Implement face detection on live video stream (test on Raspberry pi required)

This commit is contained in:
Feier Zhang 2020-11-07 16:32:20 -05:00
parent 574f4c798e
commit e2e0d61411

View file

@ -38,7 +38,7 @@ def face_detector_ssd(image):
pwd = sys.path[0]
net = cv2.dnn.readNetFromCaffe(pwd+"/Facial_models/deploy.prototxt", pwd+"/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel")
resize = (800, 800)
resize = (300, 300)
confidence_thres = 0.65
blob = cv2.dnn.blobFromImage(cv2.resize(image, dsize=resize), 1.0, resize, (104.0, 177.0, 123.0))
@ -65,7 +65,20 @@ def face_detector_ssd(image):
if __name__=="__main__":
cameraCapture = cv2.VideoCapture(1)
success, frame = cameraCapture.read()
while success and cv2.waitKey(1) == -1:
success, frame = cameraCapture.read()
face_detector_ssd(frame)
cv2.imshow("video", frame)
cameraCapture.release()
cv2.destroyAllWindows()
# image process (keep it in case if needed)
'''
image_name = "8.jpg"
split_name = image_name.split(".")
@ -75,7 +88,7 @@ if __name__=="__main__":
image = cv2.imread(image_read_path)
image = face_detector_ssd(image)
#image = face_detector_haarcascade(image)
image = face_detector_haarcascade(image)
print(image_save_path)
@ -83,6 +96,7 @@ if __name__=="__main__":
cv2.imshow("result", image)
cv2.waitKey()
cv2.destroyAllWindows()
'''