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
||||
faces = faceDetector(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
||||
|
||||
shape = shapePredictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), face)
|
||||
for face in faces:
|
||||
|
||||
x1 = face.left()
|
||||
y1 = face.top()
|
||||
x2 = face.right()
|
||||
y2 = face.bottom()
|
||||
shape = shapePredictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), face)
|
||||
|
||||
faceDescriptor = faceRecognizer.compute_face_descriptor(img, shape)
|
||||
x1 = face.left()
|
||||
y1 = face.top()
|
||||
x2 = face.right()
|
||||
y2 = face.bottom()
|
||||
|
||||
# dlib format to list
|
||||
faceDescriptorList = [m for m in faceDescriptor]
|
||||
# to numpy array
|
||||
faceDescriptorNdarray = np.asarray(faceDescriptorList, dtype=np.float64)
|
||||
faceDescriptorNdarray = faceDescriptorNdarray[np.newaxis, :]
|
||||
faceDescriptor = faceRecognizer.compute_face_descriptor(img, shape)
|
||||
|
||||
# Euclidean distances
|
||||
distances = np.linalg.norm(faceDescriptorsEnrolled - faceDescriptorNdarray, axis=1)
|
||||
# dlib format to list
|
||||
faceDescriptorList = [m for m in faceDescriptor]
|
||||
# to numpy array
|
||||
faceDescriptorNdarray = np.asarray(faceDescriptorList, dtype=np.float64)
|
||||
faceDescriptorNdarray = faceDescriptorNdarray[np.newaxis, :]
|
||||
|
||||
# Calculate minimum distance and index of face
|
||||
argmin = np.argmin(distances) # index
|
||||
minDistance = distances[argmin] # minimum distance
|
||||
# Euclidean distances
|
||||
distances = np.linalg.norm(faceDescriptorsEnrolled - faceDescriptorNdarray, axis=1)
|
||||
|
||||
if minDistance <= THRESHOLD:
|
||||
label = DBHelper.get_firstname(index[argmin]) + "_" + DBHelper.get_lastname(index[argmin])
|
||||
cond = True
|
||||
else:
|
||||
label = 'unknown'
|
||||
cond = False
|
||||
# Calculate minimum distance and index of face
|
||||
argmin = np.argmin(distances) # index
|
||||
minDistance = distances[argmin] # minimum distance
|
||||
|
||||
# print("time taken = {:.3f} seconds".format(time.time() - t))
|
||||
if minDistance <= THRESHOLD:
|
||||
label = DBHelper.get_firstname(index[argmin]) + "_" + DBHelper.get_lastname(index[argmin])
|
||||
cond = True
|
||||
else:
|
||||
label = 'unknown'
|
||||
cond = False
|
||||
|
||||
cv2.rectangle(im, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
font_face = cv2.FONT_HERSHEY_SIMPLEX
|
||||
font_scale = 0.8
|
||||
text_color = (0, 255, 0)
|
||||
printLabel = '{} {:0.4f}'.format(label, minDistance)
|
||||
cv2.putText(im, printLabel, (int(x1), int(y1)), font_face, font_scale, text_color, thickness=2)
|
||||
# print("time taken = {:.3f} seconds".format(time.time() - t))
|
||||
|
||||
cv2.imshow('img', im)
|
||||
cv2.rectangle(im, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||
font_face = cv2.FONT_HERSHEY_SIMPLEX
|
||||
font_scale = 0.8
|
||||
text_color = (0, 255, 0)
|
||||
printLabel = '{} {:0.4f}'.format(label, minDistance)
|
||||
cv2.putText(im, printLabel, (int(x1), int(y1)), font_face, font_scale, text_color, thickness=2)
|
||||
|
||||
k = cv2.waitKey(1) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
cv2.imshow('img', im)
|
||||
|
||||
count += 1
|
||||
if cond:
|
||||
DBHelper.set_motor("on")
|
||||
DBHelper.set_alarm("off")
|
||||
elif not cond:
|
||||
DBHelper.set_motor("off")
|
||||
DBHelper.set_alarm("on")
|
||||
k = cv2.waitKey(1) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
|
||||
DBHelper.set_alarm("off")
|
||||
DBHelper.set_motor("off")
|
||||
cv2.destroyAllWindows()
|
||||
count += 1
|
||||
if cond:
|
||||
DBHelper.set_motor("on")
|
||||
DBHelper.set_alarm("off")
|
||||
elif not cond:
|
||||
DBHelper.set_motor("off")
|
||||
DBHelper.set_alarm("on")
|
||||
|
||||
DBHelper.set_alarm("off")
|
||||
DBHelper.set_motor("off")
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
inference()
|
||||
|
|
Before Width: | Height: | Size: 75 KiB After Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 79 KiB After Width: | Height: | Size: 76 KiB |
Before Width: | Height: | Size: 79 KiB After Width: | Height: | Size: 73 KiB |
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 73 KiB |
Before Width: | Height: | Size: 83 KiB After Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 73 KiB |
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 73 KiB |
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 73 KiB |
Before Width: | Height: | Size: 81 KiB After Width: | Height: | Size: 73 KiB |
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 75 KiB |
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 75 KiB |
Before Width: | Height: | Size: 73 KiB After Width: | Height: | Size: 76 KiB |
Before Width: | Height: | Size: 76 KiB After Width: | Height: | Size: 75 KiB |
Before Width: | Height: | Size: 76 KiB After Width: | Height: | Size: 75 KiB |
Before Width: | Height: | Size: 77 KiB After Width: | Height: | Size: 75 KiB |
Before Width: | Height: | Size: 79 KiB After Width: | Height: | Size: 75 KiB |
Before Width: | Height: | Size: 80 KiB After Width: | Height: | Size: 75 KiB |
Before Width: | Height: | Size: 86 KiB After Width: | Height: | Size: 80 KiB |
Before Width: | Height: | Size: 88 KiB After Width: | Height: | Size: 80 KiB |
Before Width: | Height: | Size: 87 KiB After Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 88 KiB After Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 88 KiB After Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 87 KiB After Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 83 KiB After Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 82 KiB After Width: | Height: | Size: 79 KiB |
Before Width: | Height: | Size: 84 KiB After Width: | Height: | Size: 79 KiB |
Before Width: | Height: | Size: 87 KiB After Width: | Height: | Size: 79 KiB |
Before Width: | Height: | Size: 86 KiB After Width: | Height: | Size: 79 KiB |
Before Width: | Height: | Size: 85 KiB After Width: | Height: | Size: 77 KiB |
Before Width: | Height: | Size: 85 KiB After Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 85 KiB After Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 88 KiB After Width: | Height: | Size: 79 KiB |
Before Width: | Height: | Size: 88 KiB After Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 87 KiB After Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 87 KiB After Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 87 KiB After Width: | Height: | Size: 78 KiB |
BIN
__pycache__/Facial_Recognition_Enrollment.cpython-36.pyc
Normal file
BIN
__pycache__/Facial_Recognition_Inference.cpython-36.pyc
Normal file
|
@ -32,7 +32,7 @@ def start():
|
|||
print("Success.")
|
||||
except:
|
||||
print("No Thieves are registered.")
|
||||
Facial_Recognition_Inference
|
||||
Facial_Recognition_Inference.inference()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|