Implement face detection on live video stream (test on Raspberry pi required)
This commit is contained in:
parent
574f4c798e
commit
e2e0d61411
1 changed files with 16 additions and 2 deletions
|
@ -38,7 +38,7 @@ def face_detector_ssd(image):
|
|||
pwd = sys.path[0]
|
||||
net = cv2.dnn.readNetFromCaffe(pwd+"/Facial_models/deploy.prototxt", pwd+"/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel")
|
||||
|
||||
resize = (800, 800)
|
||||
resize = (300, 300)
|
||||
confidence_thres = 0.65
|
||||
|
||||
blob = cv2.dnn.blobFromImage(cv2.resize(image, dsize=resize), 1.0, resize, (104.0, 177.0, 123.0))
|
||||
|
@ -65,7 +65,20 @@ def face_detector_ssd(image):
|
|||
|
||||
|
||||
if __name__=="__main__":
|
||||
|
||||
cameraCapture = cv2.VideoCapture(1)
|
||||
success, frame = cameraCapture.read()
|
||||
|
||||
while success and cv2.waitKey(1) == -1:
|
||||
success, frame = cameraCapture.read()
|
||||
face_detector_ssd(frame)
|
||||
cv2.imshow("video", frame)
|
||||
|
||||
cameraCapture.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
# image process (keep it in case if needed)
|
||||
'''
|
||||
image_name = "8.jpg"
|
||||
split_name = image_name.split(".")
|
||||
|
||||
|
@ -75,7 +88,7 @@ if __name__=="__main__":
|
|||
image = cv2.imread(image_read_path)
|
||||
|
||||
image = face_detector_ssd(image)
|
||||
#image = face_detector_haarcascade(image)
|
||||
image = face_detector_haarcascade(image)
|
||||
|
||||
print(image_save_path)
|
||||
|
||||
|
@ -83,6 +96,7 @@ if __name__=="__main__":
|
|||
cv2.imshow("result", image)
|
||||
cv2.waitKey()
|
||||
cv2.destroyAllWindows()
|
||||
'''
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue