Integrated hardware commands to Facial Recognition Software.
This commit is contained in:
		
							parent
							
								
									c5bf048621
								
							
						
					
					
						commit
						cf228272a8
					
				
					 7 changed files with 170 additions and 177 deletions
				
			
		|  | @ -7,11 +7,13 @@ import numpy as np | |||
| import Facial_Recognition_Render as fr | ||||
| import _pickle as cPickle | ||||
| import glob | ||||
| 'import Hardware.Motor' #Line 225-228 | ||||
| 
 | ||||
| faceWidth = 320 | ||||
| faceHeight = 320 | ||||
| SKIP_FRAMES = 1 | ||||
| 
 | ||||
| 
 | ||||
| def alignFace(imFace, landmarks): | ||||
|     l_x = landmarks[39][0] | ||||
|     l_y = landmarks[39][1] | ||||
|  | @ -22,19 +24,19 @@ def alignFace(imFace, landmarks): | |||
|     # Convert from radians to degrees | ||||
|     angle = math.atan2(dy, dx) * 180.0 / math.pi | ||||
| 
 | ||||
|     eyesCenter = ((l_x + r_x)*0.5, (l_y + r_y)*0.5) | ||||
|     eyesCenter = ((l_x + r_x) * 0.5, (l_y + r_y) * 0.5) | ||||
|     rotMatrix = cv2.getRotationMatrix2D(eyesCenter, angle, 1) | ||||
|     alignedImFace = np.zeros(imFace.shape, dtype=np.uint8) | ||||
|     alignedImFace = cv2.warpAffine(imFace, rotMatrix, (imFace.shape[1],imFace.shape[0])) | ||||
|     alignedImFace = cv2.warpAffine(imFace, rotMatrix, (imFace.shape[1], imFace.shape[0])) | ||||
|     return alignedImFace | ||||
| 
 | ||||
| def face_detector_haarcascade(image): | ||||
| 
 | ||||
| def face_detector_haarcascade(image): | ||||
|     grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | ||||
| 
 | ||||
|     resize_fx = 1 | ||||
|     resize_fy = 1 | ||||
|     grey = cv2.resize(grey, dsize=None, fx=resize_fx, fy=resize_fy, interpolation = cv2.INTER_AREA) | ||||
|     grey = cv2.resize(grey, dsize=None, fx=resize_fx, fy=resize_fy, interpolation=cv2.INTER_AREA) | ||||
| 
 | ||||
|     pwd = sys.path[0] | ||||
|     classfier = cv2.CascadeClassifier(pwd + "/Facial_models/haarcascade_frontalface_alt2.xml") | ||||
|  | @ -44,30 +46,31 @@ def face_detector_haarcascade(image): | |||
|     if len(faceRects) > 0: | ||||
|         for faceRect in faceRects: | ||||
|             x, y, w, h = faceRect | ||||
|             x = int(x/resize_fx) | ||||
|             y = int(y/resize_fy) | ||||
|             w = int(w/resize_fx) | ||||
|             h = int(h/resize_fy)  | ||||
|             x = int(x / resize_fx) | ||||
|             y = int(y / resize_fy) | ||||
|             w = int(w / resize_fx) | ||||
|             h = int(h / resize_fy) | ||||
|             cv2.rectangle(image, (x - 10, y - 10), (x + w + 10, y + h + 10), (0, 255, 0), 5) | ||||
| 
 | ||||
|     return image | ||||
| 
 | ||||
| def face_detector_ssd(image): | ||||
| 
 | ||||
| def face_detector_ssd(image): | ||||
|     pwd = sys.path[0] | ||||
|     net = cv2.dnn.readNetFromCaffe(pwd+"/Facial_models/deploy.prototxt", pwd+"/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel") | ||||
|     net = cv2.dnn.readNetFromCaffe(pwd + "/Facial_models/deploy.prototxt", | ||||
|                                    pwd + "/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel") | ||||
| 
 | ||||
|     resize = (300, 300) | ||||
|     confidence_thres = 0.65 | ||||
| 
 | ||||
|     blob = cv2.dnn.blobFromImage(cv2.resize(image, dsize=resize), 1.0, resize, (104.0, 177.0, 123.0)) | ||||
|    # blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) | ||||
|     # blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) | ||||
| 
 | ||||
|     net.setInput(blob) | ||||
| 
 | ||||
|     detections = net.forward() | ||||
| 
 | ||||
|     h,w,c=image.shape | ||||
|     h, w, c = image.shape | ||||
| 
 | ||||
|     for i in range(0, detections.shape[2]): | ||||
|         confidence = detections[0, 0, i, 2] | ||||
|  | @ -76,13 +79,14 @@ def face_detector_ssd(image): | |||
|             (startX, startY, endX, endY) = box.astype("int") | ||||
|             text = "{:.2f}%".format(confidence * 100) | ||||
|             y = startY - 10 if startY - 10 > 10 else startY + 10 | ||||
|             cv2.rectangle(image, (startX, startY), (endX, endY),(0, 255,0), 5) | ||||
|             cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 5) | ||||
|             cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 1.00, (0, 255, 0), 3) | ||||
| 
 | ||||
|     return image | ||||
| 
 | ||||
| 
 | ||||
| def training_data_loader(): | ||||
|     imagesFolder = sys.path[0]+"/Facial_images/face_rec/train/" | ||||
|     imagesFolder = sys.path[0] + "/Facial_images/face_rec/train/" | ||||
|     subfolders = [] | ||||
| 
 | ||||
|     for x in os.listdir(imagesFolder): | ||||
|  | @ -107,7 +111,7 @@ def training_data_loader(): | |||
|     labelsFaceTrain = [] | ||||
| 
 | ||||
|     faceDetector = dlib.get_frontal_face_detector() | ||||
|     landmarkDetector = dlib.shape_predictor(sys.path[0]+"/Facial_models/shape_predictor_68_face_landmarks.dat") | ||||
|     landmarkDetector = dlib.shape_predictor(sys.path[0] + "/Facial_models/shape_predictor_68_face_landmarks.dat") | ||||
| 
 | ||||
|     for j, imagePath in enumerate(imagePaths): | ||||
|         im = cv2.imread(imagePath, 0) | ||||
|  | @ -120,10 +124,10 @@ def training_data_loader(): | |||
|         if len(landmarks) == 68: | ||||
|             x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0]) | ||||
|             x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0]) | ||||
|             y1Limit = landmarks[27][1] - 3*(landmarks[30][1] - landmarks[27][1]) | ||||
|             y1Limit = landmarks[27][1] - 3 * (landmarks[30][1] - landmarks[27][1]) | ||||
|             y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1]) | ||||
| 
 | ||||
|             x1 = max(x1Limit,0) | ||||
|             x1 = max(x1Limit, 0) | ||||
|             x2 = min(x2Limit, imWidth) | ||||
|             y1 = max(y1Limit, 0) | ||||
|             y2 = min(y2Limit, imHeight) | ||||
|  | @ -132,63 +136,64 @@ def training_data_loader(): | |||
|             alignedFace = alignFace(imFace, landmarks) | ||||
|             alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth)) | ||||
| 
 | ||||
|             imagesFaceTrain.append(np.float32(alignedFace)/255.0) | ||||
|             imagesFaceTrain.append(np.float32(alignedFace) / 255.0) | ||||
|             labelsFaceTrain.append(labels[j]) | ||||
| 
 | ||||
|     return imagesFaceTrain, labelsFaceTrain, labelsMap | ||||
| 
 | ||||
| def training_recognizer(rec_type): | ||||
| 
 | ||||
| def training_recognizer(rec_type): | ||||
|     imagesFaceTrain, labelsFaceTrain, labelsMap = training_data_loader() | ||||
| 
 | ||||
|     if (rec_type=='LBPH'): | ||||
|     if (rec_type == 'LBPH'): | ||||
|         faceRecognizer = cv2.face.LBPHFaceRecognizer_create() | ||||
|         print("Training using LBPH Faces") | ||||
|     elif (rec_type=='Eigen'): | ||||
|     elif (rec_type == 'Eigen'): | ||||
|         faceRecognizer = cv2.face.EigenFaceRecognizer_create() | ||||
|         print("Training using Eigen Faces") | ||||
|     elif (rec_type=='Fisher'): | ||||
|     elif (rec_type == 'Fisher'): | ||||
|         faceRecognizer = cv2.face.FisherFaceRecognizer_create() | ||||
|         print("Training using Fisher Faces") | ||||
| 
 | ||||
|     faceRecognizer.train(imagesFaceTrain, np.array(labelsFaceTrain)) | ||||
|     faceRecognizer.write(sys.path[0]+'/Facial_models/face_rec_model.yml') | ||||
|     faceRecognizer.write(sys.path[0] + '/Facial_models/face_rec_model.yml') | ||||
| 
 | ||||
|     with open(sys.path[0]+'/Facial_models/labels_map.pkl', 'wb') as f: | ||||
|     with open(sys.path[0] + '/Facial_models/labels_map.pkl', 'wb') as f: | ||||
|         cPickle.dump(labelsMap, f) | ||||
| 
 | ||||
| 
 | ||||
| def face_recognition_inference(rec_type): | ||||
|     #testFiles = glob.glob(sys.path[0]+'/Facial_test_images/face_rec/test/*.jpg') | ||||
|     #testFiles.sort() | ||||
|     # testFiles = glob.glob(sys.path[0]+'/Facial_test_images/face_rec/test/*.jpg') | ||||
|     # testFiles.sort() | ||||
|     i = 0 | ||||
|     correct = 0 | ||||
|     error = 0 | ||||
|     faceDetector = dlib.get_frontal_face_detector() | ||||
|     print(sys.path[0]) | ||||
|     landmarkDetector = dlib.shape_predictor(sys.path[0]+'/Facial_models/shape_predictor_68_face_landmarks.dat') | ||||
|     landmarkDetector = dlib.shape_predictor(sys.path[0] + '/Facial_models/shape_predictor_68_face_landmarks.dat') | ||||
| 
 | ||||
|     if (rec_type=='LBPH'): | ||||
|     if (rec_type == 'LBPH'): | ||||
|         faceRecognizer = cv2.face.LBPHFaceRecognizer_create() | ||||
|         print("Test using LBPH Faces") | ||||
|     elif (rec_type=='Eigen'): | ||||
|     elif (rec_type == 'Eigen'): | ||||
|         faceRecognizer = cv2.face.EigenFaceRecognizer_create() | ||||
|         print("Test using Eigen Faces") | ||||
|     elif (rec_type=='Fisher'): | ||||
|     elif (rec_type == 'Fisher'): | ||||
|         faceRecognizer = cv2.face.FisherFaceRecognizer_create() | ||||
|         print("Test using Fisher Faces") | ||||
| 
 | ||||
|     faceRecognizer.read(sys.path[0]+'/Facial_models/face_rec_model.yml') | ||||
|     labelsMap = np.load(sys.path[0]+'/Facial_models/labels_map.pkl', allow_pickle=True) | ||||
|     faceRecognizer.read(sys.path[0] + '/Facial_models/face_rec_model.yml') | ||||
|     labelsMap = np.load(sys.path[0] + '/Facial_models/labels_map.pkl', allow_pickle=True) | ||||
| 
 | ||||
|     cam = cv2.VideoCapture(0) | ||||
| 
 | ||||
|     while(True): | ||||
|         #imagePath = testFiles[i] | ||||
|     while (True): | ||||
|         # imagePath = testFiles[i] | ||||
|         success, original = cam.read() | ||||
|         im = cv2.resize(original, (640, 480)) | ||||
|         i += 1 | ||||
| 
 | ||||
|         im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) | ||||
|         im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) | ||||
|         imHeight, imWidth = im.shape[:2] | ||||
| 
 | ||||
|         landmarks = fr.getLandmarks(faceDetector, landmarkDetector, im) | ||||
|  | @ -197,10 +202,10 @@ def face_recognition_inference(rec_type): | |||
|         if len(landmarks) == 68: | ||||
|             x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0]) | ||||
|             x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0]) | ||||
|             y1Limit = landmarks[27][1] - 3*(landmarks[30][1] - landmarks[27][1]) | ||||
|             y1Limit = landmarks[27][1] - 3 * (landmarks[30][1] - landmarks[27][1]) | ||||
|             y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1]) | ||||
| 
 | ||||
|             x1 = max(x1Limit,0) | ||||
|             x1 = max(x1Limit, 0) | ||||
|             x2 = min(x2Limit, imWidth) | ||||
|             y1 = max(y1Limit, 0) | ||||
|             y2 = min(y2Limit, imHeight) | ||||
|  | @ -208,26 +213,29 @@ def face_recognition_inference(rec_type): | |||
| 
 | ||||
|             alignedFace = alignFace(imFace, landmarks) | ||||
|             alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth)) | ||||
|             imFaceFloat = np.float32(alignedFace)/255.0 | ||||
|             imFaceFloat = np.float32(alignedFace) / 255.0 | ||||
| 
 | ||||
|             predictedLabel = -1 | ||||
|             predictedLabel, score = faceRecognizer.predict(imFaceFloat) | ||||
|             center = ( int((x1 + x2) /2), int((y1 + y2)/2) ) | ||||
|             radius = int((y2-y1)/2.0) | ||||
|             text = '{} {}%'.format(labelsMap[predictedLabel],round(score, 5)) | ||||
|             center = (int((x1 + x2) / 2), int((y1 + y2) / 2)) | ||||
|             radius = int((y2 - y1) / 2.0) | ||||
|             text = '{} {}%'.format(labelsMap[predictedLabel], round(score, 5)) | ||||
|             cv2.rectangle(original, (x1, y1), (x2, y2), (0, 255, 0), 5) | ||||
|             cv2.putText(original, text, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 3) | ||||
|             cv2.putText(original, text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 3) | ||||
|             'Hardware.Motor.Motor.stop_motor()' | ||||
|             'Hardware.Motor.Motor.start_motor()' | ||||
|         'Hardware.Motor.Motor.stop_motor()' | ||||
|         'Hardware.Motor.Motor.start_alarm()' | ||||
| 
 | ||||
|         cv2.imshow('Face Recognition Demo', original) | ||||
| 
 | ||||
|         k = cv2.waitKey(10) | ||||
| 
 | ||||
| 
 | ||||
|     cam.release() | ||||
|     cv2.destroyAllWindows() | ||||
| 
 | ||||
| 
 | ||||
| if __name__=="__main__": | ||||
| if __name__ == "__main__": | ||||
|     mode = 'test' | ||||
|     rec_type = 'Fisher'  # 'LBPH' 'Fisher' 'Eigen' | ||||
| 
 | ||||
|  | @ -236,10 +244,6 @@ if __name__=="__main__": | |||
|     elif (mode == 'test'): | ||||
|         face_recognition_inference(rec_type) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|     # video process (keep it in case if needed) | ||||
|     ''' | ||||
|     cameraCapture = cv2.VideoCapture(1) | ||||
|  | @ -274,6 +278,3 @@ if __name__=="__main__": | |||
|     cv2.waitKey() | ||||
|     cv2.destroyAllWindows() | ||||
|     ''' | ||||
|      | ||||
| 
 | ||||
| 
 | ||||
|  |  | |||
|  | @ -1,105 +0,0 @@ | |||
| import RPi.GPIO as GPIO | ||||
| from time import sleep | ||||
| 
 | ||||
| class Motor: | ||||
|      | ||||
|     print("Starting of the program") | ||||
|      | ||||
|     def __init__(self): | ||||
|          | ||||
|         GPIO.setmode(GPIO.BCM) | ||||
|         GPIO.setwarnings(False) | ||||
|      | ||||
|         #preset GPIO ports for 2 motors | ||||
|         self.Motor1 = {'EN': 25, 'input1': 24, 'input2': 23} | ||||
|         self.Motor2 = {'EN': 17, 'input1': 27, 'input2': 22} | ||||
|          | ||||
|         # preset the port for buttons and alarm | ||||
|         GPIO.setup(5,GPIO.IN)     # start motor button, initially True | ||||
|         GPIO.setup(13,GPIO.IN)    # stop motor button, initially True | ||||
|         GPIO.setup(16,GPIO.IN)    # start alarm button, initially True | ||||
|         GPIO.setup(26,GPIO.OUT)   # alarm output | ||||
|          | ||||
|         for x in self.Motor1: | ||||
|             GPIO.setup(self.Motor1[x], GPIO.OUT) | ||||
|             GPIO.setup(self.Motor2[x], GPIO.OUT) | ||||
| 
 | ||||
|         #utilize PWM function, enable motors and frequency is 100Hz | ||||
|         self.EN1 = GPIO.PWM(self.Motor1['EN'], 100)     | ||||
|         self.EN2 = GPIO.PWM(self.Motor2['EN'], 100)     | ||||
| 
 | ||||
|         self.EN1.start(0)                     | ||||
|         self.EN2.start(0) | ||||
|          | ||||
|         #stop signals for motors and alarm | ||||
|         self.motorStop=False | ||||
|         self.alarmStop=False | ||||
|          | ||||
|      | ||||
|     def start_motor(self): | ||||
|          | ||||
|         while (not self.motorStop) or (not GPIO.input(5)): #break the loop when motor stop signal is detected | ||||
|              | ||||
|             print ("FORWARD MOTION") | ||||
|             self.motorStop=self.stop_motor() | ||||
|              | ||||
|             self.EN1.ChangeDutyCycle(50) | ||||
|             self.EN2.ChangeDutyCycle(50) | ||||
| 
 | ||||
|             GPIO.output(self.Motor1['input1'], GPIO.HIGH) | ||||
|             GPIO.output(self.Motor1['input2'], GPIO.LOW) | ||||
|                  | ||||
|             GPIO.output(self.Motor2['input1'], GPIO.HIGH) | ||||
|             GPIO.output(self.Motor2['input2'], GPIO.LOW) | ||||
| 
 | ||||
|         GPIO.cleanup() | ||||
|      | ||||
|     def stop_motor(self): | ||||
|          | ||||
|         userStop=input("Stop the motor? choose between Y/N") | ||||
|          | ||||
|         if (userStop=="Y") or (not GPIO.input(13)): | ||||
|             print("stopping motor...") | ||||
|             self.EN1.ChangeDutyCycle(0) | ||||
|             self.EN2.ChangeDutyCycle(0) | ||||
|             print("motor stops") | ||||
|             return True | ||||
|         elif userStop=="N": | ||||
|             return False | ||||
|         else: | ||||
|             self.stop_motor(self) | ||||
|              | ||||
|      | ||||
|     def start_alarm(self): | ||||
|          | ||||
|         while (not self.alarmStop) or (not GPIO.input(16)): | ||||
|              | ||||
|             self.alarmStop=self.stop_alarm() | ||||
|             GPIO.output(26,True) | ||||
|          | ||||
|         GPIO.cleanup() | ||||
|      | ||||
|     def stop_alarm(self): | ||||
|          | ||||
|         stopRequest=input("Turn off the alarm? choose between Y/N") | ||||
|         if stopRequest=="Y": | ||||
|             print("Alarm turning off...") | ||||
|             GPIO.output(26,False) | ||||
|             print("Alarm is off") | ||||
|             return True | ||||
|         elif stopRequest=="N": | ||||
|             return False | ||||
|         else: | ||||
|             self.stop_alarm() | ||||
|              | ||||
|          | ||||
| if __name__=="__main__": | ||||
|          | ||||
|     #print("Execute function...") | ||||
|          | ||||
|      | ||||
|     motor1=Motor() | ||||
|     #motor1.start_motor() | ||||
|     motor1.start_alarm() | ||||
|      | ||||
|          | ||||
							
								
								
									
										98
									
								
								Hardware/Motor.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										98
									
								
								Hardware/Motor.py
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,98 @@ | |||
| import RPi.GPIO as GPIO | ||||
| from time import sleep | ||||
| 
 | ||||
| 
 | ||||
| class Motor: | ||||
| 
 | ||||
|     def __init__(self): | ||||
|         print("Starting of the program") | ||||
| 
 | ||||
|         GPIO.setmode(GPIO.BCM) | ||||
|         GPIO.setwarnings(False) | ||||
| 
 | ||||
|         # preset GPIO ports for 2 motors | ||||
|         self.Motor1 = {'EN': 25, 'input1': 24, 'input2': 23} | ||||
|         self.Motor2 = {'EN': 17, 'input1': 27, 'input2': 22} | ||||
| 
 | ||||
|         # preset the port for buttons and alarm | ||||
|         GPIO.setup(5, GPIO.IN)  # start motor button, initially True | ||||
|         GPIO.setup(13, GPIO.IN)  # stop motor button, initially True | ||||
|         GPIO.setup(16, GPIO.IN)  # start alarm button, initially True | ||||
|         GPIO.setup(26, GPIO.OUT)  # alarm output | ||||
| 
 | ||||
|         for x in self.Motor1: | ||||
|             GPIO.setup(self.Motor1[x], GPIO.OUT) | ||||
|             GPIO.setup(self.Motor2[x], GPIO.OUT) | ||||
| 
 | ||||
|         # utilize PWM function, enable motors and frequency is 100Hz | ||||
|         self.EN1 = GPIO.PWM(self.Motor1['EN'], 100) | ||||
|         self.EN2 = GPIO.PWM(self.Motor2['EN'], 100) | ||||
| 
 | ||||
|         self.EN1.start(0) | ||||
|         self.EN2.start(0) | ||||
| 
 | ||||
|         # stop signals for motors and alarm | ||||
|         self.motorStop = False | ||||
|         self.alarmStop = False | ||||
| 
 | ||||
|     def start_motor(self): | ||||
| 
 | ||||
|         while (not self.motorStop) or (not GPIO.input(5)):  # break the loop when motor stop signal is detected | ||||
| 
 | ||||
|             print("FORWARD MOTION") | ||||
|             self.motorStop = self.stop_motor() | ||||
| 
 | ||||
|             self.EN1.ChangeDutyCycle(50) | ||||
|             self.EN2.ChangeDutyCycle(50) | ||||
| 
 | ||||
|             GPIO.output(self.Motor1['input1'], GPIO.HIGH) | ||||
|             GPIO.output(self.Motor1['input2'], GPIO.LOW) | ||||
| 
 | ||||
|             GPIO.output(self.Motor2['input1'], GPIO.HIGH) | ||||
|             GPIO.output(self.Motor2['input2'], GPIO.LOW) | ||||
| 
 | ||||
|         GPIO.cleanup() | ||||
| 
 | ||||
|     def stop_motor(self): | ||||
| 
 | ||||
|         userStop = input("Stop the motor? choose between Y/N") | ||||
| 
 | ||||
|         if (userStop == "Y") or (not GPIO.input(13)): | ||||
|             print("stopping motor...") | ||||
|             self.EN1.ChangeDutyCycle(0) | ||||
|             self.EN2.ChangeDutyCycle(0) | ||||
|             print("motor stops") | ||||
|             return True | ||||
|         elif userStop == "N": | ||||
|             return False | ||||
|         else: | ||||
|             self.stop_motor(self) | ||||
| 
 | ||||
|     def start_alarm(self): | ||||
| 
 | ||||
|         while (not self.alarmStop) or (not GPIO.input(16)): | ||||
|             self.alarmStop = self.stop_alarm() | ||||
|             GPIO.output(26, True) | ||||
| 
 | ||||
|         GPIO.cleanup() | ||||
| 
 | ||||
|     def stop_alarm(self): | ||||
| 
 | ||||
|         stopRequest = input("Turn off the alarm? choose between Y/N") | ||||
|         if stopRequest == "Y": | ||||
|             print("Alarm turning off...") | ||||
|             GPIO.output(26, False) | ||||
|             print("Alarm is off") | ||||
|             return True | ||||
|         elif stopRequest == "N": | ||||
|             return False | ||||
|         else: | ||||
|             self.stop_alarm() | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     # print("Execute function...") | ||||
| 
 | ||||
|     motor1 = Motor() | ||||
|     # motor1.start_motor() | ||||
|     motor1.start_alarm() | ||||
							
								
								
									
										
											BIN
										
									
								
								Hardware/__pycache__/Motor.cpython-36.pyc
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								Hardware/__pycache__/Motor.cpython-36.pyc
									
										
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							|  | @ -8,24 +8,23 @@ def start(): | |||
|     count = 0 | ||||
|     users = DBHelper.db.child("Users").get() | ||||
|     try: | ||||
|         for user in users.each(): | ||||
|         for x in users.each(): | ||||
|             count = +1 | ||||
|             for x in range(20): | ||||
|             for y in range(20): | ||||
|                 if not os.path.isdir("Facial_images/face_rec/train/User_" + str(count)): | ||||
|                     os.makedirs("Photos_of_Users/User_" + str(count)) | ||||
|                 DBHelper.download_user_photo("User_" + str(count) + "/" + str(x) + ".jpg") | ||||
|                 DBHelper.download_user_photo("User_" + str(count) + "/" + str(y) + ".jpg") | ||||
|     except: | ||||
|         print("No Users are registered.") | ||||
|     count = 0 | ||||
|     try: | ||||
|         for user in users.each(): | ||||
|         for x in users.each(): | ||||
|             count = +1 | ||||
|             for x in range(20): | ||||
|             for y in range(20): | ||||
|                 if not os.path.isdir("Photos_of_Thieves/Thief_" + str(count)): | ||||
|                     os.makedirs("Photos_of_Thieves/Thief_" + str(count)) | ||||
|                 DBHelper.download_thief_photo("Thief_" + str(count) + "/" + str(x) + ".jpg") | ||||
|                 DBHelper.download_thief_photo("Thief_" + str(count) + "/" + str(y) + ".jpg") | ||||
|     except: | ||||
|         print("No Thieves for now.") | ||||
|     Facial_Recognition_Wrapper.training_recognizer("Fisher") | ||||
|     Facial_Recognition_Wrapper.face_recognition_inference("Fisher") | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue