Integrated Facial Software to Database and Main Program.

This commit is contained in:
Batuhan Berk Başoğlu 2021-01-24 10:55:36 -05:00
parent 9f7adf2762
commit e1f6e307fa
6 changed files with 117 additions and 110 deletions

View file

@ -5,74 +5,71 @@ import sys
import numpy as np
try:
import cPickle # Python2.
import cPickle # Python2.
except ImportError:
import _pickle as cPickle # Python3.
import _pickle as cPickle # Python3.
def enroll_face_dataset():
pwd = sys.path[0]
PREDICTOR_PATH = pwd + '/Facial_models/shape_predictor_68_face_landmarks.dat'
FACE_RECOGNITION_MODEL_PATH = pwd + '/Facial_models/dlib_face_recognition_resnet_model_v1.dat'
pwd = sys.path[0]
PREDICTOR_PATH = pwd + '/Facial_models/shape_predictor_68_face_landmarks.dat'
FACE_RECOGNITION_MODEL_PATH = pwd + '/Facial_models/dlib_face_recognition_resnet_model_v1.dat'
faceDetector = dlib.get_frontal_face_detector()
shapePredictor = dlib.shape_predictor(PREDICTOR_PATH)
faceRecognizer = dlib.face_recognition_model_v1(FACE_RECOGNITION_MODEL_PATH)
faceDetector = dlib.get_frontal_face_detector()
shapePredictor = dlib.shape_predictor(PREDICTOR_PATH)
faceRecognizer = dlib.face_recognition_model_v1(FACE_RECOGNITION_MODEL_PATH)
faceDatasetFolder = pwd + '/Facial_images/face_rec/train/'
faceDatasetFolder = pwd + '/Facial_images/face_rec/train/'
subfolders = []
for x in os.listdir(faceDatasetFolder):
xpath = os.path.join(faceDatasetFolder, x)
if os.path.isdir(xpath):
subfolders.append(xpath)
subfolders = []
for x in os.listdir(faceDatasetFolder):
xpath = os.path.join(faceDatasetFolder, x)
if os.path.isdir(xpath):
subfolders.append(xpath)
nameLabelMap = {}
labels = []
imagePaths = []
for i, subfolder in enumerate(subfolders):
for x in os.listdir(subfolder):
xpath = os.path.join(subfolder, x)
if x.endswith('jpg'):
imagePaths.append(xpath)
labels.append(i)
nameLabelMap[xpath] = subfolder.split('/')[-1]
index = {}
i = 0
faceDescriptors = None
for imagePath in imagePaths:
# print("processing: {}".format(imagePath))
img = cv2.imread(imagePath)
nameLabelMap = {}
labels = []
imagePaths = []
for i, subfolder in enumerate(subfolders):
for x in os.listdir(subfolder):
xpath = os.path.join(subfolder, x)
if x.endswith('jpg'):
imagePaths.append(xpath)
labels.append(i)
nameLabelMap[xpath] = subfolder.split('/')[-1]
faces = faceDetector(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
index = {}
i = 0
faceDescriptors = None
for imagePath in imagePaths:
#print("processing: {}".format(imagePath))
img = cv2.imread(imagePath)
# print("{} Face(s) found".format(len(faces)))
faces = faceDetector(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
for k, face in enumerate(faces):
#print("{} Face(s) found".format(len(faces)))
shape = shapePredictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), face)
for k, face in enumerate(faces):
landmarks = [(p.x, p.y) for p in shape.parts()]
shape = shapePredictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), face)
faceDescriptor = faceRecognizer.compute_face_descriptor(img, shape)
landmarks = [(p.x, p.y) for p in shape.parts()]
faceDescriptorList = [x for x in faceDescriptor]
faceDescriptorNdarray = np.asarray(faceDescriptorList, dtype=np.float64)
faceDescriptorNdarray = faceDescriptorNdarray[np.newaxis, :]
faceDescriptor = faceRecognizer.compute_face_descriptor(img, shape)
if faceDescriptors is None:
faceDescriptors = faceDescriptorNdarray
else:
faceDescriptors = np.concatenate((faceDescriptors, faceDescriptorNdarray), axis=0)
index[i] = nameLabelMap[imagePath]
i += 1
faceDescriptorList = [x for x in faceDescriptor]
faceDescriptorNdarray = np.asarray(faceDescriptorList, dtype=np.float64)
faceDescriptorNdarray = faceDescriptorNdarray[np.newaxis, :]
if faceDescriptors is None:
faceDescriptors = faceDescriptorNdarray
else:
faceDescriptors = np.concatenate((faceDescriptors, faceDescriptorNdarray), axis=0)
index[i] = nameLabelMap[imagePath]
i += 1
# Write descriors and index to disk
np.save(pwd+'/Facial_models/descriptors.npy', faceDescriptors)
with open(pwd+'/Facial_models/index.pkl', 'wb') as f:
cPickle.dump(index, f)
# Write descriors and index to disk
np.save(pwd + '/Facial_models/descriptors.npy', faceDescriptors)
with open(pwd + '/Facial_models/index.pkl', 'wb') as f:
cPickle.dump(index, f)

View file

@ -1,13 +1,13 @@
import os,sys,time
import os, sys, time
import dlib
import cv2
import numpy as np
import DBHelper
try:
import cPickle # Python 2
import cPickle # Python 2
except ImportError:
import _pickle as cPickle # Python 3
import _pickle as cPickle # Python 3
pwd = sys.path[0]
PREDICTOR_PATH = pwd + '/Facial_models/shape_predictor_68_face_landmarks.dat'
@ -20,75 +20,83 @@ faceDetector = dlib.get_frontal_face_detector()
shapePredictor = dlib.shape_predictor(PREDICTOR_PATH)
faceRecognizer = dlib.face_recognition_model_v1(FACE_RECOGNITION_MODEL_PATH)
index = np.load(pwd+'/Facial_models/index.pkl', allow_pickle=True)
faceDescriptorsEnrolled = np.load(pwd+'/Facial_models/descriptors.npy')
index = np.load(pwd + '/Facial_models/index.pkl', allow_pickle=True)
faceDescriptorsEnrolled = np.load(pwd + '/Facial_models/descriptors.npy')
cam = cv2.VideoCapture(1)
cam = cv2.VideoCapture(0)
count = 0
x1 = x2 = y1 = y2 = 0
while True:
t = time.time()
success, im = cam.read()
cond = False
if not success:
print('cannot capture input from camera')
break
while DBHelper.get_power() == "on":
t = time.time()
success, im = cam.read()
if not success:
print('cannot capture input from camera')
break
if (count % SKIP_FRAMES) == 0:
if (count % SKIP_FRAMES) == 0:
img = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
faces = faceDetector(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
img = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
faces = faceDetector(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
for face in faces:
for face in faces:
shape = shapePredictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), face)
shape = shapePredictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), face)
x1 = face.left()
y1 = face.top()
x2 = face.right()
y2 = face.bottom()
x1 = face.left()
y1 = face.top()
x2 = face.right()
y2 = face.bottom()
faceDescriptor = faceRecognizer.compute_face_descriptor(img, shape)
faceDescriptor = faceRecognizer.compute_face_descriptor(img, shape)
# dlib format to list
faceDescriptorList = [m for m in faceDescriptor]
# to numpy array
faceDescriptorNdarray = np.asarray(faceDescriptorList, dtype=np.float64)
faceDescriptorNdarray = faceDescriptorNdarray[np.newaxis, :]
# dlib format to list
faceDescriptorList = [m for m in faceDescriptor]
# to numpy array
faceDescriptorNdarray = np.asarray(faceDescriptorList, dtype=np.float64)
faceDescriptorNdarray = faceDescriptorNdarray[np.newaxis, :]
# Euclidean distances
distances = np.linalg.norm(faceDescriptorsEnrolled - faceDescriptorNdarray, axis=1)
# Euclidean distances
distances = np.linalg.norm(faceDescriptorsEnrolled - faceDescriptorNdarray, axis=1)
# Calculate minimum distance and index of face
argmin = np.argmin(distances) # index
minDistance = distances[argmin] # minimum distance
# Calculate minimum distance and index of face
argmin = np.argmin(distances) # index
minDistance = distances[argmin] # minimum distance
if minDistance <= THRESHOLD:
label = DBHelper.get_firstname(index[argmin]) + "_" + DBHelper.get_lastname(index[argmin])
cond = True
else:
label = 'unknown'
cond = False
if minDistance <= THRESHOLD:
label = index[argmin]
else:
label = 'unknown'
# print("time taken = {:.3f} seconds".format(time.time() - t))
#print("time taken = {:.3f} seconds".format(time.time() - t))
cv2.rectangle(im, (x1, y1), (x2, y2), (0, 255, 0), 2)
font_face = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.8
text_color = (0, 255, 0)
printLabel = '{} {:0.4f}'.format(label, minDistance)
cv2.putText(im, printLabel, (int(x1), int(y1)), font_face, font_scale, text_color, thickness=2)
cv2.imshow('img', im)
cv2.rectangle(im, (x1, y1), (x2, y2), (0, 255, 0), 2)
font_face = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.8
text_color = (0, 255, 0)
printLabel = '{} {:0.4f}'.format(label, minDistance)
cv2.putText(im, printLabel, (int(x1), int(y1)) , font_face, font_scale, text_color, thickness=2)
k = cv2.waitKey(1) & 0xff
if k == 27:
break
count += 1
if cond:
DBHelper.set_motor("on")
DBHelper.set_alarm("off")
elif not cond:
DBHelper.set_motor("off")
DBHelper.set_alarm("on")
cv2.imshow('img', im)
k = cv2.waitKey(1) & 0xff
if k == 27:
break
count += 1
DBHelper.set_alarm("off")
DBHelper.set_motor("off")
cv2.destroyAllWindows()

View file

@ -4,6 +4,7 @@ import math
import cv2
import Facial_Recognition_Enrollment
def register_your_face(label):
num_cap = 50
@ -37,6 +38,6 @@ if __name__ == "__main__":
register_your_face(label)
print("Data saved! Starting enrollment...")
print()
Facial_Recognition_Enrollment.enroll_face_dataset() #Need discuss and modify after intergrate with database.
Facial_Recognition_Enrollment.enroll_face_dataset() # Need discuss and modify after intergrate with database.
print("Face registration completed!")
print()

View file

@ -1,5 +1,6 @@
import DBHelper
import Facial_Recognition_Registration
import Facial_Recognition_Enrollment
def upload_your_face(firstname, lastname, email, phone):
@ -13,6 +14,7 @@ def upload_your_face(firstname, lastname, email, phone):
count += 1
DBHelper.upload_data("User_" + str(count), firstname, lastname, email, phone)
Facial_Recognition_Registration.register_your_face("User_" + str(count))
Facial_Recognition_Enrollment.enroll_face_dataset()
for i in range(20):
DBHelper.upload_user_photo("User_" + str(count) + "/" + str(i) + ".jpg")
except:

Binary file not shown.

View file

@ -1,6 +1,6 @@
import os
import DBHelper
import Facial_Recognition_Wrapper
import Facial_Recognition_Inference
def start():
@ -32,8 +32,7 @@ def start():
print("Success.")
except:
print("No Thieves are registered.")
Facial_Recognition_Wrapper.training_recognizer("LBPH")
Facial_Recognition_Wrapper.face_recognition_inference("LBPH")
Facial_Recognition_Inference
if __name__ == "__main__":