Updated DB_Helper by adding firebase methods.
This commit is contained in:
parent
485cc3bbba
commit
c82121d036
1810 changed files with 537281 additions and 1 deletions
145
venv/Lib/site-packages/Crypto/Math/Numbers.py
Normal file
145
venv/Lib/site-packages/Crypto/Math/Numbers.py
Normal file
|
@ -0,0 +1,145 @@
|
|||
# ===================================================================
|
||||
#
|
||||
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in
|
||||
# the documentation and/or other materials provided with the
|
||||
# distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
# ===================================================================
|
||||
|
||||
"""Fast, arbitrary precision integers.
|
||||
|
||||
:undocumented: __package__
|
||||
"""
|
||||
|
||||
__all__ = ["Integer"]
|
||||
|
||||
from Crypto.Util.py3compat import *
|
||||
from Crypto import Random
|
||||
|
||||
try:
|
||||
from Crypto.Math._Numbers_gmp import Integer
|
||||
from Crypto.Math._Numbers_gmp import implementation as _implementation
|
||||
except (ImportError, OSError):
|
||||
from Crypto.Math._Numbers_int import Integer
|
||||
_implementation = { }
|
||||
|
||||
|
||||
def _random(**kwargs):
|
||||
"""Generate a random natural integer of a certain size.
|
||||
|
||||
:Keywords:
|
||||
exact_bits : positive integer
|
||||
The length in bits of the resulting random Integer number.
|
||||
The number is guaranteed to fulfil the relation:
|
||||
|
||||
2^bits > result >= 2^(bits - 1)
|
||||
|
||||
max_bits : positive integer
|
||||
The maximum length in bits of the resulting random Integer number.
|
||||
The number is guaranteed to fulfil the relation:
|
||||
|
||||
2^bits > result >=0
|
||||
|
||||
randfunc : callable
|
||||
A function that returns a random byte string. The length of the
|
||||
byte string is passed as parameter. Optional.
|
||||
If not provided (or ``None``), randomness is read from the system RNG.
|
||||
|
||||
:Return: a Integer object
|
||||
"""
|
||||
|
||||
exact_bits = kwargs.pop("exact_bits", None)
|
||||
max_bits = kwargs.pop("max_bits", None)
|
||||
randfunc = kwargs.pop("randfunc", None)
|
||||
|
||||
if randfunc is None:
|
||||
randfunc = Random.new().read
|
||||
|
||||
if exact_bits is None and max_bits is None:
|
||||
raise ValueError("Either 'exact_bits' or 'max_bits' must be specified")
|
||||
|
||||
if exact_bits is not None and max_bits is not None:
|
||||
raise ValueError("'exact_bits' and 'max_bits' are mutually exclusive")
|
||||
|
||||
bits = exact_bits or max_bits
|
||||
bytes_needed = ((bits - 1) // 8) + 1
|
||||
significant_bits_msb = 8 - (bytes_needed * 8 - bits)
|
||||
msb = bord(randfunc(1)[0])
|
||||
if exact_bits is not None:
|
||||
msb |= 1 << (significant_bits_msb - 1)
|
||||
msb &= (1 << significant_bits_msb) - 1
|
||||
|
||||
return Integer.from_bytes(bchr(msb) + randfunc(bytes_needed - 1))
|
||||
|
||||
|
||||
def _random_range(**kwargs):
|
||||
"""Generate a random integer within a given internal.
|
||||
|
||||
:Keywords:
|
||||
min_inclusive : integer
|
||||
The lower end of the interval (inclusive).
|
||||
max_inclusive : integer
|
||||
The higher end of the interval (inclusive).
|
||||
max_exclusive : integer
|
||||
The higher end of the interval (exclusive).
|
||||
randfunc : callable
|
||||
A function that returns a random byte string. The length of the
|
||||
byte string is passed as parameter. Optional.
|
||||
If not provided (or ``None``), randomness is read from the system RNG.
|
||||
:Returns:
|
||||
An Integer randomly taken in the given interval.
|
||||
"""
|
||||
|
||||
min_inclusive = kwargs.pop("min_inclusive", None)
|
||||
max_inclusive = kwargs.pop("max_inclusive", None)
|
||||
max_exclusive = kwargs.pop("max_exclusive", None)
|
||||
randfunc = kwargs.pop("randfunc", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError("Unknown keywords: " + str(kwargs.keys))
|
||||
if None not in (max_inclusive, max_exclusive):
|
||||
raise ValueError("max_inclusive and max_exclusive cannot be both"
|
||||
" specified")
|
||||
if max_exclusive is not None:
|
||||
max_inclusive = max_exclusive - 1
|
||||
if None in (min_inclusive, max_inclusive):
|
||||
raise ValueError("Missing keyword to identify the interval")
|
||||
|
||||
if randfunc is None:
|
||||
randfunc = Random.new().read
|
||||
|
||||
norm_maximum = max_inclusive - min_inclusive
|
||||
bits_needed = Integer(norm_maximum).size_in_bits()
|
||||
|
||||
norm_candidate = -1
|
||||
while not 0 <= norm_candidate <= norm_maximum:
|
||||
norm_candidate = _random(
|
||||
max_bits=bits_needed,
|
||||
randfunc=randfunc
|
||||
)
|
||||
return norm_candidate + min_inclusive
|
||||
|
||||
Integer.random = staticmethod(_random)
|
||||
Integer.random_range = staticmethod(_random_range)
|
355
venv/Lib/site-packages/Crypto/Math/Primality.py
Normal file
355
venv/Lib/site-packages/Crypto/Math/Primality.py
Normal file
|
@ -0,0 +1,355 @@
|
|||
# ===================================================================
|
||||
#
|
||||
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in
|
||||
# the documentation and/or other materials provided with the
|
||||
# distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
# ===================================================================
|
||||
|
||||
"""Functions to create and test prime numbers.
|
||||
|
||||
:undocumented: __package__
|
||||
"""
|
||||
|
||||
from Crypto.Math.Numbers import Integer
|
||||
from Crypto import Random
|
||||
|
||||
COMPOSITE = 0
|
||||
PROBABLY_PRIME = 1
|
||||
|
||||
|
||||
def miller_rabin_test(candidate, iterations, randfunc=None):
|
||||
"""Perform a Miller-Rabin primality test on an integer.
|
||||
|
||||
The test is specified in Section C.3.1 of `FIPS PUB 186-4`__.
|
||||
|
||||
:Parameters:
|
||||
candidate : integer
|
||||
The number to test for primality.
|
||||
iterations : integer
|
||||
The maximum number of iterations to perform before
|
||||
declaring a candidate a probable prime.
|
||||
randfunc : callable
|
||||
An RNG function where bases are taken from.
|
||||
|
||||
:Returns:
|
||||
``Primality.COMPOSITE`` or ``Primality.PROBABLY_PRIME``.
|
||||
|
||||
.. __: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
|
||||
"""
|
||||
|
||||
if not isinstance(candidate, Integer):
|
||||
candidate = Integer(candidate)
|
||||
|
||||
if candidate.is_even():
|
||||
return COMPOSITE
|
||||
|
||||
one = Integer(1)
|
||||
minus_one = Integer(candidate - 1)
|
||||
|
||||
if randfunc is None:
|
||||
randfunc = Random.new().read
|
||||
|
||||
# Step 1 and 2
|
||||
m = Integer(minus_one)
|
||||
a = 0
|
||||
while m.is_even():
|
||||
m >>= 1
|
||||
a += 1
|
||||
|
||||
# Skip step 3
|
||||
|
||||
# Step 4
|
||||
for i in range(iterations):
|
||||
|
||||
# Step 4.1-2
|
||||
base = 1
|
||||
while base in (one, minus_one):
|
||||
base = Integer.random_range(min_inclusive=2,
|
||||
max_inclusive=candidate - 2)
|
||||
assert(2 <= base <= candidate - 2)
|
||||
|
||||
# Step 4.3-4.4
|
||||
z = pow(base, m, candidate)
|
||||
if z in (one, minus_one):
|
||||
continue
|
||||
|
||||
# Step 4.5
|
||||
for j in range(1, a):
|
||||
z = pow(z, 2, candidate)
|
||||
if z == minus_one:
|
||||
break
|
||||
if z == one:
|
||||
return COMPOSITE
|
||||
else:
|
||||
return COMPOSITE
|
||||
|
||||
# Step 5
|
||||
return PROBABLY_PRIME
|
||||
|
||||
|
||||
def lucas_test(candidate):
|
||||
"""Perform a Lucas primality test on an integer.
|
||||
|
||||
The test is specified in Section C.3.3 of `FIPS PUB 186-4`__.
|
||||
|
||||
:Parameters:
|
||||
candidate : integer
|
||||
The number to test for primality.
|
||||
|
||||
:Returns:
|
||||
``Primality.COMPOSITE`` or ``Primality.PROBABLY_PRIME``.
|
||||
|
||||
.. __: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
|
||||
"""
|
||||
|
||||
if not isinstance(candidate, Integer):
|
||||
candidate = Integer(candidate)
|
||||
|
||||
# Step 1
|
||||
if candidate.is_even() or candidate.is_perfect_square():
|
||||
return COMPOSITE
|
||||
|
||||
# Step 2
|
||||
def alternate():
|
||||
sgn = 1
|
||||
value = 5
|
||||
for x in range(10):
|
||||
yield sgn * value
|
||||
sgn, value = -sgn, value + 2
|
||||
|
||||
for D in alternate():
|
||||
js = Integer.jacobi_symbol(D, candidate)
|
||||
if js == 0:
|
||||
return COMPOSITE
|
||||
if js == -1:
|
||||
break
|
||||
else:
|
||||
return COMPOSITE
|
||||
# Found D. P=1 and Q=(1-D)/4 (note that Q is guaranteed to be an integer)
|
||||
|
||||
# Step 3
|
||||
# This is \delta(n) = n - jacobi(D/n)
|
||||
K = candidate + 1
|
||||
# Step 4
|
||||
r = K.size_in_bits() - 1
|
||||
# Step 5
|
||||
# U_1=1 and V_1=P
|
||||
U_i = Integer(1)
|
||||
V_i = Integer(1)
|
||||
U_temp = Integer(0)
|
||||
V_temp = Integer(0)
|
||||
# Step 6
|
||||
for i in range(r - 1, -1, -1):
|
||||
# Square
|
||||
# U_temp = U_i * V_i % candidate
|
||||
U_temp.set(U_i)
|
||||
U_temp *= V_i
|
||||
U_temp %= candidate
|
||||
# V_temp = (((V_i ** 2 + (U_i ** 2 * D)) * K) >> 1) % candidate
|
||||
V_temp.set(U_i)
|
||||
V_temp *= U_i
|
||||
V_temp *= D
|
||||
V_temp.multiply_accumulate(V_i, V_i)
|
||||
if V_temp.is_odd():
|
||||
V_temp += candidate
|
||||
V_temp >>= 1
|
||||
V_temp %= candidate
|
||||
# Multiply
|
||||
if K.get_bit(i):
|
||||
# U_i = (((U_temp + V_temp) * K) >> 1) % candidate
|
||||
U_i.set(U_temp)
|
||||
U_i += V_temp
|
||||
if U_i.is_odd():
|
||||
U_i += candidate
|
||||
U_i >>= 1
|
||||
U_i %= candidate
|
||||
# V_i = (((V_temp + U_temp * D) * K) >> 1) % candidate
|
||||
V_i.set(V_temp)
|
||||
V_i.multiply_accumulate(U_temp, D)
|
||||
if V_i.is_odd():
|
||||
V_i += candidate
|
||||
V_i >>= 1
|
||||
V_i %= candidate
|
||||
else:
|
||||
U_i.set(U_temp)
|
||||
V_i.set(V_temp)
|
||||
# Step 7
|
||||
if U_i == 0:
|
||||
return PROBABLY_PRIME
|
||||
return COMPOSITE
|
||||
|
||||
|
||||
from Crypto.Util.number import sieve_base as _sieve_base
|
||||
## The optimal number of small primes to use for the sieve
|
||||
## is probably dependent on the platform and the candidate size
|
||||
_sieve_base = _sieve_base[:100]
|
||||
|
||||
|
||||
def test_probable_prime(candidate, randfunc=None):
|
||||
"""Test if a number is prime.
|
||||
|
||||
A number is qualified as prime if it passes a certain
|
||||
number of Miller-Rabin tests (dependent on the size
|
||||
of the number, but such that probability of a false
|
||||
positive is less than 10^-30) and a single Lucas test.
|
||||
|
||||
For instance, a 1024-bit candidate will need to pass
|
||||
4 Miller-Rabin tests.
|
||||
|
||||
:Parameters:
|
||||
candidate : integer
|
||||
The number to test for primality.
|
||||
randfunc : callable
|
||||
The routine to draw random bytes from to select Miller-Rabin bases.
|
||||
:Returns:
|
||||
``PROBABLE_PRIME`` if the number if prime with very high probability.
|
||||
``COMPOSITE`` if the number is a composite.
|
||||
For efficiency reasons, ``COMPOSITE`` is also returned for small primes.
|
||||
"""
|
||||
|
||||
if randfunc is None:
|
||||
randfunc = Random.new().read
|
||||
|
||||
if not isinstance(candidate, Integer):
|
||||
candidate = Integer(candidate)
|
||||
|
||||
# First, check trial division by the smallest primes
|
||||
try:
|
||||
list(map(candidate.fail_if_divisible_by, _sieve_base))
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
# These are the number of Miller-Rabin iterations s.t. p(k, t) < 1E-30,
|
||||
# with p(k, t) being the probability that a randomly chosen k-bit number
|
||||
# is composite but still survives t MR iterations.
|
||||
mr_ranges = ((220, 30), (280, 20), (390, 15), (512, 10),
|
||||
(620, 7), (740, 6), (890, 5), (1200, 4),
|
||||
(1700, 3), (3700, 2))
|
||||
|
||||
bit_size = candidate.size_in_bits()
|
||||
try:
|
||||
mr_iterations = list([x for x in mr_ranges if bit_size < x[0]])[0][1]
|
||||
except IndexError:
|
||||
mr_iterations = 1
|
||||
|
||||
if miller_rabin_test(candidate, mr_iterations,
|
||||
randfunc=randfunc) == COMPOSITE:
|
||||
return COMPOSITE
|
||||
if lucas_test(candidate) == COMPOSITE:
|
||||
return COMPOSITE
|
||||
return PROBABLY_PRIME
|
||||
|
||||
|
||||
def generate_probable_prime(**kwargs):
|
||||
"""Generate a random probable prime.
|
||||
|
||||
The prime will not have any specific properties
|
||||
(e.g. it will not be a *strong* prime).
|
||||
|
||||
Random numbers are evaluated for primality until one
|
||||
passes all tests, consisting of a certain number of
|
||||
Miller-Rabin tests with random bases followed by
|
||||
a single Lucas test.
|
||||
|
||||
The number of Miller-Rabin iterations is chosen such that
|
||||
the probability that the output number is a non-prime is
|
||||
less than 1E-30 (roughly 2^{-100}).
|
||||
|
||||
This approach is compliant to `FIPS PUB 186-4`__.
|
||||
|
||||
:Keywords:
|
||||
exact_bits : integer
|
||||
The desired size in bits of the probable prime.
|
||||
It must be at least 160.
|
||||
randfunc : callable
|
||||
An RNG function where candidate primes are taken from.
|
||||
prime_filter : callable
|
||||
A function that takes an Integer as parameter and returns
|
||||
True if the number can be passed to further primality tests,
|
||||
False if it should be immediately discarded.
|
||||
|
||||
:Return:
|
||||
A probable prime in the range 2^exact_bits > p > 2^(exact_bits-1).
|
||||
|
||||
.. __: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
|
||||
"""
|
||||
|
||||
exact_bits = kwargs.pop("exact_bits", None)
|
||||
randfunc = kwargs.pop("randfunc", None)
|
||||
prime_filter = kwargs.pop("prime_filter", lambda x: True)
|
||||
if kwargs:
|
||||
print("Unknown parameters:", list(kwargs.keys()))
|
||||
|
||||
if exact_bits is None:
|
||||
raise ValueError("Missing exact_bits parameter")
|
||||
if exact_bits < 160:
|
||||
raise ValueError("Prime number is not big enough.")
|
||||
|
||||
if randfunc is None:
|
||||
randfunc = Random.new().read
|
||||
|
||||
result = COMPOSITE
|
||||
while result == COMPOSITE:
|
||||
candidate = Integer.random(exact_bits=exact_bits,
|
||||
randfunc=randfunc) | 1
|
||||
if not prime_filter(candidate):
|
||||
continue
|
||||
result = test_probable_prime(candidate, randfunc)
|
||||
return candidate
|
||||
|
||||
|
||||
def generate_probable_safe_prime(**kwargs):
|
||||
"""Generate a random, probable safe prime.
|
||||
|
||||
Note this operation is much slower than generating a simple prime.
|
||||
|
||||
:Keywords:
|
||||
exact_bits : integer
|
||||
The desired size in bits of the probable safe prime.
|
||||
randfunc : callable
|
||||
An RNG function where candidate primes are taken from.
|
||||
|
||||
:Return:
|
||||
A probable safe prime in the range
|
||||
2^exact_bits > p > 2^(exact_bits-1).
|
||||
"""
|
||||
|
||||
exact_bits = kwargs.pop("exact_bits", None)
|
||||
randfunc = kwargs.pop("randfunc", None)
|
||||
if kwargs:
|
||||
print("Unknown parameters:", list(kwargs.keys()))
|
||||
|
||||
if randfunc is None:
|
||||
randfunc = Random.new().read
|
||||
|
||||
result = COMPOSITE
|
||||
while result == COMPOSITE:
|
||||
q = generate_probable_prime(exact_bits=exact_bits - 1, randfunc=randfunc)
|
||||
candidate = q * 2 + 1
|
||||
if candidate.size_in_bits() != exact_bits:
|
||||
continue
|
||||
result = test_probable_prime(candidate, randfunc=randfunc)
|
||||
return candidate
|
720
venv/Lib/site-packages/Crypto/Math/_Numbers_gmp.py
Normal file
720
venv/Lib/site-packages/Crypto/Math/_Numbers_gmp.py
Normal file
|
@ -0,0 +1,720 @@
|
|||
# ===================================================================
|
||||
#
|
||||
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in
|
||||
# the documentation and/or other materials provided with the
|
||||
# distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
# ===================================================================
|
||||
|
||||
from Crypto.Util.py3compat import tobytes, b, bchr
|
||||
|
||||
from Crypto.Util._raw_api import (backend, load_lib,
|
||||
get_raw_buffer, get_c_string,
|
||||
null_pointer, create_string_buffer,
|
||||
c_ulong, c_ulonglong, c_size_t)
|
||||
|
||||
# GMP uses unsigned longs in several functions prototypes.
|
||||
# On a UNIX 64 bit platform that type takes 64 bits but in Windows 64
|
||||
# it is still 32 bits.
|
||||
# The intention of the MPIR developers is to maintain binary compatibility
|
||||
# so they probably assumed that that GMP would compile on Windows 64
|
||||
# by treating it as a UNIX platform.
|
||||
|
||||
gmp_defs_common = """
|
||||
typedef struct { int a; int b; void *c; } MPZ;
|
||||
typedef MPZ mpz_t[1];
|
||||
typedef UNIX_ULONG mp_bitcnt_t;
|
||||
void __gmpz_init (mpz_t x);
|
||||
void __gmpz_init_set (mpz_t rop, const mpz_t op);
|
||||
void __gmpz_init_set_ui (mpz_t rop, UNIX_ULONG op);
|
||||
int __gmp_sscanf (const char *s, const char *fmt, ...);
|
||||
void __gmpz_set (mpz_t rop, const mpz_t op);
|
||||
int __gmp_snprintf (char *buf, size_t size, const char *fmt, ...);
|
||||
void __gmpz_add (mpz_t rop, const mpz_t op1, const mpz_t op2);
|
||||
void __gmpz_add_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
|
||||
void __gmpz_sub_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
|
||||
void __gmpz_addmul (mpz_t rop, const mpz_t op1, const mpz_t op2);
|
||||
void __gmpz_addmul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
|
||||
void __gmpz_submul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
|
||||
void __gmpz_import (mpz_t rop, size_t count, int order, size_t size,
|
||||
int endian, size_t nails, const void *op);
|
||||
void * __gmpz_export (void *rop, size_t *countp, int order,
|
||||
size_t size,
|
||||
int endian, size_t nails, const mpz_t op);
|
||||
size_t __gmpz_sizeinbase (const mpz_t op, int base);
|
||||
void __gmpz_sub (mpz_t rop, const mpz_t op1, const mpz_t op2);
|
||||
void __gmpz_mul (mpz_t rop, const mpz_t op1, const mpz_t op2);
|
||||
void __gmpz_mul_ui (mpz_t rop, const mpz_t op1, UNIX_ULONG op2);
|
||||
int __gmpz_cmp (const mpz_t op1, const mpz_t op2);
|
||||
void __gmpz_powm (mpz_t rop, const mpz_t base, const mpz_t exp, const
|
||||
mpz_t mod);
|
||||
void __gmpz_powm_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp,
|
||||
const mpz_t mod);
|
||||
void __gmpz_pow_ui (mpz_t rop, const mpz_t base, UNIX_ULONG exp);
|
||||
void __gmpz_sqrt(mpz_t rop, const mpz_t op);
|
||||
void __gmpz_mod (mpz_t r, const mpz_t n, const mpz_t d);
|
||||
void __gmpz_neg (mpz_t rop, const mpz_t op);
|
||||
void __gmpz_abs (mpz_t rop, const mpz_t op);
|
||||
void __gmpz_and (mpz_t rop, const mpz_t op1, const mpz_t op2);
|
||||
void __gmpz_ior (mpz_t rop, const mpz_t op1, const mpz_t op2);
|
||||
void __gmpz_clear (mpz_t x);
|
||||
void __gmpz_tdiv_q_2exp (mpz_t q, const mpz_t n, mp_bitcnt_t b);
|
||||
void __gmpz_fdiv_q (mpz_t q, const mpz_t n, const mpz_t d);
|
||||
void __gmpz_mul_2exp (mpz_t rop, const mpz_t op1, mp_bitcnt_t op2);
|
||||
int __gmpz_tstbit (const mpz_t op, mp_bitcnt_t bit_index);
|
||||
int __gmpz_perfect_square_p (const mpz_t op);
|
||||
int __gmpz_jacobi (const mpz_t a, const mpz_t b);
|
||||
void __gmpz_gcd (mpz_t rop, const mpz_t op1, const mpz_t op2);
|
||||
UNIX_ULONG __gmpz_gcd_ui (mpz_t rop, const mpz_t op1,
|
||||
UNIX_ULONG op2);
|
||||
void __gmpz_lcm (mpz_t rop, const mpz_t op1, const mpz_t op2);
|
||||
int __gmpz_invert (mpz_t rop, const mpz_t op1, const mpz_t op2);
|
||||
int __gmpz_divisible_p (const mpz_t n, const mpz_t d);
|
||||
int __gmpz_divisible_ui_p (const mpz_t n, UNIX_ULONG d);
|
||||
"""
|
||||
|
||||
try:
|
||||
gmp_defs = "typedef unsigned long UNIX_ULONG;" + gmp_defs_common
|
||||
lib = load_lib("gmp", gmp_defs)
|
||||
implementation = { "library":"gmp", "api":backend }
|
||||
except OSError:
|
||||
import platform
|
||||
bits, linkage = platform.architecture()
|
||||
if bits.startswith("64") and linkage.startswith("Win"):
|
||||
# MPIR uses unsigned long long where GMP uses unsigned long
|
||||
# (LLP64 vs LP64)
|
||||
gmp_defs = "typedef unsigned long long UNIX_ULONG;" + gmp_defs_common
|
||||
c_ulong = c_ulonglong
|
||||
# Try to load private MPIR lib first (wheel)
|
||||
try:
|
||||
from Crypto.Util._file_system import pycryptodome_filename
|
||||
|
||||
mpir_dll = pycryptodome_filename(("Crypto", "Math"), "mpir.dll")
|
||||
lib = load_lib(mpir_dll, gmp_defs)
|
||||
except OSError:
|
||||
lib = load_lib("mpir", gmp_defs)
|
||||
|
||||
implementation = { "library":"mpir", "api":backend }
|
||||
|
||||
# In order to create a function that returns a pointer to
|
||||
# a new MPZ structure, we need to break the abstraction
|
||||
# and know exactly what ffi backend we have
|
||||
if implementation["api"] == "ctypes":
|
||||
from ctypes import Structure, c_int, c_void_p, byref
|
||||
|
||||
class _MPZ(Structure):
|
||||
_fields_ = [('_mp_alloc', c_int),
|
||||
('_mp_size', c_int),
|
||||
('_mp_d', c_void_p)]
|
||||
|
||||
def new_mpz():
|
||||
return byref(_MPZ())
|
||||
|
||||
else:
|
||||
# We are using CFFI
|
||||
from Crypto.Util._raw_api import ffi
|
||||
|
||||
def new_mpz():
|
||||
return ffi.new("MPZ*")
|
||||
|
||||
|
||||
# Unfortunately, all symbols exported by the GMP library start with "__"
|
||||
# and have no trailing underscore.
|
||||
# You cannot directly refer to them as members of the ctypes' library
|
||||
# object from within any class because Python will replace the double
|
||||
# underscore with "_classname_".
|
||||
|
||||
|
||||
class _GMP(object):
|
||||
pass
|
||||
_gmp = _GMP()
|
||||
|
||||
_gmp = _GMP()
|
||||
_gmp.mpz_init = lib.__gmpz_init
|
||||
_gmp.mpz_init_set = lib.__gmpz_init_set
|
||||
_gmp.mpz_init_set_ui = lib.__gmpz_init_set_ui
|
||||
_gmp.mpz_set = lib.__gmpz_set
|
||||
_gmp.gmp_snprintf = lib.__gmp_snprintf
|
||||
_gmp.gmp_sscanf = lib.__gmp_sscanf
|
||||
_gmp.mpz_add = lib.__gmpz_add
|
||||
_gmp.mpz_add_ui = lib.__gmpz_add_ui
|
||||
_gmp.mpz_sub_ui = lib.__gmpz_sub_ui
|
||||
_gmp.mpz_addmul = lib.__gmpz_addmul
|
||||
_gmp.mpz_addmul_ui = lib.__gmpz_addmul_ui
|
||||
_gmp.mpz_submul_ui = lib.__gmpz_submul_ui
|
||||
_gmp.mpz_import = lib.__gmpz_import
|
||||
_gmp.mpz_export = lib.__gmpz_export
|
||||
_gmp.mpz_sizeinbase = lib.__gmpz_sizeinbase
|
||||
_gmp.mpz_sub = lib.__gmpz_sub
|
||||
_gmp.mpz_mul = lib.__gmpz_mul
|
||||
_gmp.mpz_mul_ui = lib.__gmpz_mul_ui
|
||||
_gmp.mpz_cmp = lib.__gmpz_cmp
|
||||
_gmp.mpz_powm = lib.__gmpz_powm
|
||||
_gmp.mpz_powm_ui = lib.__gmpz_powm_ui
|
||||
_gmp.mpz_pow_ui = lib.__gmpz_pow_ui
|
||||
_gmp.mpz_sqrt = lib.__gmpz_sqrt
|
||||
_gmp.mpz_mod = lib.__gmpz_mod
|
||||
_gmp.mpz_neg = lib.__gmpz_neg
|
||||
_gmp.mpz_abs = lib.__gmpz_abs
|
||||
_gmp.mpz_and = lib.__gmpz_and
|
||||
_gmp.mpz_ior = lib.__gmpz_ior
|
||||
_gmp.mpz_clear = lib.__gmpz_clear
|
||||
_gmp.mpz_tdiv_q_2exp = lib.__gmpz_tdiv_q_2exp
|
||||
_gmp.mpz_fdiv_q = lib.__gmpz_fdiv_q
|
||||
_gmp.mpz_mul_2exp = lib.__gmpz_mul_2exp
|
||||
_gmp.mpz_tstbit = lib.__gmpz_tstbit
|
||||
_gmp.mpz_perfect_square_p = lib.__gmpz_perfect_square_p
|
||||
_gmp.mpz_jacobi = lib.__gmpz_jacobi
|
||||
_gmp.mpz_gcd = lib.__gmpz_gcd
|
||||
_gmp.mpz_gcd_ui = lib.__gmpz_gcd_ui
|
||||
_gmp.mpz_lcm = lib.__gmpz_lcm
|
||||
_gmp.mpz_invert = lib.__gmpz_invert
|
||||
_gmp.mpz_divisible_p = lib.__gmpz_divisible_p
|
||||
_gmp.mpz_divisible_ui_p = lib.__gmpz_divisible_ui_p
|
||||
|
||||
|
||||
class Integer(object):
|
||||
"""A fast, arbitrary precision integer"""
|
||||
|
||||
_zero_mpz_p = new_mpz()
|
||||
_gmp.mpz_init_set_ui(_zero_mpz_p, c_ulong(0))
|
||||
|
||||
def __init__(self, value):
|
||||
"""Initialize the integer to the given value."""
|
||||
|
||||
self._mpz_p = new_mpz()
|
||||
self._initialized = False
|
||||
|
||||
if isinstance(value, float):
|
||||
raise ValueError("A floating point type is not a natural number")
|
||||
|
||||
self._initialized = True
|
||||
if isinstance(value, int):
|
||||
_gmp.mpz_init(self._mpz_p)
|
||||
result = _gmp.gmp_sscanf(tobytes(str(value)), b("%Zd"), self._mpz_p)
|
||||
if result != 1:
|
||||
raise ValueError("Error converting '%d'" % value)
|
||||
else:
|
||||
_gmp.mpz_init_set(self._mpz_p, value._mpz_p)
|
||||
|
||||
# Conversions
|
||||
def __int__(self):
|
||||
# buf will contain the integer encoded in decimal plus the trailing
|
||||
# zero, and possibly the negative sign.
|
||||
# dig10(x) < log10(x) + 1 = log2(x)/log2(10) + 1 < log2(x)/3 + 1
|
||||
buf_len = _gmp.mpz_sizeinbase(self._mpz_p, 2) // 3 + 3
|
||||
buf = create_string_buffer(buf_len)
|
||||
|
||||
_gmp.gmp_snprintf(buf, c_size_t(buf_len), b("%Zd"), self._mpz_p)
|
||||
return int(get_c_string(buf))
|
||||
|
||||
def __str__(self):
|
||||
return str(int(self))
|
||||
|
||||
def __repr__(self):
|
||||
return "Integer(%s)" % str(self)
|
||||
|
||||
def to_bytes(self, block_size=0):
|
||||
"""Convert the number into a byte string.
|
||||
|
||||
This method encodes the number in network order and prepends
|
||||
as many zero bytes as required. It only works for non-negative
|
||||
values.
|
||||
|
||||
:Parameters:
|
||||
block_size : integer
|
||||
The exact size the output byte string must have.
|
||||
If zero, the string has the minimal length.
|
||||
:Returns:
|
||||
A byte string.
|
||||
:Raise ValueError:
|
||||
If the value is negative or if ``block_size`` is
|
||||
provided and the length of the byte string would exceed it.
|
||||
"""
|
||||
|
||||
if self < 0:
|
||||
raise ValueError("Conversion only valid for non-negative numbers")
|
||||
|
||||
buf_len = (_gmp.mpz_sizeinbase(self._mpz_p, 2) + 7) // 8
|
||||
if buf_len > block_size > 0:
|
||||
raise ValueError("Number is too big to convert to byte string"
|
||||
"of prescribed length")
|
||||
buf = create_string_buffer(buf_len)
|
||||
|
||||
_gmp.mpz_export(
|
||||
buf,
|
||||
null_pointer, # Ignore countp
|
||||
1, # Big endian
|
||||
c_size_t(1), # Each word is 1 byte long
|
||||
0, # Endianess within a word - not relevant
|
||||
c_size_t(0), # No nails
|
||||
self._mpz_p)
|
||||
|
||||
return bchr(0) * max(0, block_size - buf_len) + get_raw_buffer(buf)
|
||||
|
||||
@staticmethod
|
||||
def from_bytes(byte_string):
|
||||
"""Convert a byte string into a number.
|
||||
|
||||
:Parameters:
|
||||
byte_string : byte string
|
||||
The input number, encoded in network order.
|
||||
It can only be non-negative.
|
||||
:Return:
|
||||
The ``Integer`` object carrying the same value as the input.
|
||||
"""
|
||||
result = Integer(0)
|
||||
_gmp.mpz_import(
|
||||
result._mpz_p,
|
||||
c_size_t(len(byte_string)), # Amount of words to read
|
||||
1, # Big endian
|
||||
c_size_t(1), # Each word is 1 byte long
|
||||
0, # Endianess within a word - not relevant
|
||||
c_size_t(0), # No nails
|
||||
byte_string)
|
||||
return result
|
||||
|
||||
# Relations
|
||||
def _apply_and_return(self, func, term):
|
||||
if not isinstance(term, Integer):
|
||||
term = Integer(term)
|
||||
return func(self._mpz_p, term._mpz_p)
|
||||
|
||||
def __eq__(self, term):
|
||||
if not isinstance(term, (Integer, int)):
|
||||
return False
|
||||
return self._apply_and_return(_gmp.mpz_cmp, term) == 0
|
||||
|
||||
def __ne__(self, term):
|
||||
if not isinstance(term, (Integer, int)):
|
||||
return True
|
||||
return self._apply_and_return(_gmp.mpz_cmp, term) != 0
|
||||
|
||||
def __lt__(self, term):
|
||||
return self._apply_and_return(_gmp.mpz_cmp, term) < 0
|
||||
|
||||
def __le__(self, term):
|
||||
return self._apply_and_return(_gmp.mpz_cmp, term) <= 0
|
||||
|
||||
def __gt__(self, term):
|
||||
return self._apply_and_return(_gmp.mpz_cmp, term) > 0
|
||||
|
||||
def __ge__(self, term):
|
||||
return self._apply_and_return(_gmp.mpz_cmp, term) >= 0
|
||||
|
||||
def __bool__(self):
|
||||
return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) != 0
|
||||
|
||||
def is_negative(self):
|
||||
return _gmp.mpz_cmp(self._mpz_p, self._zero_mpz_p) < 0
|
||||
|
||||
# Arithmetic operations
|
||||
def __add__(self, term):
|
||||
result = Integer(0)
|
||||
if not isinstance(term, Integer):
|
||||
term = Integer(term)
|
||||
_gmp.mpz_add(result._mpz_p,
|
||||
self._mpz_p,
|
||||
term._mpz_p)
|
||||
return result
|
||||
|
||||
def __sub__(self, term):
|
||||
result = Integer(0)
|
||||
if not isinstance(term, Integer):
|
||||
term = Integer(term)
|
||||
_gmp.mpz_sub(result._mpz_p,
|
||||
self._mpz_p,
|
||||
term._mpz_p)
|
||||
return result
|
||||
|
||||
def __mul__(self, term):
|
||||
result = Integer(0)
|
||||
if not isinstance(term, Integer):
|
||||
term = Integer(term)
|
||||
_gmp.mpz_mul(result._mpz_p,
|
||||
self._mpz_p,
|
||||
term._mpz_p)
|
||||
return result
|
||||
|
||||
def __floordiv__(self, divisor):
|
||||
if not isinstance(divisor, Integer):
|
||||
divisor = Integer(divisor)
|
||||
if _gmp.mpz_cmp(divisor._mpz_p,
|
||||
self._zero_mpz_p) == 0:
|
||||
raise ZeroDivisionError("Division by zero")
|
||||
result = Integer(0)
|
||||
_gmp.mpz_fdiv_q(result._mpz_p,
|
||||
self._mpz_p,
|
||||
divisor._mpz_p)
|
||||
return result
|
||||
|
||||
def __mod__(self, divisor):
|
||||
if not isinstance(divisor, Integer):
|
||||
divisor = Integer(divisor)
|
||||
comp = _gmp.mpz_cmp(divisor._mpz_p,
|
||||
self._zero_mpz_p)
|
||||
if comp == 0:
|
||||
raise ZeroDivisionError("Division by zero")
|
||||
if comp < 0:
|
||||
raise ValueError("Modulus must be positive")
|
||||
result = Integer(0)
|
||||
_gmp.mpz_mod(result._mpz_p,
|
||||
self._mpz_p,
|
||||
divisor._mpz_p)
|
||||
return result
|
||||
|
||||
def inplace_pow(self, exponent, modulus=None):
|
||||
|
||||
if modulus is None:
|
||||
if exponent < 0:
|
||||
raise ValueError("Exponent must not be negative")
|
||||
|
||||
# Normal exponentiation
|
||||
if exponent > 256:
|
||||
raise ValueError("Exponent is too big")
|
||||
_gmp.mpz_pow_ui(self._mpz_p,
|
||||
self._mpz_p, # Base
|
||||
c_ulong(int(exponent))
|
||||
)
|
||||
else:
|
||||
# Modular exponentiation
|
||||
if not isinstance(modulus, Integer):
|
||||
modulus = Integer(modulus)
|
||||
if not modulus:
|
||||
raise ZeroDivisionError("Division by zero")
|
||||
if modulus.is_negative():
|
||||
raise ValueError("Modulus must be positive")
|
||||
if isinstance(exponent, int):
|
||||
if exponent < 0:
|
||||
raise ValueError("Exponent must not be negative")
|
||||
if exponent < 65536:
|
||||
_gmp.mpz_powm_ui(self._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(exponent),
|
||||
modulus._mpz_p)
|
||||
return self
|
||||
exponent = Integer(exponent)
|
||||
elif exponent.is_negative():
|
||||
raise ValueError("Exponent must not be negative")
|
||||
_gmp.mpz_powm(self._mpz_p,
|
||||
self._mpz_p,
|
||||
exponent._mpz_p,
|
||||
modulus._mpz_p)
|
||||
return self
|
||||
|
||||
def __pow__(self, exponent, modulus=None):
|
||||
result = Integer(self)
|
||||
return result.inplace_pow(exponent, modulus)
|
||||
|
||||
def __abs__(self):
|
||||
result = Integer(0)
|
||||
_gmp.mpz_abs(result._mpz_p, self._mpz_p)
|
||||
return result
|
||||
|
||||
def sqrt(self):
|
||||
"""Return the largest Integer that does not
|
||||
exceed the square root"""
|
||||
|
||||
if self < 0:
|
||||
raise ValueError("Square root of negative value")
|
||||
result = Integer(0)
|
||||
_gmp.mpz_sqrt(result._mpz_p,
|
||||
self._mpz_p)
|
||||
return result
|
||||
|
||||
def __iadd__(self, term):
|
||||
if isinstance(term, int):
|
||||
if 0 <= term < 65536:
|
||||
_gmp.mpz_add_ui(self._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(term))
|
||||
return self
|
||||
if -65535 < term < 0:
|
||||
_gmp.mpz_sub_ui(self._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(-term))
|
||||
return self
|
||||
term = Integer(term)
|
||||
_gmp.mpz_add(self._mpz_p,
|
||||
self._mpz_p,
|
||||
term._mpz_p)
|
||||
return self
|
||||
|
||||
def __isub__(self, term):
|
||||
if isinstance(term, int):
|
||||
if 0 <= term < 65536:
|
||||
_gmp.mpz_sub_ui(self._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(term))
|
||||
return self
|
||||
if -65535 < term < 0:
|
||||
_gmp.mpz_add_ui(self._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(-term))
|
||||
return self
|
||||
term = Integer(term)
|
||||
_gmp.mpz_sub(self._mpz_p,
|
||||
self._mpz_p,
|
||||
term._mpz_p)
|
||||
return self
|
||||
|
||||
def __imul__(self, term):
|
||||
if isinstance(term, int):
|
||||
if 0 <= term < 65536:
|
||||
_gmp.mpz_mul_ui(self._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(term))
|
||||
return self
|
||||
if -65535 < term < 0:
|
||||
_gmp.mpz_mul_ui(self._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(-term))
|
||||
_gmp.mpz_neg(self._mpz_p, self._mpz_p)
|
||||
return self
|
||||
term = Integer(term)
|
||||
_gmp.mpz_mul(self._mpz_p,
|
||||
self._mpz_p,
|
||||
term._mpz_p)
|
||||
return self
|
||||
|
||||
def __imod__(self, divisor):
|
||||
if not isinstance(divisor, Integer):
|
||||
divisor = Integer(divisor)
|
||||
comp = _gmp.mpz_cmp(divisor._mpz_p,
|
||||
divisor._zero_mpz_p)
|
||||
if comp == 0:
|
||||
raise ZeroDivisionError("Division by zero")
|
||||
if comp < 0:
|
||||
raise ValueError("Modulus must be positive")
|
||||
_gmp.mpz_mod(self._mpz_p,
|
||||
self._mpz_p,
|
||||
divisor._mpz_p)
|
||||
return self
|
||||
|
||||
# Boolean/bit operations
|
||||
def __and__(self, term):
|
||||
result = Integer(0)
|
||||
if not isinstance(term, Integer):
|
||||
term = Integer(term)
|
||||
_gmp.mpz_and(result._mpz_p,
|
||||
self._mpz_p,
|
||||
term._mpz_p)
|
||||
return result
|
||||
|
||||
def __or__(self, term):
|
||||
result = Integer(0)
|
||||
if not isinstance(term, Integer):
|
||||
term = Integer(term)
|
||||
_gmp.mpz_ior(result._mpz_p,
|
||||
self._mpz_p,
|
||||
term._mpz_p)
|
||||
return result
|
||||
|
||||
def __rshift__(self, pos):
|
||||
result = Integer(0)
|
||||
if not 0 <= pos < 65536:
|
||||
raise ValueError("Incorrect shift count")
|
||||
_gmp.mpz_tdiv_q_2exp(result._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(int(pos)))
|
||||
return result
|
||||
|
||||
def __irshift__(self, pos):
|
||||
if not 0 <= pos < 65536:
|
||||
raise ValueError("Incorrect shift count")
|
||||
_gmp.mpz_tdiv_q_2exp(self._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(int(pos)))
|
||||
return self
|
||||
|
||||
def __lshift__(self, pos):
|
||||
result = Integer(0)
|
||||
if not 0 <= pos < 65536:
|
||||
raise ValueError("Incorrect shift count")
|
||||
_gmp.mpz_mul_2exp(result._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(int(pos)))
|
||||
return result
|
||||
|
||||
def __ilshift__(self, pos):
|
||||
if not 0 <= pos < 65536:
|
||||
raise ValueError("Incorrect shift count")
|
||||
_gmp.mpz_mul_2exp(self._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(int(pos)))
|
||||
return self
|
||||
|
||||
def get_bit(self, n):
|
||||
"""Return True if the n-th bit is set to 1.
|
||||
Bit 0 is the least significant."""
|
||||
|
||||
if not 0 <= n < 65536:
|
||||
raise ValueError("Incorrect bit position")
|
||||
return bool(_gmp.mpz_tstbit(self._mpz_p,
|
||||
c_ulong(int(n))))
|
||||
|
||||
# Extra
|
||||
def is_odd(self):
|
||||
return _gmp.mpz_tstbit(self._mpz_p, 0) == 1
|
||||
|
||||
def is_even(self):
|
||||
return _gmp.mpz_tstbit(self._mpz_p, 0) == 0
|
||||
|
||||
def size_in_bits(self):
|
||||
"""Return the minimum number of bits that can encode the number."""
|
||||
|
||||
if self < 0:
|
||||
raise ValueError("Conversion only valid for non-negative numbers")
|
||||
return _gmp.mpz_sizeinbase(self._mpz_p, 2)
|
||||
|
||||
def size_in_bytes(self):
|
||||
"""Return the minimum number of bytes that can encode the number."""
|
||||
return (self.size_in_bits() - 1) // 8 + 1
|
||||
|
||||
def is_perfect_square(self):
|
||||
return _gmp.mpz_perfect_square_p(self._mpz_p) != 0
|
||||
|
||||
def fail_if_divisible_by(self, small_prime):
|
||||
"""Raise an exception if the small prime is a divisor."""
|
||||
|
||||
if isinstance(small_prime, int):
|
||||
if 0 < small_prime < 65536:
|
||||
if _gmp.mpz_divisible_ui_p(self._mpz_p,
|
||||
c_ulong(small_prime)):
|
||||
raise ValueError("The value is composite")
|
||||
return
|
||||
small_prime = Integer(small_prime)
|
||||
if _gmp.mpz_divisible_p(self._mpz_p,
|
||||
small_prime._mpz_p):
|
||||
raise ValueError("The value is composite")
|
||||
|
||||
def multiply_accumulate(self, a, b):
|
||||
"""Increment the number by the product of a and b."""
|
||||
|
||||
if not isinstance(a, Integer):
|
||||
a = Integer(a)
|
||||
if isinstance(b, int):
|
||||
if 0 < b < 65536:
|
||||
_gmp.mpz_addmul_ui(self._mpz_p,
|
||||
a._mpz_p,
|
||||
c_ulong(b))
|
||||
return self
|
||||
if -65535 < b < 0:
|
||||
_gmp.mpz_submul_ui(self._mpz_p,
|
||||
a._mpz_p,
|
||||
c_ulong(-b))
|
||||
return self
|
||||
b = Integer(b)
|
||||
_gmp.mpz_addmul(self._mpz_p,
|
||||
a._mpz_p,
|
||||
b._mpz_p)
|
||||
return self
|
||||
|
||||
def set(self, source):
|
||||
"""Set the Integer to have the given value"""
|
||||
|
||||
if not isinstance(source, Integer):
|
||||
source = Integer(source)
|
||||
_gmp.mpz_set(self._mpz_p,
|
||||
source._mpz_p)
|
||||
return self
|
||||
|
||||
def inplace_inverse(self, modulus):
|
||||
"""Compute the inverse of this number in the ring of
|
||||
modulo integers.
|
||||
|
||||
Raise an exception if no inverse exists.
|
||||
"""
|
||||
|
||||
if not isinstance(modulus, Integer):
|
||||
modulus = Integer(modulus)
|
||||
|
||||
comp = _gmp.mpz_cmp(modulus._mpz_p,
|
||||
self._zero_mpz_p)
|
||||
if comp == 0:
|
||||
raise ZeroDivisionError("Modulus cannot be zero")
|
||||
if comp < 0:
|
||||
raise ValueError("Modulus must be positive")
|
||||
|
||||
result = _gmp.mpz_invert(self._mpz_p,
|
||||
self._mpz_p,
|
||||
modulus._mpz_p)
|
||||
if not result:
|
||||
raise ValueError("No inverse value can be computed")
|
||||
return self
|
||||
|
||||
def inverse(self, modulus):
|
||||
result = Integer(self)
|
||||
result.inplace_inverse(modulus)
|
||||
return result
|
||||
|
||||
def gcd(self, term):
|
||||
"""Compute the greatest common denominator between this
|
||||
number and another term."""
|
||||
|
||||
result = Integer(0)
|
||||
if isinstance(term, int):
|
||||
if 0 < term < 65535:
|
||||
_gmp.mpz_gcd_ui(result._mpz_p,
|
||||
self._mpz_p,
|
||||
c_ulong(term))
|
||||
return result
|
||||
term = Integer(term)
|
||||
_gmp.mpz_gcd(result._mpz_p, self._mpz_p, term._mpz_p)
|
||||
return result
|
||||
|
||||
def lcm(self, term):
|
||||
"""Compute the least common multiplier between this
|
||||
number and another term."""
|
||||
|
||||
result = Integer(0)
|
||||
if not isinstance(term, Integer):
|
||||
term = Integer(term)
|
||||
_gmp.mpz_lcm(result._mpz_p, self._mpz_p, term._mpz_p)
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def jacobi_symbol(a, n):
|
||||
"""Compute the Jacobi symbol"""
|
||||
|
||||
if not isinstance(a, Integer):
|
||||
a = Integer(a)
|
||||
if not isinstance(n, Integer):
|
||||
n = Integer(n)
|
||||
if n <= 0 or n.is_even():
|
||||
raise ValueError("n must be positive even for the Jacobi symbol")
|
||||
return _gmp.mpz_jacobi(a._mpz_p, n._mpz_p)
|
||||
|
||||
# Clean-up
|
||||
def __del__(self):
|
||||
|
||||
try:
|
||||
if self._mpz_p is not None:
|
||||
if self._initialized:
|
||||
_gmp.mpz_clear(self._mpz_p)
|
||||
|
||||
self._mpz_p = None
|
||||
except AttributeError:
|
||||
pass
|
415
venv/Lib/site-packages/Crypto/Math/_Numbers_int.py
Normal file
415
venv/Lib/site-packages/Crypto/Math/_Numbers_int.py
Normal file
|
@ -0,0 +1,415 @@
|
|||
# ===================================================================
|
||||
#
|
||||
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in
|
||||
# the documentation and/or other materials provided with the
|
||||
# distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
# ===================================================================
|
||||
|
||||
from Crypto.Util.number import long_to_bytes, bytes_to_long
|
||||
from Crypto.Util.py3compat import maxint
|
||||
|
||||
class Integer(object):
|
||||
"""A class to model a natural integer (including zero)"""
|
||||
|
||||
def __init__(self, value):
|
||||
if isinstance(value, float):
|
||||
raise ValueError("A floating point type is not a natural number")
|
||||
try:
|
||||
self._value = value._value
|
||||
except AttributeError:
|
||||
self._value = value
|
||||
|
||||
# Conversions
|
||||
def __int__(self):
|
||||
return self._value
|
||||
|
||||
def __str__(self):
|
||||
return str(int(self))
|
||||
|
||||
def __repr__(self):
|
||||
return "Integer(%s)" % str(self)
|
||||
|
||||
def to_bytes(self, block_size=0):
|
||||
if self._value < 0:
|
||||
raise ValueError("Conversion only valid for non-negative numbers")
|
||||
result = long_to_bytes(self._value, block_size)
|
||||
if len(result) > block_size > 0:
|
||||
raise ValueError("Value too large to encode")
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def from_bytes(byte_string):
|
||||
return Integer(bytes_to_long(byte_string))
|
||||
|
||||
# Relations
|
||||
def __eq__(self, term):
|
||||
try:
|
||||
result = self._value == term._value
|
||||
except AttributeError:
|
||||
result = self._value == term
|
||||
return result
|
||||
|
||||
def __ne__(self, term):
|
||||
return not self.__eq__(term)
|
||||
|
||||
def __lt__(self, term):
|
||||
try:
|
||||
result = self._value < term._value
|
||||
except AttributeError:
|
||||
result = self._value < term
|
||||
return result
|
||||
|
||||
def __le__(self, term):
|
||||
return self.__lt__(term) or self.__eq__(term)
|
||||
|
||||
def __gt__(self, term):
|
||||
return not self.__le__(term)
|
||||
|
||||
def __ge__(self, term):
|
||||
return not self.__lt__(term)
|
||||
|
||||
def __bool__(self):
|
||||
return self._value != 0
|
||||
|
||||
def is_negative(self):
|
||||
return self._value < 0
|
||||
|
||||
# Arithmetic operations
|
||||
def __add__(self, term):
|
||||
try:
|
||||
return Integer(self._value + term._value)
|
||||
except AttributeError:
|
||||
return Integer(self._value + term)
|
||||
|
||||
def __sub__(self, term):
|
||||
try:
|
||||
diff = self._value - term._value
|
||||
except AttributeError:
|
||||
diff = self._value - term
|
||||
return Integer(diff)
|
||||
|
||||
def __mul__(self, factor):
|
||||
try:
|
||||
return Integer(self._value * factor._value)
|
||||
except AttributeError:
|
||||
return Integer(self._value * factor)
|
||||
|
||||
def __floordiv__(self, divisor):
|
||||
try:
|
||||
divisor_value = divisor._value
|
||||
except AttributeError:
|
||||
divisor_value = divisor
|
||||
return Integer(self._value // divisor_value)
|
||||
|
||||
def __mod__(self, divisor):
|
||||
try:
|
||||
divisor_value = divisor._value
|
||||
except AttributeError:
|
||||
divisor_value = divisor
|
||||
if divisor_value < 0:
|
||||
raise ValueError("Modulus must be positive")
|
||||
return Integer(self._value % divisor_value)
|
||||
|
||||
def inplace_pow(self, exponent, modulus=None):
|
||||
try:
|
||||
exp_value = exponent._value
|
||||
except AttributeError:
|
||||
exp_value = exponent
|
||||
if exp_value < 0:
|
||||
raise ValueError("Exponent must not be negative")
|
||||
|
||||
try:
|
||||
mod_value = modulus._value
|
||||
except AttributeError:
|
||||
mod_value = modulus
|
||||
if mod_value is not None:
|
||||
if mod_value < 0:
|
||||
raise ValueError("Modulus must be positive")
|
||||
if mod_value == 0:
|
||||
raise ZeroDivisionError("Modulus cannot be zero")
|
||||
self._value = pow(self._value, exp_value, mod_value)
|
||||
return self
|
||||
|
||||
def __pow__(self, exponent, modulus=None):
|
||||
result = Integer(self)
|
||||
return result.inplace_pow(exponent, modulus)
|
||||
|
||||
def __abs__(self):
|
||||
return abs(self._value)
|
||||
|
||||
def sqrt(self):
|
||||
# http://stackoverflow.com/questions/15390807/integer-square-root-in-python
|
||||
if self._value < 0:
|
||||
raise ValueError("Square root of negative value")
|
||||
x = self._value
|
||||
y = (x + 1) // 2
|
||||
while y < x:
|
||||
x = y
|
||||
y = (x + self._value // x) // 2
|
||||
return Integer(x)
|
||||
|
||||
def __iadd__(self, term):
|
||||
try:
|
||||
self._value += term._value
|
||||
except AttributeError:
|
||||
self._value += term
|
||||
return self
|
||||
|
||||
def __isub__(self, term):
|
||||
try:
|
||||
self._value -= term._value
|
||||
except AttributeError:
|
||||
self._value -= term
|
||||
return self
|
||||
|
||||
def __imul__(self, term):
|
||||
try:
|
||||
self._value *= term._value
|
||||
except AttributeError:
|
||||
self._value *= term
|
||||
return self
|
||||
|
||||
def __imod__(self, term):
|
||||
try:
|
||||
modulus = term._value
|
||||
except AttributeError:
|
||||
modulus = term
|
||||
if modulus == 0:
|
||||
raise ZeroDivisionError("Division by zero")
|
||||
if modulus < 0:
|
||||
raise ValueError("Modulus must be positive")
|
||||
self._value %= modulus
|
||||
return self
|
||||
|
||||
# Boolean/bit operations
|
||||
def __and__(self, term):
|
||||
try:
|
||||
return Integer(self._value & term._value)
|
||||
except AttributeError:
|
||||
return Integer(self._value & term)
|
||||
|
||||
def __or__(self, term):
|
||||
try:
|
||||
return Integer(self._value | term._value)
|
||||
except AttributeError:
|
||||
return Integer(self._value | term)
|
||||
|
||||
def __rshift__(self, pos):
|
||||
try:
|
||||
try:
|
||||
return Integer(self._value >> pos._value)
|
||||
except AttributeError:
|
||||
return Integer(self._value >> pos)
|
||||
except OverflowError:
|
||||
raise ValueError("Incorrect shift count")
|
||||
|
||||
def __irshift__(self, pos):
|
||||
try:
|
||||
try:
|
||||
self._value >>= pos._value
|
||||
except AttributeError:
|
||||
self._value >>= pos
|
||||
except OverflowError:
|
||||
raise ValueError("Incorrect shift count")
|
||||
return self
|
||||
|
||||
def __lshift__(self, pos):
|
||||
try:
|
||||
try:
|
||||
return Integer(self._value << pos._value)
|
||||
except AttributeError:
|
||||
return Integer(self._value << pos)
|
||||
except OverflowError:
|
||||
raise ValueError("Incorrect shift count")
|
||||
|
||||
def __ilshift__(self, pos):
|
||||
try:
|
||||
try:
|
||||
self._value <<= pos._value
|
||||
except AttributeError:
|
||||
self._value <<= pos
|
||||
except OverflowError:
|
||||
raise ValueError("Incorrect shift count")
|
||||
return self
|
||||
|
||||
|
||||
def get_bit(self, n):
|
||||
try:
|
||||
try:
|
||||
return (self._value >> n._value) & 1
|
||||
except AttributeError:
|
||||
return (self._value >> n) & 1
|
||||
except OverflowError:
|
||||
raise ValueError("Incorrect bit position")
|
||||
|
||||
# Extra
|
||||
def is_odd(self):
|
||||
return (self._value & 1) == 1
|
||||
|
||||
def is_even(self):
|
||||
return (self._value & 1) == 0
|
||||
|
||||
def size_in_bits(self):
|
||||
|
||||
if self._value < 0:
|
||||
raise ValueError("Conversion only valid for non-negative numbers")
|
||||
|
||||
if self._value == 0:
|
||||
return 1
|
||||
|
||||
bit_size = 0
|
||||
tmp = self._value
|
||||
while tmp:
|
||||
tmp >>= 1
|
||||
bit_size += 1
|
||||
|
||||
return bit_size
|
||||
|
||||
def size_in_bytes(self):
|
||||
return (self.size_in_bits() - 1) // 8 + 1
|
||||
|
||||
def is_perfect_square(self):
|
||||
if self._value < 0:
|
||||
return False
|
||||
if self._value in (0, 1):
|
||||
return True
|
||||
|
||||
x = self._value // 2
|
||||
square_x = x ** 2
|
||||
|
||||
while square_x > self._value:
|
||||
x = (square_x + self._value) // (2 * x)
|
||||
square_x = x ** 2
|
||||
|
||||
return self._value == x ** 2
|
||||
|
||||
def fail_if_divisible_by(self, small_prime):
|
||||
try:
|
||||
if (self._value % small_prime._value) == 0:
|
||||
raise ValueError("Value is composite")
|
||||
except AttributeError:
|
||||
if (self._value % small_prime) == 0:
|
||||
raise ValueError("Value is composite")
|
||||
|
||||
def multiply_accumulate(self, a, b):
|
||||
if type(a) == Integer:
|
||||
a = a._value
|
||||
if type(b) == Integer:
|
||||
b = b._value
|
||||
self._value += a * b
|
||||
return self
|
||||
|
||||
def set(self, source):
|
||||
if type(source) == Integer:
|
||||
self._value = source._value
|
||||
else:
|
||||
self._value = source
|
||||
|
||||
def inplace_inverse(self, modulus):
|
||||
try:
|
||||
modulus = modulus._value
|
||||
except AttributeError:
|
||||
pass
|
||||
if modulus == 0:
|
||||
raise ZeroDivisionError("Modulus cannot be zero")
|
||||
if modulus < 0:
|
||||
raise ValueError("Modulus cannot be negative")
|
||||
r_p, r_n = self._value, modulus
|
||||
s_p, s_n = 1, 0
|
||||
while r_n > 0:
|
||||
q = r_p // r_n
|
||||
r_p, r_n = r_n, r_p - q * r_n
|
||||
s_p, s_n = s_n, s_p - q * s_n
|
||||
if r_p != 1:
|
||||
raise ValueError("No inverse value can be computed" + str(r_p))
|
||||
while s_p < 0:
|
||||
s_p += modulus
|
||||
self._value = s_p
|
||||
return self
|
||||
|
||||
def inverse(self, modulus):
|
||||
result = Integer(self)
|
||||
result.inplace_inverse(modulus)
|
||||
return result
|
||||
|
||||
def gcd(self, term):
|
||||
try:
|
||||
term = term._value
|
||||
except AttributeError:
|
||||
pass
|
||||
r_p, r_n = abs(self._value), abs(term)
|
||||
while r_n > 0:
|
||||
q = r_p // r_n
|
||||
r_p, r_n = r_n, r_p - q * r_n
|
||||
return Integer(r_p)
|
||||
|
||||
def lcm(self, term):
|
||||
try:
|
||||
term = term._value
|
||||
except AttributeError:
|
||||
pass
|
||||
if self._value == 0 or term == 0:
|
||||
return Integer(0)
|
||||
return Integer(abs((self._value * term) // self.gcd(term)._value))
|
||||
|
||||
@staticmethod
|
||||
def jacobi_symbol(a, n):
|
||||
if isinstance(a, Integer):
|
||||
a = a._value
|
||||
if isinstance(n, Integer):
|
||||
n = n._value
|
||||
|
||||
if (n & 1) == 0:
|
||||
raise ValueError("n must be even for the Jacobi symbol")
|
||||
|
||||
# Step 1
|
||||
a = a % n
|
||||
# Step 2
|
||||
if a == 1 or n == 1:
|
||||
return 1
|
||||
# Step 3
|
||||
if a == 0:
|
||||
return 0
|
||||
# Step 4
|
||||
e = 0
|
||||
a1 = a
|
||||
while (a1 & 1) == 0:
|
||||
a1 >>= 1
|
||||
e += 1
|
||||
# Step 5
|
||||
if (e & 1) == 0:
|
||||
s = 1
|
||||
elif n % 8 in (1, 7):
|
||||
s = 1
|
||||
else:
|
||||
s = -1
|
||||
# Step 6
|
||||
if n % 4 == 3 and a1 % 4 == 3:
|
||||
s = -s
|
||||
# Step 7
|
||||
n1 = n % a1
|
||||
# Step 8
|
||||
return s * Integer.jacobi_symbol(n1, a1)
|
33
venv/Lib/site-packages/Crypto/Math/__init__.py
Normal file
33
venv/Lib/site-packages/Crypto/Math/__init__.py
Normal file
|
@ -0,0 +1,33 @@
|
|||
# ===================================================================
|
||||
#
|
||||
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in
|
||||
# the documentation and/or other materials provided with the
|
||||
# distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
# ===================================================================
|
||||
|
||||
"""
|
||||
:undocumented: _Numbers_gmp, _Numbers_int
|
||||
"""
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
venv/Lib/site-packages/Crypto/Math/mpir.dll
Normal file
BIN
venv/Lib/site-packages/Crypto/Math/mpir.dll
Normal file
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue