Integrated hardware commands to Facial Recognition Software.

This commit is contained in:
Batuhan Berk Başoğlu 2020-11-14 16:38:19 -05:00
parent c5bf048621
commit cf228272a8
7 changed files with 170 additions and 177 deletions

View file

@ -7,11 +7,13 @@ import numpy as np
import Facial_Recognition_Render as fr import Facial_Recognition_Render as fr
import _pickle as cPickle import _pickle as cPickle
import glob import glob
'import Hardware.Motor' #Line 225-228
faceWidth = 320 faceWidth = 320
faceHeight = 320 faceHeight = 320
SKIP_FRAMES = 1 SKIP_FRAMES = 1
def alignFace(imFace, landmarks): def alignFace(imFace, landmarks):
l_x = landmarks[39][0] l_x = landmarks[39][0]
l_y = landmarks[39][1] l_y = landmarks[39][1]
@ -28,8 +30,8 @@ def alignFace(imFace, landmarks):
alignedImFace = cv2.warpAffine(imFace, rotMatrix, (imFace.shape[1], imFace.shape[0])) alignedImFace = cv2.warpAffine(imFace, rotMatrix, (imFace.shape[1], imFace.shape[0]))
return alignedImFace return alignedImFace
def face_detector_haarcascade(image):
def face_detector_haarcascade(image):
grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
resize_fx = 1 resize_fx = 1
@ -52,10 +54,11 @@ def face_detector_haarcascade(image):
return image return image
def face_detector_ssd(image):
def face_detector_ssd(image):
pwd = sys.path[0] pwd = sys.path[0]
net = cv2.dnn.readNetFromCaffe(pwd+"/Facial_models/deploy.prototxt", pwd+"/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel") net = cv2.dnn.readNetFromCaffe(pwd + "/Facial_models/deploy.prototxt",
pwd + "/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel")
resize = (300, 300) resize = (300, 300)
confidence_thres = 0.65 confidence_thres = 0.65
@ -81,6 +84,7 @@ def face_detector_ssd(image):
return image return image
def training_data_loader(): def training_data_loader():
imagesFolder = sys.path[0] + "/Facial_images/face_rec/train/" imagesFolder = sys.path[0] + "/Facial_images/face_rec/train/"
subfolders = [] subfolders = []
@ -137,8 +141,8 @@ def training_data_loader():
return imagesFaceTrain, labelsFaceTrain, labelsMap return imagesFaceTrain, labelsFaceTrain, labelsMap
def training_recognizer(rec_type):
def training_recognizer(rec_type):
imagesFaceTrain, labelsFaceTrain, labelsMap = training_data_loader() imagesFaceTrain, labelsFaceTrain, labelsMap = training_data_loader()
if (rec_type == 'LBPH'): if (rec_type == 'LBPH'):
@ -157,6 +161,7 @@ def training_recognizer(rec_type):
with open(sys.path[0] + '/Facial_models/labels_map.pkl', 'wb') as f: with open(sys.path[0] + '/Facial_models/labels_map.pkl', 'wb') as f:
cPickle.dump(labelsMap, f) cPickle.dump(labelsMap, f)
def face_recognition_inference(rec_type): def face_recognition_inference(rec_type):
# testFiles = glob.glob(sys.path[0]+'/Facial_test_images/face_rec/test/*.jpg') # testFiles = glob.glob(sys.path[0]+'/Facial_test_images/face_rec/test/*.jpg')
# testFiles.sort() # testFiles.sort()
@ -217,12 +222,15 @@ def face_recognition_inference(rec_type):
text = '{} {}%'.format(labelsMap[predictedLabel], round(score, 5)) text = '{} {}%'.format(labelsMap[predictedLabel], round(score, 5))
cv2.rectangle(original, (x1, y1), (x2, y2), (0, 255, 0), 5) cv2.rectangle(original, (x1, y1), (x2, y2), (0, 255, 0), 5)
cv2.putText(original, text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 3) cv2.putText(original, text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 3)
'Hardware.Motor.Motor.stop_motor()'
'Hardware.Motor.Motor.start_motor()'
'Hardware.Motor.Motor.stop_motor()'
'Hardware.Motor.Motor.start_alarm()'
cv2.imshow('Face Recognition Demo', original) cv2.imshow('Face Recognition Demo', original)
k = cv2.waitKey(10) k = cv2.waitKey(10)
cam.release() cam.release()
cv2.destroyAllWindows() cv2.destroyAllWindows()
@ -236,10 +244,6 @@ if __name__=="__main__":
elif (mode == 'test'): elif (mode == 'test'):
face_recognition_inference(rec_type) face_recognition_inference(rec_type)
# video process (keep it in case if needed) # video process (keep it in case if needed)
''' '''
cameraCapture = cv2.VideoCapture(1) cameraCapture = cv2.VideoCapture(1)
@ -274,6 +278,3 @@ if __name__=="__main__":
cv2.waitKey() cv2.waitKey()
cv2.destroyAllWindows() cv2.destroyAllWindows()
''' '''

View file

@ -1,105 +0,0 @@
import RPi.GPIO as GPIO
from time import sleep
class Motor:
print("Starting of the program")
def __init__(self):
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
#preset GPIO ports for 2 motors
self.Motor1 = {'EN': 25, 'input1': 24, 'input2': 23}
self.Motor2 = {'EN': 17, 'input1': 27, 'input2': 22}
# preset the port for buttons and alarm
GPIO.setup(5,GPIO.IN) # start motor button, initially True
GPIO.setup(13,GPIO.IN) # stop motor button, initially True
GPIO.setup(16,GPIO.IN) # start alarm button, initially True
GPIO.setup(26,GPIO.OUT) # alarm output
for x in self.Motor1:
GPIO.setup(self.Motor1[x], GPIO.OUT)
GPIO.setup(self.Motor2[x], GPIO.OUT)
#utilize PWM function, enable motors and frequency is 100Hz
self.EN1 = GPIO.PWM(self.Motor1['EN'], 100)
self.EN2 = GPIO.PWM(self.Motor2['EN'], 100)
self.EN1.start(0)
self.EN2.start(0)
#stop signals for motors and alarm
self.motorStop=False
self.alarmStop=False
def start_motor(self):
while (not self.motorStop) or (not GPIO.input(5)): #break the loop when motor stop signal is detected
print ("FORWARD MOTION")
self.motorStop=self.stop_motor()
self.EN1.ChangeDutyCycle(50)
self.EN2.ChangeDutyCycle(50)
GPIO.output(self.Motor1['input1'], GPIO.HIGH)
GPIO.output(self.Motor1['input2'], GPIO.LOW)
GPIO.output(self.Motor2['input1'], GPIO.HIGH)
GPIO.output(self.Motor2['input2'], GPIO.LOW)
GPIO.cleanup()
def stop_motor(self):
userStop=input("Stop the motor? choose between Y/N")
if (userStop=="Y") or (not GPIO.input(13)):
print("stopping motor...")
self.EN1.ChangeDutyCycle(0)
self.EN2.ChangeDutyCycle(0)
print("motor stops")
return True
elif userStop=="N":
return False
else:
self.stop_motor(self)
def start_alarm(self):
while (not self.alarmStop) or (not GPIO.input(16)):
self.alarmStop=self.stop_alarm()
GPIO.output(26,True)
GPIO.cleanup()
def stop_alarm(self):
stopRequest=input("Turn off the alarm? choose between Y/N")
if stopRequest=="Y":
print("Alarm turning off...")
GPIO.output(26,False)
print("Alarm is off")
return True
elif stopRequest=="N":
return False
else:
self.stop_alarm()
if __name__=="__main__":
#print("Execute function...")
motor1=Motor()
#motor1.start_motor()
motor1.start_alarm()

98
Hardware/Motor.py Normal file
View file

@ -0,0 +1,98 @@
import RPi.GPIO as GPIO
from time import sleep
class Motor:
def __init__(self):
print("Starting of the program")
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
# preset GPIO ports for 2 motors
self.Motor1 = {'EN': 25, 'input1': 24, 'input2': 23}
self.Motor2 = {'EN': 17, 'input1': 27, 'input2': 22}
# preset the port for buttons and alarm
GPIO.setup(5, GPIO.IN) # start motor button, initially True
GPIO.setup(13, GPIO.IN) # stop motor button, initially True
GPIO.setup(16, GPIO.IN) # start alarm button, initially True
GPIO.setup(26, GPIO.OUT) # alarm output
for x in self.Motor1:
GPIO.setup(self.Motor1[x], GPIO.OUT)
GPIO.setup(self.Motor2[x], GPIO.OUT)
# utilize PWM function, enable motors and frequency is 100Hz
self.EN1 = GPIO.PWM(self.Motor1['EN'], 100)
self.EN2 = GPIO.PWM(self.Motor2['EN'], 100)
self.EN1.start(0)
self.EN2.start(0)
# stop signals for motors and alarm
self.motorStop = False
self.alarmStop = False
def start_motor(self):
while (not self.motorStop) or (not GPIO.input(5)): # break the loop when motor stop signal is detected
print("FORWARD MOTION")
self.motorStop = self.stop_motor()
self.EN1.ChangeDutyCycle(50)
self.EN2.ChangeDutyCycle(50)
GPIO.output(self.Motor1['input1'], GPIO.HIGH)
GPIO.output(self.Motor1['input2'], GPIO.LOW)
GPIO.output(self.Motor2['input1'], GPIO.HIGH)
GPIO.output(self.Motor2['input2'], GPIO.LOW)
GPIO.cleanup()
def stop_motor(self):
userStop = input("Stop the motor? choose between Y/N")
if (userStop == "Y") or (not GPIO.input(13)):
print("stopping motor...")
self.EN1.ChangeDutyCycle(0)
self.EN2.ChangeDutyCycle(0)
print("motor stops")
return True
elif userStop == "N":
return False
else:
self.stop_motor(self)
def start_alarm(self):
while (not self.alarmStop) or (not GPIO.input(16)):
self.alarmStop = self.stop_alarm()
GPIO.output(26, True)
GPIO.cleanup()
def stop_alarm(self):
stopRequest = input("Turn off the alarm? choose between Y/N")
if stopRequest == "Y":
print("Alarm turning off...")
GPIO.output(26, False)
print("Alarm is off")
return True
elif stopRequest == "N":
return False
else:
self.stop_alarm()
if __name__ == "__main__":
# print("Execute function...")
motor1 = Motor()
# motor1.start_motor()
motor1.start_alarm()

Binary file not shown.

View file

@ -8,24 +8,23 @@ def start():
count = 0 count = 0
users = DBHelper.db.child("Users").get() users = DBHelper.db.child("Users").get()
try: try:
for user in users.each(): for x in users.each():
count = +1 count = +1
for x in range(20): for y in range(20):
if not os.path.isdir("Facial_images/face_rec/train/User_" + str(count)): if not os.path.isdir("Facial_images/face_rec/train/User_" + str(count)):
os.makedirs("Photos_of_Users/User_" + str(count)) os.makedirs("Photos_of_Users/User_" + str(count))
DBHelper.download_user_photo("User_" + str(count) + "/" + str(x) + ".jpg") DBHelper.download_user_photo("User_" + str(count) + "/" + str(y) + ".jpg")
except: except:
print("No Users are registered.") print("No Users are registered.")
count = 0 count = 0
try: try:
for user in users.each(): for x in users.each():
count = +1 count = +1
for x in range(20): for y in range(20):
if not os.path.isdir("Photos_of_Thieves/Thief_" + str(count)): if not os.path.isdir("Photos_of_Thieves/Thief_" + str(count)):
os.makedirs("Photos_of_Thieves/Thief_" + str(count)) os.makedirs("Photos_of_Thieves/Thief_" + str(count))
DBHelper.download_thief_photo("Thief_" + str(count) + "/" + str(x) + ".jpg") DBHelper.download_thief_photo("Thief_" + str(count) + "/" + str(y) + ".jpg")
except: except:
print("No Thieves for now.") print("No Thieves for now.")
Facial_Recognition_Wrapper.training_recognizer("Fisher") Facial_Recognition_Wrapper.training_recognizer("Fisher")
Facial_Recognition_Wrapper.face_recognition_inference("Fisher") Facial_Recognition_Wrapper.face_recognition_inference("Fisher")