Integrated hardware commands to Facial Recognition Software.
This commit is contained in:
		
							parent
							
								
									c5bf048621
								
							
						
					
					
						commit
						cf228272a8
					
				
					 7 changed files with 170 additions and 177 deletions
				
			
		|  | @ -7,11 +7,13 @@ import numpy as np | ||||||
| import Facial_Recognition_Render as fr | import Facial_Recognition_Render as fr | ||||||
| import _pickle as cPickle | import _pickle as cPickle | ||||||
| import glob | import glob | ||||||
|  | 'import Hardware.Motor' #Line 225-228 | ||||||
| 
 | 
 | ||||||
| faceWidth = 320 | faceWidth = 320 | ||||||
| faceHeight = 320 | faceHeight = 320 | ||||||
| SKIP_FRAMES = 1 | SKIP_FRAMES = 1 | ||||||
| 
 | 
 | ||||||
|  | 
 | ||||||
| def alignFace(imFace, landmarks): | def alignFace(imFace, landmarks): | ||||||
|     l_x = landmarks[39][0] |     l_x = landmarks[39][0] | ||||||
|     l_y = landmarks[39][1] |     l_y = landmarks[39][1] | ||||||
|  | @ -20,54 +22,55 @@ def alignFace(imFace, landmarks): | ||||||
|     dy = r_y - l_y |     dy = r_y - l_y | ||||||
|     dx = r_x - l_x |     dx = r_x - l_x | ||||||
|     # Convert from radians to degrees |     # Convert from radians to degrees | ||||||
|     angle = math.atan2(dy, dx) * 180.0 / math.pi   |     angle = math.atan2(dy, dx) * 180.0 / math.pi | ||||||
| 
 | 
 | ||||||
|     eyesCenter = ((l_x + r_x)*0.5, (l_y + r_y)*0.5) |     eyesCenter = ((l_x + r_x) * 0.5, (l_y + r_y) * 0.5) | ||||||
|     rotMatrix = cv2.getRotationMatrix2D(eyesCenter, angle, 1) |     rotMatrix = cv2.getRotationMatrix2D(eyesCenter, angle, 1) | ||||||
|     alignedImFace = np.zeros(imFace.shape, dtype=np.uint8) |     alignedImFace = np.zeros(imFace.shape, dtype=np.uint8) | ||||||
|     alignedImFace = cv2.warpAffine(imFace, rotMatrix, (imFace.shape[1],imFace.shape[0])) |     alignedImFace = cv2.warpAffine(imFace, rotMatrix, (imFace.shape[1], imFace.shape[0])) | ||||||
|     return alignedImFace |     return alignedImFace | ||||||
| 
 | 
 | ||||||
| def face_detector_haarcascade(image): |  | ||||||
| 
 | 
 | ||||||
|     grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  | def face_detector_haarcascade(image): | ||||||
|  |     grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | ||||||
| 
 | 
 | ||||||
|     resize_fx = 1 |     resize_fx = 1 | ||||||
|     resize_fy = 1 |     resize_fy = 1 | ||||||
|     grey = cv2.resize(grey, dsize=None, fx=resize_fx, fy=resize_fy, interpolation = cv2.INTER_AREA) |     grey = cv2.resize(grey, dsize=None, fx=resize_fx, fy=resize_fy, interpolation=cv2.INTER_AREA) | ||||||
| 
 | 
 | ||||||
|     pwd = sys.path[0] |     pwd = sys.path[0] | ||||||
|     classfier = cv2.CascadeClassifier(pwd + "/Facial_models/haarcascade_frontalface_alt2.xml") |     classfier = cv2.CascadeClassifier(pwd + "/Facial_models/haarcascade_frontalface_alt2.xml") | ||||||
| 
 | 
 | ||||||
|     faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=1, minSize=(16, 16))  |     faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=1, minSize=(16, 16)) | ||||||
| 
 | 
 | ||||||
|     if len(faceRects) > 0: |     if len(faceRects) > 0: | ||||||
|         for faceRect in faceRects: |         for faceRect in faceRects: | ||||||
|             x, y, w, h = faceRect |             x, y, w, h = faceRect | ||||||
|             x = int(x/resize_fx) |             x = int(x / resize_fx) | ||||||
|             y = int(y/resize_fy) |             y = int(y / resize_fy) | ||||||
|             w = int(w/resize_fx) |             w = int(w / resize_fx) | ||||||
|             h = int(h/resize_fy)  |             h = int(h / resize_fy) | ||||||
|             cv2.rectangle(image, (x - 10, y - 10), (x + w + 10, y + h + 10), (0, 255, 0), 5)  |             cv2.rectangle(image, (x - 10, y - 10), (x + w + 10, y + h + 10), (0, 255, 0), 5) | ||||||
| 
 | 
 | ||||||
|     return image |     return image | ||||||
| 
 | 
 | ||||||
| def face_detector_ssd(image): |  | ||||||
| 
 | 
 | ||||||
|  | def face_detector_ssd(image): | ||||||
|     pwd = sys.path[0] |     pwd = sys.path[0] | ||||||
|     net = cv2.dnn.readNetFromCaffe(pwd+"/Facial_models/deploy.prototxt", pwd+"/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel") |     net = cv2.dnn.readNetFromCaffe(pwd + "/Facial_models/deploy.prototxt", | ||||||
|  |                                    pwd + "/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel") | ||||||
| 
 | 
 | ||||||
|     resize = (300, 300) |     resize = (300, 300) | ||||||
|     confidence_thres = 0.65 |     confidence_thres = 0.65 | ||||||
|      | 
 | ||||||
|     blob = cv2.dnn.blobFromImage(cv2.resize(image, dsize=resize), 1.0, resize, (104.0, 177.0, 123.0)) |     blob = cv2.dnn.blobFromImage(cv2.resize(image, dsize=resize), 1.0, resize, (104.0, 177.0, 123.0)) | ||||||
|    # blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) |     # blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) | ||||||
| 
 | 
 | ||||||
|     net.setInput(blob) |     net.setInput(blob) | ||||||
| 
 | 
 | ||||||
|     detections = net.forward() |     detections = net.forward() | ||||||
| 
 | 
 | ||||||
|     h,w,c=image.shape |     h, w, c = image.shape | ||||||
| 
 | 
 | ||||||
|     for i in range(0, detections.shape[2]): |     for i in range(0, detections.shape[2]): | ||||||
|         confidence = detections[0, 0, i, 2] |         confidence = detections[0, 0, i, 2] | ||||||
|  | @ -76,13 +79,14 @@ def face_detector_ssd(image): | ||||||
|             (startX, startY, endX, endY) = box.astype("int") |             (startX, startY, endX, endY) = box.astype("int") | ||||||
|             text = "{:.2f}%".format(confidence * 100) |             text = "{:.2f}%".format(confidence * 100) | ||||||
|             y = startY - 10 if startY - 10 > 10 else startY + 10 |             y = startY - 10 if startY - 10 > 10 else startY + 10 | ||||||
|             cv2.rectangle(image, (startX, startY), (endX, endY),(0, 255,0), 5) |             cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 5) | ||||||
|             cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 1.00, (0, 255, 0), 3) |             cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 1.00, (0, 255, 0), 3) | ||||||
|      | 
 | ||||||
|     return image |     return image | ||||||
| 
 | 
 | ||||||
|  | 
 | ||||||
| def training_data_loader(): | def training_data_loader(): | ||||||
|     imagesFolder = sys.path[0]+"/Facial_images/face_rec/train/" |     imagesFolder = sys.path[0] + "/Facial_images/face_rec/train/" | ||||||
|     subfolders = [] |     subfolders = [] | ||||||
| 
 | 
 | ||||||
|     for x in os.listdir(imagesFolder): |     for x in os.listdir(imagesFolder): | ||||||
|  | @ -106,9 +110,9 @@ def training_data_loader(): | ||||||
|     imagesFaceTrain = [] |     imagesFaceTrain = [] | ||||||
|     labelsFaceTrain = [] |     labelsFaceTrain = [] | ||||||
| 
 | 
 | ||||||
|     faceDetector = dlib.get_frontal_face_detector()  |     faceDetector = dlib.get_frontal_face_detector() | ||||||
|     landmarkDetector = dlib.shape_predictor(sys.path[0]+"/Facial_models/shape_predictor_68_face_landmarks.dat") |     landmarkDetector = dlib.shape_predictor(sys.path[0] + "/Facial_models/shape_predictor_68_face_landmarks.dat") | ||||||
|      | 
 | ||||||
|     for j, imagePath in enumerate(imagePaths): |     for j, imagePath in enumerate(imagePaths): | ||||||
|         im = cv2.imread(imagePath, 0) |         im = cv2.imread(imagePath, 0) | ||||||
|         imHeight, imWidth = im.shape[:2] |         imHeight, imWidth = im.shape[:2] | ||||||
|  | @ -116,14 +120,14 @@ def training_data_loader(): | ||||||
|         landmarks = fr.getLandmarks(faceDetector, landmarkDetector, im) |         landmarks = fr.getLandmarks(faceDetector, landmarkDetector, im) | ||||||
| 
 | 
 | ||||||
|         landmarks = np.array(landmarks) |         landmarks = np.array(landmarks) | ||||||
|          | 
 | ||||||
|         if len(landmarks) == 68: |         if len(landmarks) == 68: | ||||||
|             x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0]) |             x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0]) | ||||||
|             x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0]) |             x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0]) | ||||||
|             y1Limit = landmarks[27][1] - 3*(landmarks[30][1] - landmarks[27][1]) |             y1Limit = landmarks[27][1] - 3 * (landmarks[30][1] - landmarks[27][1]) | ||||||
|             y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1]) |             y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1]) | ||||||
| 
 | 
 | ||||||
|             x1 = max(x1Limit,0) |             x1 = max(x1Limit, 0) | ||||||
|             x2 = min(x2Limit, imWidth) |             x2 = min(x2Limit, imWidth) | ||||||
|             y1 = max(y1Limit, 0) |             y1 = max(y1Limit, 0) | ||||||
|             y2 = min(y2Limit, imHeight) |             y2 = min(y2Limit, imHeight) | ||||||
|  | @ -132,63 +136,64 @@ def training_data_loader(): | ||||||
|             alignedFace = alignFace(imFace, landmarks) |             alignedFace = alignFace(imFace, landmarks) | ||||||
|             alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth)) |             alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth)) | ||||||
| 
 | 
 | ||||||
|             imagesFaceTrain.append(np.float32(alignedFace)/255.0) |             imagesFaceTrain.append(np.float32(alignedFace) / 255.0) | ||||||
|             labelsFaceTrain.append(labels[j]) |             labelsFaceTrain.append(labels[j]) | ||||||
|      | 
 | ||||||
|     return imagesFaceTrain, labelsFaceTrain, labelsMap |     return imagesFaceTrain, labelsFaceTrain, labelsMap | ||||||
| 
 | 
 | ||||||
|  | 
 | ||||||
| def training_recognizer(rec_type): | def training_recognizer(rec_type): | ||||||
|     |  | ||||||
|     imagesFaceTrain, labelsFaceTrain, labelsMap = training_data_loader() |     imagesFaceTrain, labelsFaceTrain, labelsMap = training_data_loader() | ||||||
| 
 | 
 | ||||||
|     if (rec_type=='LBPH'): |     if (rec_type == 'LBPH'): | ||||||
|         faceRecognizer = cv2.face.LBPHFaceRecognizer_create() |         faceRecognizer = cv2.face.LBPHFaceRecognizer_create() | ||||||
|         print("Training using LBPH Faces") |         print("Training using LBPH Faces") | ||||||
|     elif (rec_type=='Eigen'): |     elif (rec_type == 'Eigen'): | ||||||
|         faceRecognizer = cv2.face.EigenFaceRecognizer_create() |         faceRecognizer = cv2.face.EigenFaceRecognizer_create() | ||||||
|         print("Training using Eigen Faces") |         print("Training using Eigen Faces") | ||||||
|     elif (rec_type=='Fisher'): |     elif (rec_type == 'Fisher'): | ||||||
|         faceRecognizer = cv2.face.FisherFaceRecognizer_create() |         faceRecognizer = cv2.face.FisherFaceRecognizer_create() | ||||||
|         print("Training using Fisher Faces") |         print("Training using Fisher Faces") | ||||||
| 
 | 
 | ||||||
|     faceRecognizer.train(imagesFaceTrain, np.array(labelsFaceTrain)) |     faceRecognizer.train(imagesFaceTrain, np.array(labelsFaceTrain)) | ||||||
|     faceRecognizer.write(sys.path[0]+'/Facial_models/face_rec_model.yml') |     faceRecognizer.write(sys.path[0] + '/Facial_models/face_rec_model.yml') | ||||||
| 
 | 
 | ||||||
|     with open(sys.path[0]+'/Facial_models/labels_map.pkl', 'wb') as f: |     with open(sys.path[0] + '/Facial_models/labels_map.pkl', 'wb') as f: | ||||||
|         cPickle.dump(labelsMap, f) |         cPickle.dump(labelsMap, f) | ||||||
| 
 | 
 | ||||||
|  | 
 | ||||||
| def face_recognition_inference(rec_type): | def face_recognition_inference(rec_type): | ||||||
|     #testFiles = glob.glob(sys.path[0]+'/Facial_test_images/face_rec/test/*.jpg') |     # testFiles = glob.glob(sys.path[0]+'/Facial_test_images/face_rec/test/*.jpg') | ||||||
|     #testFiles.sort() |     # testFiles.sort() | ||||||
|     i = 0 |     i = 0 | ||||||
|     correct = 0 |     correct = 0 | ||||||
|     error = 0 |     error = 0 | ||||||
|     faceDetector = dlib.get_frontal_face_detector() |     faceDetector = dlib.get_frontal_face_detector() | ||||||
|     print(sys.path[0]) |     print(sys.path[0]) | ||||||
|     landmarkDetector = dlib.shape_predictor(sys.path[0]+'/Facial_models/shape_predictor_68_face_landmarks.dat') |     landmarkDetector = dlib.shape_predictor(sys.path[0] + '/Facial_models/shape_predictor_68_face_landmarks.dat') | ||||||
|      | 
 | ||||||
|     if (rec_type=='LBPH'): |     if (rec_type == 'LBPH'): | ||||||
|         faceRecognizer = cv2.face.LBPHFaceRecognizer_create() |         faceRecognizer = cv2.face.LBPHFaceRecognizer_create() | ||||||
|         print("Test using LBPH Faces") |         print("Test using LBPH Faces") | ||||||
|     elif (rec_type=='Eigen'): |     elif (rec_type == 'Eigen'): | ||||||
|         faceRecognizer = cv2.face.EigenFaceRecognizer_create() |         faceRecognizer = cv2.face.EigenFaceRecognizer_create() | ||||||
|         print("Test using Eigen Faces") |         print("Test using Eigen Faces") | ||||||
|     elif (rec_type=='Fisher'): |     elif (rec_type == 'Fisher'): | ||||||
|         faceRecognizer = cv2.face.FisherFaceRecognizer_create() |         faceRecognizer = cv2.face.FisherFaceRecognizer_create() | ||||||
|         print("Test using Fisher Faces") |         print("Test using Fisher Faces") | ||||||
|      | 
 | ||||||
|     faceRecognizer.read(sys.path[0]+'/Facial_models/face_rec_model.yml') |     faceRecognizer.read(sys.path[0] + '/Facial_models/face_rec_model.yml') | ||||||
|     labelsMap = np.load(sys.path[0]+'/Facial_models/labels_map.pkl', allow_pickle=True) |     labelsMap = np.load(sys.path[0] + '/Facial_models/labels_map.pkl', allow_pickle=True) | ||||||
| 
 | 
 | ||||||
|     cam = cv2.VideoCapture(0) |     cam = cv2.VideoCapture(0) | ||||||
| 
 | 
 | ||||||
|     while(True): |     while (True): | ||||||
|         #imagePath = testFiles[i] |         # imagePath = testFiles[i] | ||||||
|         success, original = cam.read() |         success, original = cam.read() | ||||||
|         im = cv2.resize(original, (640, 480)) |         im = cv2.resize(original, (640, 480)) | ||||||
|         i += 1 |         i += 1 | ||||||
| 
 | 
 | ||||||
|         im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) |         im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) | ||||||
|         imHeight, imWidth = im.shape[:2] |         imHeight, imWidth = im.shape[:2] | ||||||
| 
 | 
 | ||||||
|         landmarks = fr.getLandmarks(faceDetector, landmarkDetector, im) |         landmarks = fr.getLandmarks(faceDetector, landmarkDetector, im) | ||||||
|  | @ -197,10 +202,10 @@ def face_recognition_inference(rec_type): | ||||||
|         if len(landmarks) == 68: |         if len(landmarks) == 68: | ||||||
|             x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0]) |             x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0]) | ||||||
|             x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0]) |             x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0]) | ||||||
|             y1Limit = landmarks[27][1] - 3*(landmarks[30][1] - landmarks[27][1]) |             y1Limit = landmarks[27][1] - 3 * (landmarks[30][1] - landmarks[27][1]) | ||||||
|             y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1]) |             y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1]) | ||||||
| 
 | 
 | ||||||
|             x1 = max(x1Limit,0) |             x1 = max(x1Limit, 0) | ||||||
|             x2 = min(x2Limit, imWidth) |             x2 = min(x2Limit, imWidth) | ||||||
|             y1 = max(y1Limit, 0) |             y1 = max(y1Limit, 0) | ||||||
|             y2 = min(y2Limit, imHeight) |             y2 = min(y2Limit, imHeight) | ||||||
|  | @ -208,26 +213,29 @@ def face_recognition_inference(rec_type): | ||||||
| 
 | 
 | ||||||
|             alignedFace = alignFace(imFace, landmarks) |             alignedFace = alignFace(imFace, landmarks) | ||||||
|             alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth)) |             alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth)) | ||||||
|             imFaceFloat = np.float32(alignedFace)/255.0 |             imFaceFloat = np.float32(alignedFace) / 255.0 | ||||||
| 
 | 
 | ||||||
|             predictedLabel = -1 |             predictedLabel = -1 | ||||||
|             predictedLabel, score = faceRecognizer.predict(imFaceFloat) |             predictedLabel, score = faceRecognizer.predict(imFaceFloat) | ||||||
|             center = ( int((x1 + x2) /2), int((y1 + y2)/2) ) |             center = (int((x1 + x2) / 2), int((y1 + y2) / 2)) | ||||||
|             radius = int((y2-y1)/2.0) |             radius = int((y2 - y1) / 2.0) | ||||||
|             text = '{} {}%'.format(labelsMap[predictedLabel],round(score, 5)) |             text = '{} {}%'.format(labelsMap[predictedLabel], round(score, 5)) | ||||||
|             cv2.rectangle(original, (x1, y1), (x2, y2), (0, 255, 0), 5)  |             cv2.rectangle(original, (x1, y1), (x2, y2), (0, 255, 0), 5) | ||||||
|             cv2.putText(original, text, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 3) |             cv2.putText(original, text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 3) | ||||||
|  |             'Hardware.Motor.Motor.stop_motor()' | ||||||
|  |             'Hardware.Motor.Motor.start_motor()' | ||||||
|  |         'Hardware.Motor.Motor.stop_motor()' | ||||||
|  |         'Hardware.Motor.Motor.start_alarm()' | ||||||
| 
 | 
 | ||||||
|         cv2.imshow('Face Recognition Demo', original) |         cv2.imshow('Face Recognition Demo', original) | ||||||
| 
 | 
 | ||||||
|         k = cv2.waitKey(10) |         k = cv2.waitKey(10) | ||||||
|            |  | ||||||
| 
 | 
 | ||||||
|     cam.release() |     cam.release() | ||||||
|     cv2.destroyAllWindows()  |     cv2.destroyAllWindows() | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| if __name__=="__main__": | if __name__ == "__main__": | ||||||
|     mode = 'test' |     mode = 'test' | ||||||
|     rec_type = 'Fisher'  # 'LBPH' 'Fisher' 'Eigen' |     rec_type = 'Fisher'  # 'LBPH' 'Fisher' 'Eigen' | ||||||
| 
 | 
 | ||||||
|  | @ -236,10 +244,6 @@ if __name__=="__main__": | ||||||
|     elif (mode == 'test'): |     elif (mode == 'test'): | ||||||
|         face_recognition_inference(rec_type) |         face_recognition_inference(rec_type) | ||||||
| 
 | 
 | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
|     # video process (keep it in case if needed) |     # video process (keep it in case if needed) | ||||||
|     ''' |     ''' | ||||||
|     cameraCapture = cv2.VideoCapture(1) |     cameraCapture = cv2.VideoCapture(1) | ||||||
|  | @ -274,6 +278,3 @@ if __name__=="__main__": | ||||||
|     cv2.waitKey() |     cv2.waitKey() | ||||||
|     cv2.destroyAllWindows() |     cv2.destroyAllWindows() | ||||||
|     ''' |     ''' | ||||||
|      |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
|  |  | ||||||
|  | @ -1,105 +0,0 @@ | ||||||
| import RPi.GPIO as GPIO |  | ||||||
| from time import sleep |  | ||||||
| 
 |  | ||||||
| class Motor: |  | ||||||
|      |  | ||||||
|     print("Starting of the program") |  | ||||||
|      |  | ||||||
|     def __init__(self): |  | ||||||
|          |  | ||||||
|         GPIO.setmode(GPIO.BCM) |  | ||||||
|         GPIO.setwarnings(False) |  | ||||||
|      |  | ||||||
|         #preset GPIO ports for 2 motors |  | ||||||
|         self.Motor1 = {'EN': 25, 'input1': 24, 'input2': 23} |  | ||||||
|         self.Motor2 = {'EN': 17, 'input1': 27, 'input2': 22} |  | ||||||
|          |  | ||||||
|         # preset the port for buttons and alarm |  | ||||||
|         GPIO.setup(5,GPIO.IN)     # start motor button, initially True |  | ||||||
|         GPIO.setup(13,GPIO.IN)    # stop motor button, initially True |  | ||||||
|         GPIO.setup(16,GPIO.IN)    # start alarm button, initially True |  | ||||||
|         GPIO.setup(26,GPIO.OUT)   # alarm output |  | ||||||
|          |  | ||||||
|         for x in self.Motor1: |  | ||||||
|             GPIO.setup(self.Motor1[x], GPIO.OUT) |  | ||||||
|             GPIO.setup(self.Motor2[x], GPIO.OUT) |  | ||||||
| 
 |  | ||||||
|         #utilize PWM function, enable motors and frequency is 100Hz |  | ||||||
|         self.EN1 = GPIO.PWM(self.Motor1['EN'], 100)     |  | ||||||
|         self.EN2 = GPIO.PWM(self.Motor2['EN'], 100)     |  | ||||||
| 
 |  | ||||||
|         self.EN1.start(0)                     |  | ||||||
|         self.EN2.start(0) |  | ||||||
|          |  | ||||||
|         #stop signals for motors and alarm |  | ||||||
|         self.motorStop=False |  | ||||||
|         self.alarmStop=False |  | ||||||
|          |  | ||||||
|      |  | ||||||
|     def start_motor(self): |  | ||||||
|          |  | ||||||
|         while (not self.motorStop) or (not GPIO.input(5)): #break the loop when motor stop signal is detected |  | ||||||
|              |  | ||||||
|             print ("FORWARD MOTION") |  | ||||||
|             self.motorStop=self.stop_motor() |  | ||||||
|              |  | ||||||
|             self.EN1.ChangeDutyCycle(50) |  | ||||||
|             self.EN2.ChangeDutyCycle(50) |  | ||||||
| 
 |  | ||||||
|             GPIO.output(self.Motor1['input1'], GPIO.HIGH) |  | ||||||
|             GPIO.output(self.Motor1['input2'], GPIO.LOW) |  | ||||||
|                  |  | ||||||
|             GPIO.output(self.Motor2['input1'], GPIO.HIGH) |  | ||||||
|             GPIO.output(self.Motor2['input2'], GPIO.LOW) |  | ||||||
| 
 |  | ||||||
|         GPIO.cleanup() |  | ||||||
|      |  | ||||||
|     def stop_motor(self): |  | ||||||
|          |  | ||||||
|         userStop=input("Stop the motor? choose between Y/N") |  | ||||||
|          |  | ||||||
|         if (userStop=="Y") or (not GPIO.input(13)): |  | ||||||
|             print("stopping motor...") |  | ||||||
|             self.EN1.ChangeDutyCycle(0) |  | ||||||
|             self.EN2.ChangeDutyCycle(0) |  | ||||||
|             print("motor stops") |  | ||||||
|             return True |  | ||||||
|         elif userStop=="N": |  | ||||||
|             return False |  | ||||||
|         else: |  | ||||||
|             self.stop_motor(self) |  | ||||||
|              |  | ||||||
|      |  | ||||||
|     def start_alarm(self): |  | ||||||
|          |  | ||||||
|         while (not self.alarmStop) or (not GPIO.input(16)): |  | ||||||
|              |  | ||||||
|             self.alarmStop=self.stop_alarm() |  | ||||||
|             GPIO.output(26,True) |  | ||||||
|          |  | ||||||
|         GPIO.cleanup() |  | ||||||
|      |  | ||||||
|     def stop_alarm(self): |  | ||||||
|          |  | ||||||
|         stopRequest=input("Turn off the alarm? choose between Y/N") |  | ||||||
|         if stopRequest=="Y": |  | ||||||
|             print("Alarm turning off...") |  | ||||||
|             GPIO.output(26,False) |  | ||||||
|             print("Alarm is off") |  | ||||||
|             return True |  | ||||||
|         elif stopRequest=="N": |  | ||||||
|             return False |  | ||||||
|         else: |  | ||||||
|             self.stop_alarm() |  | ||||||
|              |  | ||||||
|          |  | ||||||
| if __name__=="__main__": |  | ||||||
|          |  | ||||||
|     #print("Execute function...") |  | ||||||
|          |  | ||||||
|      |  | ||||||
|     motor1=Motor() |  | ||||||
|     #motor1.start_motor() |  | ||||||
|     motor1.start_alarm() |  | ||||||
|      |  | ||||||
|          |  | ||||||
							
								
								
									
										98
									
								
								Hardware/Motor.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										98
									
								
								Hardware/Motor.py
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,98 @@ | ||||||
|  | import RPi.GPIO as GPIO | ||||||
|  | from time import sleep | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class Motor: | ||||||
|  | 
 | ||||||
|  |     def __init__(self): | ||||||
|  |         print("Starting of the program") | ||||||
|  | 
 | ||||||
|  |         GPIO.setmode(GPIO.BCM) | ||||||
|  |         GPIO.setwarnings(False) | ||||||
|  | 
 | ||||||
|  |         # preset GPIO ports for 2 motors | ||||||
|  |         self.Motor1 = {'EN': 25, 'input1': 24, 'input2': 23} | ||||||
|  |         self.Motor2 = {'EN': 17, 'input1': 27, 'input2': 22} | ||||||
|  | 
 | ||||||
|  |         # preset the port for buttons and alarm | ||||||
|  |         GPIO.setup(5, GPIO.IN)  # start motor button, initially True | ||||||
|  |         GPIO.setup(13, GPIO.IN)  # stop motor button, initially True | ||||||
|  |         GPIO.setup(16, GPIO.IN)  # start alarm button, initially True | ||||||
|  |         GPIO.setup(26, GPIO.OUT)  # alarm output | ||||||
|  | 
 | ||||||
|  |         for x in self.Motor1: | ||||||
|  |             GPIO.setup(self.Motor1[x], GPIO.OUT) | ||||||
|  |             GPIO.setup(self.Motor2[x], GPIO.OUT) | ||||||
|  | 
 | ||||||
|  |         # utilize PWM function, enable motors and frequency is 100Hz | ||||||
|  |         self.EN1 = GPIO.PWM(self.Motor1['EN'], 100) | ||||||
|  |         self.EN2 = GPIO.PWM(self.Motor2['EN'], 100) | ||||||
|  | 
 | ||||||
|  |         self.EN1.start(0) | ||||||
|  |         self.EN2.start(0) | ||||||
|  | 
 | ||||||
|  |         # stop signals for motors and alarm | ||||||
|  |         self.motorStop = False | ||||||
|  |         self.alarmStop = False | ||||||
|  | 
 | ||||||
|  |     def start_motor(self): | ||||||
|  | 
 | ||||||
|  |         while (not self.motorStop) or (not GPIO.input(5)):  # break the loop when motor stop signal is detected | ||||||
|  | 
 | ||||||
|  |             print("FORWARD MOTION") | ||||||
|  |             self.motorStop = self.stop_motor() | ||||||
|  | 
 | ||||||
|  |             self.EN1.ChangeDutyCycle(50) | ||||||
|  |             self.EN2.ChangeDutyCycle(50) | ||||||
|  | 
 | ||||||
|  |             GPIO.output(self.Motor1['input1'], GPIO.HIGH) | ||||||
|  |             GPIO.output(self.Motor1['input2'], GPIO.LOW) | ||||||
|  | 
 | ||||||
|  |             GPIO.output(self.Motor2['input1'], GPIO.HIGH) | ||||||
|  |             GPIO.output(self.Motor2['input2'], GPIO.LOW) | ||||||
|  | 
 | ||||||
|  |         GPIO.cleanup() | ||||||
|  | 
 | ||||||
|  |     def stop_motor(self): | ||||||
|  | 
 | ||||||
|  |         userStop = input("Stop the motor? choose between Y/N") | ||||||
|  | 
 | ||||||
|  |         if (userStop == "Y") or (not GPIO.input(13)): | ||||||
|  |             print("stopping motor...") | ||||||
|  |             self.EN1.ChangeDutyCycle(0) | ||||||
|  |             self.EN2.ChangeDutyCycle(0) | ||||||
|  |             print("motor stops") | ||||||
|  |             return True | ||||||
|  |         elif userStop == "N": | ||||||
|  |             return False | ||||||
|  |         else: | ||||||
|  |             self.stop_motor(self) | ||||||
|  | 
 | ||||||
|  |     def start_alarm(self): | ||||||
|  | 
 | ||||||
|  |         while (not self.alarmStop) or (not GPIO.input(16)): | ||||||
|  |             self.alarmStop = self.stop_alarm() | ||||||
|  |             GPIO.output(26, True) | ||||||
|  | 
 | ||||||
|  |         GPIO.cleanup() | ||||||
|  | 
 | ||||||
|  |     def stop_alarm(self): | ||||||
|  | 
 | ||||||
|  |         stopRequest = input("Turn off the alarm? choose between Y/N") | ||||||
|  |         if stopRequest == "Y": | ||||||
|  |             print("Alarm turning off...") | ||||||
|  |             GPIO.output(26, False) | ||||||
|  |             print("Alarm is off") | ||||||
|  |             return True | ||||||
|  |         elif stopRequest == "N": | ||||||
|  |             return False | ||||||
|  |         else: | ||||||
|  |             self.stop_alarm() | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | if __name__ == "__main__": | ||||||
|  |     # print("Execute function...") | ||||||
|  | 
 | ||||||
|  |     motor1 = Motor() | ||||||
|  |     # motor1.start_motor() | ||||||
|  |     motor1.start_alarm() | ||||||
							
								
								
									
										
											BIN
										
									
								
								Hardware/__pycache__/Motor.cpython-36.pyc
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								Hardware/__pycache__/Motor.cpython-36.pyc
									
										
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							|  | @ -8,24 +8,23 @@ def start(): | ||||||
|     count = 0 |     count = 0 | ||||||
|     users = DBHelper.db.child("Users").get() |     users = DBHelper.db.child("Users").get() | ||||||
|     try: |     try: | ||||||
|         for user in users.each(): |         for x in users.each(): | ||||||
|             count = +1 |             count = +1 | ||||||
|             for x in range(20): |             for y in range(20): | ||||||
|                 if not os.path.isdir("Facial_images/face_rec/train/User_" + str(count)): |                 if not os.path.isdir("Facial_images/face_rec/train/User_" + str(count)): | ||||||
|                     os.makedirs("Photos_of_Users/User_" + str(count)) |                     os.makedirs("Photos_of_Users/User_" + str(count)) | ||||||
|                 DBHelper.download_user_photo("User_" + str(count) + "/" + str(x) + ".jpg") |                 DBHelper.download_user_photo("User_" + str(count) + "/" + str(y) + ".jpg") | ||||||
|     except: |     except: | ||||||
|         print("No Users are registered.") |         print("No Users are registered.") | ||||||
|     count = 0 |     count = 0 | ||||||
|     try: |     try: | ||||||
|         for user in users.each(): |         for x in users.each(): | ||||||
|             count = +1 |             count = +1 | ||||||
|             for x in range(20): |             for y in range(20): | ||||||
|                 if not os.path.isdir("Photos_of_Thieves/Thief_" + str(count)): |                 if not os.path.isdir("Photos_of_Thieves/Thief_" + str(count)): | ||||||
|                     os.makedirs("Photos_of_Thieves/Thief_" + str(count)) |                     os.makedirs("Photos_of_Thieves/Thief_" + str(count)) | ||||||
|                 DBHelper.download_thief_photo("Thief_" + str(count) + "/" + str(x) + ".jpg") |                 DBHelper.download_thief_photo("Thief_" + str(count) + "/" + str(y) + ".jpg") | ||||||
|     except: |     except: | ||||||
|         print("No Thieves for now.") |         print("No Thieves for now.") | ||||||
|     Facial_Recognition_Wrapper.training_recognizer("Fisher") |     Facial_Recognition_Wrapper.training_recognizer("Fisher") | ||||||
|     Facial_Recognition_Wrapper.face_recognition_inference("Fisher") |     Facial_Recognition_Wrapper.face_recognition_inference("Fisher") | ||||||
| 
 |  | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue