Integrated hardware commands to Facial Recognition Software.
This commit is contained in:
parent
c5bf048621
commit
cf228272a8
7 changed files with 170 additions and 177 deletions
|
@ -7,11 +7,13 @@ import numpy as np
|
||||||
import Facial_Recognition_Render as fr
|
import Facial_Recognition_Render as fr
|
||||||
import _pickle as cPickle
|
import _pickle as cPickle
|
||||||
import glob
|
import glob
|
||||||
|
'import Hardware.Motor' #Line 225-228
|
||||||
|
|
||||||
faceWidth = 320
|
faceWidth = 320
|
||||||
faceHeight = 320
|
faceHeight = 320
|
||||||
SKIP_FRAMES = 1
|
SKIP_FRAMES = 1
|
||||||
|
|
||||||
|
|
||||||
def alignFace(imFace, landmarks):
|
def alignFace(imFace, landmarks):
|
||||||
l_x = landmarks[39][0]
|
l_x = landmarks[39][0]
|
||||||
l_y = landmarks[39][1]
|
l_y = landmarks[39][1]
|
||||||
|
@ -22,19 +24,19 @@ def alignFace(imFace, landmarks):
|
||||||
# Convert from radians to degrees
|
# Convert from radians to degrees
|
||||||
angle = math.atan2(dy, dx) * 180.0 / math.pi
|
angle = math.atan2(dy, dx) * 180.0 / math.pi
|
||||||
|
|
||||||
eyesCenter = ((l_x + r_x)*0.5, (l_y + r_y)*0.5)
|
eyesCenter = ((l_x + r_x) * 0.5, (l_y + r_y) * 0.5)
|
||||||
rotMatrix = cv2.getRotationMatrix2D(eyesCenter, angle, 1)
|
rotMatrix = cv2.getRotationMatrix2D(eyesCenter, angle, 1)
|
||||||
alignedImFace = np.zeros(imFace.shape, dtype=np.uint8)
|
alignedImFace = np.zeros(imFace.shape, dtype=np.uint8)
|
||||||
alignedImFace = cv2.warpAffine(imFace, rotMatrix, (imFace.shape[1],imFace.shape[0]))
|
alignedImFace = cv2.warpAffine(imFace, rotMatrix, (imFace.shape[1], imFace.shape[0]))
|
||||||
return alignedImFace
|
return alignedImFace
|
||||||
|
|
||||||
def face_detector_haarcascade(image):
|
|
||||||
|
|
||||||
|
def face_detector_haarcascade(image):
|
||||||
grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
resize_fx = 1
|
resize_fx = 1
|
||||||
resize_fy = 1
|
resize_fy = 1
|
||||||
grey = cv2.resize(grey, dsize=None, fx=resize_fx, fy=resize_fy, interpolation = cv2.INTER_AREA)
|
grey = cv2.resize(grey, dsize=None, fx=resize_fx, fy=resize_fy, interpolation=cv2.INTER_AREA)
|
||||||
|
|
||||||
pwd = sys.path[0]
|
pwd = sys.path[0]
|
||||||
classfier = cv2.CascadeClassifier(pwd + "/Facial_models/haarcascade_frontalface_alt2.xml")
|
classfier = cv2.CascadeClassifier(pwd + "/Facial_models/haarcascade_frontalface_alt2.xml")
|
||||||
|
@ -44,18 +46,19 @@ def face_detector_haarcascade(image):
|
||||||
if len(faceRects) > 0:
|
if len(faceRects) > 0:
|
||||||
for faceRect in faceRects:
|
for faceRect in faceRects:
|
||||||
x, y, w, h = faceRect
|
x, y, w, h = faceRect
|
||||||
x = int(x/resize_fx)
|
x = int(x / resize_fx)
|
||||||
y = int(y/resize_fy)
|
y = int(y / resize_fy)
|
||||||
w = int(w/resize_fx)
|
w = int(w / resize_fx)
|
||||||
h = int(h/resize_fy)
|
h = int(h / resize_fy)
|
||||||
cv2.rectangle(image, (x - 10, y - 10), (x + w + 10, y + h + 10), (0, 255, 0), 5)
|
cv2.rectangle(image, (x - 10, y - 10), (x + w + 10, y + h + 10), (0, 255, 0), 5)
|
||||||
|
|
||||||
return image
|
return image
|
||||||
|
|
||||||
def face_detector_ssd(image):
|
|
||||||
|
|
||||||
|
def face_detector_ssd(image):
|
||||||
pwd = sys.path[0]
|
pwd = sys.path[0]
|
||||||
net = cv2.dnn.readNetFromCaffe(pwd+"/Facial_models/deploy.prototxt", pwd+"/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel")
|
net = cv2.dnn.readNetFromCaffe(pwd + "/Facial_models/deploy.prototxt",
|
||||||
|
pwd + "/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel")
|
||||||
|
|
||||||
resize = (300, 300)
|
resize = (300, 300)
|
||||||
confidence_thres = 0.65
|
confidence_thres = 0.65
|
||||||
|
@ -67,7 +70,7 @@ def face_detector_ssd(image):
|
||||||
|
|
||||||
detections = net.forward()
|
detections = net.forward()
|
||||||
|
|
||||||
h,w,c=image.shape
|
h, w, c = image.shape
|
||||||
|
|
||||||
for i in range(0, detections.shape[2]):
|
for i in range(0, detections.shape[2]):
|
||||||
confidence = detections[0, 0, i, 2]
|
confidence = detections[0, 0, i, 2]
|
||||||
|
@ -76,13 +79,14 @@ def face_detector_ssd(image):
|
||||||
(startX, startY, endX, endY) = box.astype("int")
|
(startX, startY, endX, endY) = box.astype("int")
|
||||||
text = "{:.2f}%".format(confidence * 100)
|
text = "{:.2f}%".format(confidence * 100)
|
||||||
y = startY - 10 if startY - 10 > 10 else startY + 10
|
y = startY - 10 if startY - 10 > 10 else startY + 10
|
||||||
cv2.rectangle(image, (startX, startY), (endX, endY),(0, 255,0), 5)
|
cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 5)
|
||||||
cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 1.00, (0, 255, 0), 3)
|
cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 1.00, (0, 255, 0), 3)
|
||||||
|
|
||||||
return image
|
return image
|
||||||
|
|
||||||
|
|
||||||
def training_data_loader():
|
def training_data_loader():
|
||||||
imagesFolder = sys.path[0]+"/Facial_images/face_rec/train/"
|
imagesFolder = sys.path[0] + "/Facial_images/face_rec/train/"
|
||||||
subfolders = []
|
subfolders = []
|
||||||
|
|
||||||
for x in os.listdir(imagesFolder):
|
for x in os.listdir(imagesFolder):
|
||||||
|
@ -107,7 +111,7 @@ def training_data_loader():
|
||||||
labelsFaceTrain = []
|
labelsFaceTrain = []
|
||||||
|
|
||||||
faceDetector = dlib.get_frontal_face_detector()
|
faceDetector = dlib.get_frontal_face_detector()
|
||||||
landmarkDetector = dlib.shape_predictor(sys.path[0]+"/Facial_models/shape_predictor_68_face_landmarks.dat")
|
landmarkDetector = dlib.shape_predictor(sys.path[0] + "/Facial_models/shape_predictor_68_face_landmarks.dat")
|
||||||
|
|
||||||
for j, imagePath in enumerate(imagePaths):
|
for j, imagePath in enumerate(imagePaths):
|
||||||
im = cv2.imread(imagePath, 0)
|
im = cv2.imread(imagePath, 0)
|
||||||
|
@ -120,10 +124,10 @@ def training_data_loader():
|
||||||
if len(landmarks) == 68:
|
if len(landmarks) == 68:
|
||||||
x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0])
|
x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0])
|
||||||
x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0])
|
x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0])
|
||||||
y1Limit = landmarks[27][1] - 3*(landmarks[30][1] - landmarks[27][1])
|
y1Limit = landmarks[27][1] - 3 * (landmarks[30][1] - landmarks[27][1])
|
||||||
y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1])
|
y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1])
|
||||||
|
|
||||||
x1 = max(x1Limit,0)
|
x1 = max(x1Limit, 0)
|
||||||
x2 = min(x2Limit, imWidth)
|
x2 = min(x2Limit, imWidth)
|
||||||
y1 = max(y1Limit, 0)
|
y1 = max(y1Limit, 0)
|
||||||
y2 = min(y2Limit, imHeight)
|
y2 = min(y2Limit, imHeight)
|
||||||
|
@ -132,63 +136,64 @@ def training_data_loader():
|
||||||
alignedFace = alignFace(imFace, landmarks)
|
alignedFace = alignFace(imFace, landmarks)
|
||||||
alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth))
|
alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth))
|
||||||
|
|
||||||
imagesFaceTrain.append(np.float32(alignedFace)/255.0)
|
imagesFaceTrain.append(np.float32(alignedFace) / 255.0)
|
||||||
labelsFaceTrain.append(labels[j])
|
labelsFaceTrain.append(labels[j])
|
||||||
|
|
||||||
return imagesFaceTrain, labelsFaceTrain, labelsMap
|
return imagesFaceTrain, labelsFaceTrain, labelsMap
|
||||||
|
|
||||||
def training_recognizer(rec_type):
|
|
||||||
|
|
||||||
|
def training_recognizer(rec_type):
|
||||||
imagesFaceTrain, labelsFaceTrain, labelsMap = training_data_loader()
|
imagesFaceTrain, labelsFaceTrain, labelsMap = training_data_loader()
|
||||||
|
|
||||||
if (rec_type=='LBPH'):
|
if (rec_type == 'LBPH'):
|
||||||
faceRecognizer = cv2.face.LBPHFaceRecognizer_create()
|
faceRecognizer = cv2.face.LBPHFaceRecognizer_create()
|
||||||
print("Training using LBPH Faces")
|
print("Training using LBPH Faces")
|
||||||
elif (rec_type=='Eigen'):
|
elif (rec_type == 'Eigen'):
|
||||||
faceRecognizer = cv2.face.EigenFaceRecognizer_create()
|
faceRecognizer = cv2.face.EigenFaceRecognizer_create()
|
||||||
print("Training using Eigen Faces")
|
print("Training using Eigen Faces")
|
||||||
elif (rec_type=='Fisher'):
|
elif (rec_type == 'Fisher'):
|
||||||
faceRecognizer = cv2.face.FisherFaceRecognizer_create()
|
faceRecognizer = cv2.face.FisherFaceRecognizer_create()
|
||||||
print("Training using Fisher Faces")
|
print("Training using Fisher Faces")
|
||||||
|
|
||||||
faceRecognizer.train(imagesFaceTrain, np.array(labelsFaceTrain))
|
faceRecognizer.train(imagesFaceTrain, np.array(labelsFaceTrain))
|
||||||
faceRecognizer.write(sys.path[0]+'/Facial_models/face_rec_model.yml')
|
faceRecognizer.write(sys.path[0] + '/Facial_models/face_rec_model.yml')
|
||||||
|
|
||||||
with open(sys.path[0]+'/Facial_models/labels_map.pkl', 'wb') as f:
|
with open(sys.path[0] + '/Facial_models/labels_map.pkl', 'wb') as f:
|
||||||
cPickle.dump(labelsMap, f)
|
cPickle.dump(labelsMap, f)
|
||||||
|
|
||||||
|
|
||||||
def face_recognition_inference(rec_type):
|
def face_recognition_inference(rec_type):
|
||||||
#testFiles = glob.glob(sys.path[0]+'/Facial_test_images/face_rec/test/*.jpg')
|
# testFiles = glob.glob(sys.path[0]+'/Facial_test_images/face_rec/test/*.jpg')
|
||||||
#testFiles.sort()
|
# testFiles.sort()
|
||||||
i = 0
|
i = 0
|
||||||
correct = 0
|
correct = 0
|
||||||
error = 0
|
error = 0
|
||||||
faceDetector = dlib.get_frontal_face_detector()
|
faceDetector = dlib.get_frontal_face_detector()
|
||||||
print(sys.path[0])
|
print(sys.path[0])
|
||||||
landmarkDetector = dlib.shape_predictor(sys.path[0]+'/Facial_models/shape_predictor_68_face_landmarks.dat')
|
landmarkDetector = dlib.shape_predictor(sys.path[0] + '/Facial_models/shape_predictor_68_face_landmarks.dat')
|
||||||
|
|
||||||
if (rec_type=='LBPH'):
|
if (rec_type == 'LBPH'):
|
||||||
faceRecognizer = cv2.face.LBPHFaceRecognizer_create()
|
faceRecognizer = cv2.face.LBPHFaceRecognizer_create()
|
||||||
print("Test using LBPH Faces")
|
print("Test using LBPH Faces")
|
||||||
elif (rec_type=='Eigen'):
|
elif (rec_type == 'Eigen'):
|
||||||
faceRecognizer = cv2.face.EigenFaceRecognizer_create()
|
faceRecognizer = cv2.face.EigenFaceRecognizer_create()
|
||||||
print("Test using Eigen Faces")
|
print("Test using Eigen Faces")
|
||||||
elif (rec_type=='Fisher'):
|
elif (rec_type == 'Fisher'):
|
||||||
faceRecognizer = cv2.face.FisherFaceRecognizer_create()
|
faceRecognizer = cv2.face.FisherFaceRecognizer_create()
|
||||||
print("Test using Fisher Faces")
|
print("Test using Fisher Faces")
|
||||||
|
|
||||||
faceRecognizer.read(sys.path[0]+'/Facial_models/face_rec_model.yml')
|
faceRecognizer.read(sys.path[0] + '/Facial_models/face_rec_model.yml')
|
||||||
labelsMap = np.load(sys.path[0]+'/Facial_models/labels_map.pkl', allow_pickle=True)
|
labelsMap = np.load(sys.path[0] + '/Facial_models/labels_map.pkl', allow_pickle=True)
|
||||||
|
|
||||||
cam = cv2.VideoCapture(0)
|
cam = cv2.VideoCapture(0)
|
||||||
|
|
||||||
while(True):
|
while (True):
|
||||||
#imagePath = testFiles[i]
|
# imagePath = testFiles[i]
|
||||||
success, original = cam.read()
|
success, original = cam.read()
|
||||||
im = cv2.resize(original, (640, 480))
|
im = cv2.resize(original, (640, 480))
|
||||||
i += 1
|
i += 1
|
||||||
|
|
||||||
im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
|
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
|
||||||
imHeight, imWidth = im.shape[:2]
|
imHeight, imWidth = im.shape[:2]
|
||||||
|
|
||||||
landmarks = fr.getLandmarks(faceDetector, landmarkDetector, im)
|
landmarks = fr.getLandmarks(faceDetector, landmarkDetector, im)
|
||||||
|
@ -197,10 +202,10 @@ def face_recognition_inference(rec_type):
|
||||||
if len(landmarks) == 68:
|
if len(landmarks) == 68:
|
||||||
x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0])
|
x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0])
|
||||||
x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0])
|
x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0])
|
||||||
y1Limit = landmarks[27][1] - 3*(landmarks[30][1] - landmarks[27][1])
|
y1Limit = landmarks[27][1] - 3 * (landmarks[30][1] - landmarks[27][1])
|
||||||
y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1])
|
y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1])
|
||||||
|
|
||||||
x1 = max(x1Limit,0)
|
x1 = max(x1Limit, 0)
|
||||||
x2 = min(x2Limit, imWidth)
|
x2 = min(x2Limit, imWidth)
|
||||||
y1 = max(y1Limit, 0)
|
y1 = max(y1Limit, 0)
|
||||||
y2 = min(y2Limit, imHeight)
|
y2 = min(y2Limit, imHeight)
|
||||||
|
@ -208,26 +213,29 @@ def face_recognition_inference(rec_type):
|
||||||
|
|
||||||
alignedFace = alignFace(imFace, landmarks)
|
alignedFace = alignFace(imFace, landmarks)
|
||||||
alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth))
|
alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth))
|
||||||
imFaceFloat = np.float32(alignedFace)/255.0
|
imFaceFloat = np.float32(alignedFace) / 255.0
|
||||||
|
|
||||||
predictedLabel = -1
|
predictedLabel = -1
|
||||||
predictedLabel, score = faceRecognizer.predict(imFaceFloat)
|
predictedLabel, score = faceRecognizer.predict(imFaceFloat)
|
||||||
center = ( int((x1 + x2) /2), int((y1 + y2)/2) )
|
center = (int((x1 + x2) / 2), int((y1 + y2) / 2))
|
||||||
radius = int((y2-y1)/2.0)
|
radius = int((y2 - y1) / 2.0)
|
||||||
text = '{} {}%'.format(labelsMap[predictedLabel],round(score, 5))
|
text = '{} {}%'.format(labelsMap[predictedLabel], round(score, 5))
|
||||||
cv2.rectangle(original, (x1, y1), (x2, y2), (0, 255, 0), 5)
|
cv2.rectangle(original, (x1, y1), (x2, y2), (0, 255, 0), 5)
|
||||||
cv2.putText(original, text, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 3)
|
cv2.putText(original, text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 3)
|
||||||
|
'Hardware.Motor.Motor.stop_motor()'
|
||||||
|
'Hardware.Motor.Motor.start_motor()'
|
||||||
|
'Hardware.Motor.Motor.stop_motor()'
|
||||||
|
'Hardware.Motor.Motor.start_alarm()'
|
||||||
|
|
||||||
cv2.imshow('Face Recognition Demo', original)
|
cv2.imshow('Face Recognition Demo', original)
|
||||||
|
|
||||||
k = cv2.waitKey(10)
|
k = cv2.waitKey(10)
|
||||||
|
|
||||||
|
|
||||||
cam.release()
|
cam.release()
|
||||||
cv2.destroyAllWindows()
|
cv2.destroyAllWindows()
|
||||||
|
|
||||||
|
|
||||||
if __name__=="__main__":
|
if __name__ == "__main__":
|
||||||
mode = 'test'
|
mode = 'test'
|
||||||
rec_type = 'Fisher' # 'LBPH' 'Fisher' 'Eigen'
|
rec_type = 'Fisher' # 'LBPH' 'Fisher' 'Eigen'
|
||||||
|
|
||||||
|
@ -236,10 +244,6 @@ if __name__=="__main__":
|
||||||
elif (mode == 'test'):
|
elif (mode == 'test'):
|
||||||
face_recognition_inference(rec_type)
|
face_recognition_inference(rec_type)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# video process (keep it in case if needed)
|
# video process (keep it in case if needed)
|
||||||
'''
|
'''
|
||||||
cameraCapture = cv2.VideoCapture(1)
|
cameraCapture = cv2.VideoCapture(1)
|
||||||
|
@ -274,6 +278,3 @@ if __name__=="__main__":
|
||||||
cv2.waitKey()
|
cv2.waitKey()
|
||||||
cv2.destroyAllWindows()
|
cv2.destroyAllWindows()
|
||||||
'''
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,105 +0,0 @@
|
||||||
import RPi.GPIO as GPIO
|
|
||||||
from time import sleep
|
|
||||||
|
|
||||||
class Motor:
|
|
||||||
|
|
||||||
print("Starting of the program")
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
|
|
||||||
GPIO.setmode(GPIO.BCM)
|
|
||||||
GPIO.setwarnings(False)
|
|
||||||
|
|
||||||
#preset GPIO ports for 2 motors
|
|
||||||
self.Motor1 = {'EN': 25, 'input1': 24, 'input2': 23}
|
|
||||||
self.Motor2 = {'EN': 17, 'input1': 27, 'input2': 22}
|
|
||||||
|
|
||||||
# preset the port for buttons and alarm
|
|
||||||
GPIO.setup(5,GPIO.IN) # start motor button, initially True
|
|
||||||
GPIO.setup(13,GPIO.IN) # stop motor button, initially True
|
|
||||||
GPIO.setup(16,GPIO.IN) # start alarm button, initially True
|
|
||||||
GPIO.setup(26,GPIO.OUT) # alarm output
|
|
||||||
|
|
||||||
for x in self.Motor1:
|
|
||||||
GPIO.setup(self.Motor1[x], GPIO.OUT)
|
|
||||||
GPIO.setup(self.Motor2[x], GPIO.OUT)
|
|
||||||
|
|
||||||
#utilize PWM function, enable motors and frequency is 100Hz
|
|
||||||
self.EN1 = GPIO.PWM(self.Motor1['EN'], 100)
|
|
||||||
self.EN2 = GPIO.PWM(self.Motor2['EN'], 100)
|
|
||||||
|
|
||||||
self.EN1.start(0)
|
|
||||||
self.EN2.start(0)
|
|
||||||
|
|
||||||
#stop signals for motors and alarm
|
|
||||||
self.motorStop=False
|
|
||||||
self.alarmStop=False
|
|
||||||
|
|
||||||
|
|
||||||
def start_motor(self):
|
|
||||||
|
|
||||||
while (not self.motorStop) or (not GPIO.input(5)): #break the loop when motor stop signal is detected
|
|
||||||
|
|
||||||
print ("FORWARD MOTION")
|
|
||||||
self.motorStop=self.stop_motor()
|
|
||||||
|
|
||||||
self.EN1.ChangeDutyCycle(50)
|
|
||||||
self.EN2.ChangeDutyCycle(50)
|
|
||||||
|
|
||||||
GPIO.output(self.Motor1['input1'], GPIO.HIGH)
|
|
||||||
GPIO.output(self.Motor1['input2'], GPIO.LOW)
|
|
||||||
|
|
||||||
GPIO.output(self.Motor2['input1'], GPIO.HIGH)
|
|
||||||
GPIO.output(self.Motor2['input2'], GPIO.LOW)
|
|
||||||
|
|
||||||
GPIO.cleanup()
|
|
||||||
|
|
||||||
def stop_motor(self):
|
|
||||||
|
|
||||||
userStop=input("Stop the motor? choose between Y/N")
|
|
||||||
|
|
||||||
if (userStop=="Y") or (not GPIO.input(13)):
|
|
||||||
print("stopping motor...")
|
|
||||||
self.EN1.ChangeDutyCycle(0)
|
|
||||||
self.EN2.ChangeDutyCycle(0)
|
|
||||||
print("motor stops")
|
|
||||||
return True
|
|
||||||
elif userStop=="N":
|
|
||||||
return False
|
|
||||||
else:
|
|
||||||
self.stop_motor(self)
|
|
||||||
|
|
||||||
|
|
||||||
def start_alarm(self):
|
|
||||||
|
|
||||||
while (not self.alarmStop) or (not GPIO.input(16)):
|
|
||||||
|
|
||||||
self.alarmStop=self.stop_alarm()
|
|
||||||
GPIO.output(26,True)
|
|
||||||
|
|
||||||
GPIO.cleanup()
|
|
||||||
|
|
||||||
def stop_alarm(self):
|
|
||||||
|
|
||||||
stopRequest=input("Turn off the alarm? choose between Y/N")
|
|
||||||
if stopRequest=="Y":
|
|
||||||
print("Alarm turning off...")
|
|
||||||
GPIO.output(26,False)
|
|
||||||
print("Alarm is off")
|
|
||||||
return True
|
|
||||||
elif stopRequest=="N":
|
|
||||||
return False
|
|
||||||
else:
|
|
||||||
self.stop_alarm()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__=="__main__":
|
|
||||||
|
|
||||||
#print("Execute function...")
|
|
||||||
|
|
||||||
|
|
||||||
motor1=Motor()
|
|
||||||
#motor1.start_motor()
|
|
||||||
motor1.start_alarm()
|
|
||||||
|
|
||||||
|
|
98
Hardware/Motor.py
Normal file
98
Hardware/Motor.py
Normal file
|
@ -0,0 +1,98 @@
|
||||||
|
import RPi.GPIO as GPIO
|
||||||
|
from time import sleep
|
||||||
|
|
||||||
|
|
||||||
|
class Motor:
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
print("Starting of the program")
|
||||||
|
|
||||||
|
GPIO.setmode(GPIO.BCM)
|
||||||
|
GPIO.setwarnings(False)
|
||||||
|
|
||||||
|
# preset GPIO ports for 2 motors
|
||||||
|
self.Motor1 = {'EN': 25, 'input1': 24, 'input2': 23}
|
||||||
|
self.Motor2 = {'EN': 17, 'input1': 27, 'input2': 22}
|
||||||
|
|
||||||
|
# preset the port for buttons and alarm
|
||||||
|
GPIO.setup(5, GPIO.IN) # start motor button, initially True
|
||||||
|
GPIO.setup(13, GPIO.IN) # stop motor button, initially True
|
||||||
|
GPIO.setup(16, GPIO.IN) # start alarm button, initially True
|
||||||
|
GPIO.setup(26, GPIO.OUT) # alarm output
|
||||||
|
|
||||||
|
for x in self.Motor1:
|
||||||
|
GPIO.setup(self.Motor1[x], GPIO.OUT)
|
||||||
|
GPIO.setup(self.Motor2[x], GPIO.OUT)
|
||||||
|
|
||||||
|
# utilize PWM function, enable motors and frequency is 100Hz
|
||||||
|
self.EN1 = GPIO.PWM(self.Motor1['EN'], 100)
|
||||||
|
self.EN2 = GPIO.PWM(self.Motor2['EN'], 100)
|
||||||
|
|
||||||
|
self.EN1.start(0)
|
||||||
|
self.EN2.start(0)
|
||||||
|
|
||||||
|
# stop signals for motors and alarm
|
||||||
|
self.motorStop = False
|
||||||
|
self.alarmStop = False
|
||||||
|
|
||||||
|
def start_motor(self):
|
||||||
|
|
||||||
|
while (not self.motorStop) or (not GPIO.input(5)): # break the loop when motor stop signal is detected
|
||||||
|
|
||||||
|
print("FORWARD MOTION")
|
||||||
|
self.motorStop = self.stop_motor()
|
||||||
|
|
||||||
|
self.EN1.ChangeDutyCycle(50)
|
||||||
|
self.EN2.ChangeDutyCycle(50)
|
||||||
|
|
||||||
|
GPIO.output(self.Motor1['input1'], GPIO.HIGH)
|
||||||
|
GPIO.output(self.Motor1['input2'], GPIO.LOW)
|
||||||
|
|
||||||
|
GPIO.output(self.Motor2['input1'], GPIO.HIGH)
|
||||||
|
GPIO.output(self.Motor2['input2'], GPIO.LOW)
|
||||||
|
|
||||||
|
GPIO.cleanup()
|
||||||
|
|
||||||
|
def stop_motor(self):
|
||||||
|
|
||||||
|
userStop = input("Stop the motor? choose between Y/N")
|
||||||
|
|
||||||
|
if (userStop == "Y") or (not GPIO.input(13)):
|
||||||
|
print("stopping motor...")
|
||||||
|
self.EN1.ChangeDutyCycle(0)
|
||||||
|
self.EN2.ChangeDutyCycle(0)
|
||||||
|
print("motor stops")
|
||||||
|
return True
|
||||||
|
elif userStop == "N":
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
self.stop_motor(self)
|
||||||
|
|
||||||
|
def start_alarm(self):
|
||||||
|
|
||||||
|
while (not self.alarmStop) or (not GPIO.input(16)):
|
||||||
|
self.alarmStop = self.stop_alarm()
|
||||||
|
GPIO.output(26, True)
|
||||||
|
|
||||||
|
GPIO.cleanup()
|
||||||
|
|
||||||
|
def stop_alarm(self):
|
||||||
|
|
||||||
|
stopRequest = input("Turn off the alarm? choose between Y/N")
|
||||||
|
if stopRequest == "Y":
|
||||||
|
print("Alarm turning off...")
|
||||||
|
GPIO.output(26, False)
|
||||||
|
print("Alarm is off")
|
||||||
|
return True
|
||||||
|
elif stopRequest == "N":
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
self.stop_alarm()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# print("Execute function...")
|
||||||
|
|
||||||
|
motor1 = Motor()
|
||||||
|
# motor1.start_motor()
|
||||||
|
motor1.start_alarm()
|
BIN
Hardware/__pycache__/Motor.cpython-36.pyc
Normal file
BIN
Hardware/__pycache__/Motor.cpython-36.pyc
Normal file
Binary file not shown.
Binary file not shown.
|
@ -8,24 +8,23 @@ def start():
|
||||||
count = 0
|
count = 0
|
||||||
users = DBHelper.db.child("Users").get()
|
users = DBHelper.db.child("Users").get()
|
||||||
try:
|
try:
|
||||||
for user in users.each():
|
for x in users.each():
|
||||||
count = +1
|
count = +1
|
||||||
for x in range(20):
|
for y in range(20):
|
||||||
if not os.path.isdir("Facial_images/face_rec/train/User_" + str(count)):
|
if not os.path.isdir("Facial_images/face_rec/train/User_" + str(count)):
|
||||||
os.makedirs("Photos_of_Users/User_" + str(count))
|
os.makedirs("Photos_of_Users/User_" + str(count))
|
||||||
DBHelper.download_user_photo("User_" + str(count) + "/" + str(x) + ".jpg")
|
DBHelper.download_user_photo("User_" + str(count) + "/" + str(y) + ".jpg")
|
||||||
except:
|
except:
|
||||||
print("No Users are registered.")
|
print("No Users are registered.")
|
||||||
count = 0
|
count = 0
|
||||||
try:
|
try:
|
||||||
for user in users.each():
|
for x in users.each():
|
||||||
count = +1
|
count = +1
|
||||||
for x in range(20):
|
for y in range(20):
|
||||||
if not os.path.isdir("Photos_of_Thieves/Thief_" + str(count)):
|
if not os.path.isdir("Photos_of_Thieves/Thief_" + str(count)):
|
||||||
os.makedirs("Photos_of_Thieves/Thief_" + str(count))
|
os.makedirs("Photos_of_Thieves/Thief_" + str(count))
|
||||||
DBHelper.download_thief_photo("Thief_" + str(count) + "/" + str(x) + ".jpg")
|
DBHelper.download_thief_photo("Thief_" + str(count) + "/" + str(y) + ".jpg")
|
||||||
except:
|
except:
|
||||||
print("No Thieves for now.")
|
print("No Thieves for now.")
|
||||||
Facial_Recognition_Wrapper.training_recognizer("Fisher")
|
Facial_Recognition_Wrapper.training_recognizer("Fisher")
|
||||||
Facial_Recognition_Wrapper.face_recognition_inference("Fisher")
|
Facial_Recognition_Wrapper.face_recognition_inference("Fisher")
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue