Updated DB_Helper by adding firebase methods.

This commit is contained in:
Batuhan Berk Başoğlu 2020-10-05 16:53:40 -04:00
parent 485cc3bbba
commit c82121d036
1810 changed files with 537281 additions and 1 deletions

View file

@ -0,0 +1,174 @@
#
# Util/PEM.py : Privacy Enhanced Mail utilities
#
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
"""Set of functions for encapsulating data according to the PEM format.
PEM (Privacy Enhanced Mail) was an IETF standard for securing emails via a
Public Key Infrastructure. It is specified in RFC 1421-1424.
Even though it has been abandoned, the simple message encapsulation it defined
is still widely used today for encoding *binary* cryptographic objects like
keys and certificates into text.
"""
__all__ = ['encode', 'decode']
from Crypto.Util.py3compat import b, hexlify, unhexlify, tobytes, tostr
import re
from binascii import a2b_base64, b2a_base64
from Crypto.Hash import MD5
from Crypto.Util.Padding import pad, unpad
from Crypto.Cipher import DES, DES3, AES
from Crypto.Protocol.KDF import PBKDF1
from Crypto.Random import get_random_bytes
def encode(data, marker, passphrase=None, randfunc=None):
"""Encode a piece of binary data into PEM format.
:Parameters:
data : byte string
The piece of binary data to encode.
marker : string
The marker for the PEM block (e.g. "PUBLIC KEY").
Note that there is no official master list for all allowed markers.
Still, you can refer to the OpenSSL_ source code.
passphrase : byte string
If given, the PEM block will be encrypted. The key is derived from
the passphrase.
randfunc : callable
Random number generation function; it accepts an integer N and returns
a byte string of random data, N bytes long. If not given, a new one is
instantiated.
:Returns:
The PEM block, as a string.
.. _OpenSSL: http://cvs.openssl.org/fileview?f=openssl/crypto/pem/pem.h&v=1.66.2.1.4.2
"""
if randfunc is None:
randfunc = get_random_bytes
out = "-----BEGIN %s-----\n" % marker
if passphrase:
# We only support 3DES for encryption
salt = randfunc(8)
key = PBKDF1(passphrase, salt, 16, 1, MD5)
key += PBKDF1(key + passphrase, salt, 8, 1, MD5)
objenc = DES3.new(key, DES3.MODE_CBC, salt)
out += "Proc-Type: 4,ENCRYPTED\nDEK-Info: DES-EDE3-CBC,%s\n\n" %\
tostr(hexlify(salt).upper())
# Encrypt with PKCS#7 padding
data = objenc.encrypt(pad(data, objenc.block_size))
elif passphrase is not None:
raise ValueError("Empty password")
# Each BASE64 line can take up to 64 characters (=48 bytes of data)
# b2a_base64 adds a new line character!
chunks = [tostr(b2a_base64(data[i:i + 48]))
for i in range(0, len(data), 48)]
out += "".join(chunks)
out += "-----END %s-----" % marker
return out
def decode(pem_data, passphrase=None):
"""Decode a PEM block into binary.
:Parameters:
pem_data : string
The PEM block.
passphrase : byte string
If given and the PEM block is encrypted,
the key will be derived from the passphrase.
:Returns:
A tuple with the binary data, the marker string, and a boolean to
indicate if decryption was performed.
:Raises ValueError:
If decoding fails, if the PEM file is encrypted and no passphrase has
been provided or if the passphrase is incorrect.
"""
# Verify Pre-Encapsulation Boundary
r = re.compile("\s*-----BEGIN (.*)-----\s+")
m = r.match(pem_data)
if not m:
raise ValueError("Not a valid PEM pre boundary")
marker = m.group(1)
# Verify Post-Encapsulation Boundary
r = re.compile("-----END (.*)-----\s*$")
m = r.search(pem_data)
if not m or m.group(1) != marker:
raise ValueError("Not a valid PEM post boundary")
# Removes spaces and slit on lines
lines = pem_data.replace(" ", '').split()
# Decrypts, if necessary
if lines[1].startswith('Proc-Type:4,ENCRYPTED'):
if not passphrase:
raise ValueError("PEM is encrypted, but no passphrase available")
DEK = lines[2].split(':')
if len(DEK) != 2 or DEK[0] != 'DEK-Info':
raise ValueError("PEM encryption format not supported.")
algo, salt = DEK[1].split(',')
salt = unhexlify(tobytes(salt))
if algo == "DES-CBC":
# This is EVP_BytesToKey in OpenSSL
key = PBKDF1(passphrase, salt, 8, 1, MD5)
objdec = DES.new(key, DES.MODE_CBC, salt)
elif algo == "DES-EDE3-CBC":
# Note that EVP_BytesToKey is note exactly the same as PBKDF1
key = PBKDF1(passphrase, salt, 16, 1, MD5)
key += PBKDF1(key + passphrase, salt, 8, 1, MD5)
objdec = DES3.new(key, DES3.MODE_CBC, salt)
elif algo == "AES-128-CBC":
key = PBKDF1(passphrase, salt[:8], 16, 1, MD5)
objdec = AES.new(key, AES.MODE_CBC, salt)
else:
raise ValueError("Unsupport PEM encryption algorithm (%s)." % algo)
lines = lines[2:]
else:
objdec = None
# Decode body
data = a2b_base64(b(''.join(lines[1:-1])))
enc_flag = False
if objdec:
data = unpad(objdec.decrypt(data), objdec.block_size)
enc_flag = True
return (data, marker, enc_flag)

View file

@ -0,0 +1,261 @@
#
# PublicKey/PKCS8.py : PKCS#8 functions
#
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
"""
Module for handling private keys wrapped according to `PKCS#8`_.
PKCS8 is a standard for storing and transferring private key information.
The wrapped key can either be clear or encrypted.
All encryption algorithms are based on passphrase-based key derivation.
The following mechanisms are fully supported:
* *PBKDF2WithHMAC-SHA1AndAES128-CBC*
* *PBKDF2WithHMAC-SHA1AndAES192-CBC*
* *PBKDF2WithHMAC-SHA1AndAES256-CBC*
* *PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC*
* *scryptAndAES128-CBC*
* *scryptAndAES192-CBC*
* *scryptAndAES256-CBC*
The following mechanisms are only supported for importing keys.
They are much weaker than the ones listed above, and they are provided
for backward compatibility only:
* *pbeWithMD5AndRC2-CBC*
* *pbeWithMD5AndDES-CBC*
* *pbeWithSHA1AndRC2-CBC*
* *pbeWithSHA1AndDES-CBC*
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
"""
from Crypto.Util.py3compat import *
from Crypto.Util.asn1 import (
DerNull,
DerSequence,
DerObjectId,
DerOctetString,
)
from Crypto.IO._PBES import PBES1, PBES2, PbesError
__all__ = ['wrap', 'unwrap']
def wrap(private_key, key_oid, passphrase=None, protection=None,
prot_params=None, key_params=None, randfunc=None):
"""Wrap a private key into a PKCS#8 blob (clear or encrypted).
:Parameters:
private_key : byte string
The private key encoded in binary form. The actual encoding is
algorithm specific. In most cases, it is DER.
key_oid : string
The object identifier (OID) of the private key to wrap.
It is a dotted string, like "``1.2.840.113549.1.1.1``" (for RSA keys).
passphrase : (binary) string
The secret passphrase from which the wrapping key is derived.
Set it only if encryption is required.
protection : string
The identifier of the algorithm to use for securely wrapping the key.
The default value is '``PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC``'.
prot_params : dictionary
Parameters for the protection algorithm.
+------------------+-----------------------------------------------+
| Key | Description |
+==================+===============================================+
| iteration_count | The KDF algorithm is repeated several times to|
| | slow down brute force attacks on passwords |
| | (called *N* or CPU/memory cost in scrypt). |
| | |
| | The default value for PBKDF2 is 1 000. |
| | The default value for scrypt is 16 384. |
+------------------+-----------------------------------------------+
| salt_size | Salt is used to thwart dictionary and rainbow |
| | attacks on passwords. The default value is 8 |
| | bytes. |
+------------------+-----------------------------------------------+
| block_size | *(scrypt only)* Memory-cost (r). The default |
| | value is 8. |
+------------------+-----------------------------------------------+
| parallelization | *(scrypt only)* CPU-cost (p). The default |
| | value is 1. |
+------------------+-----------------------------------------------+
key_params : DER object
The algorithm parameters associated to the private key.
It is required for algorithms like DSA, but not for others like RSA.
randfunc : callable
Random number generation function; it should accept a single integer
N and return a string of random data, N bytes long.
If not specified, a new RNG will be instantiated
from ``Crypto.Random``.
:Return:
The PKCS#8-wrapped private key (possibly encrypted),
as a binary string.
"""
if key_params is None:
key_params = DerNull()
#
# PrivateKeyInfo ::= SEQUENCE {
# version Version,
# privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
# privateKey PrivateKey,
# attributes [0] IMPLICIT Attributes OPTIONAL
# }
#
pk_info = DerSequence([
0,
DerSequence([
DerObjectId(key_oid),
key_params
]),
DerOctetString(private_key)
])
pk_info_der = pk_info.encode()
if passphrase is None:
return pk_info_der
if not passphrase:
raise ValueError("Empty passphrase")
# Encryption with PBES2
passphrase = tobytes(passphrase)
if protection is None:
protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC'
return PBES2.encrypt(pk_info_der, passphrase,
protection, prot_params, randfunc)
def unwrap(p8_private_key, passphrase=None):
"""Unwrap a private key from a PKCS#8 blob (clear or encrypted).
:Parameters:
p8_private_key : byte string
The private key wrapped into a PKCS#8 blob, DER encoded.
passphrase : (byte) string
The passphrase to use to decrypt the blob (if it is encrypted).
:Return:
A tuple containing:
#. the algorithm identifier of the wrapped key (OID, dotted string)
#. the private key (byte string, DER encoded)
#. the associated parameters (byte string, DER encoded) or ``None``
:Raises ValueError:
If decoding fails
"""
if passphrase:
passphrase = tobytes(passphrase)
found = False
try:
p8_private_key = PBES1.decrypt(p8_private_key, passphrase)
found = True
except PbesError as e:
error_str = "PBES1[%s]" % str(e)
except ValueError:
error_str = "PBES1[Invalid]"
if not found:
try:
p8_private_key = PBES2.decrypt(p8_private_key, passphrase)
found = True
except PbesError as e:
error_str += ",PBES2[%s]" % str(e)
except ValueError:
error_str += ",PBES2[Invalid]"
if not found:
raise ValueError("Error decoding PKCS#8 (%s)" % error_str)
pk_info = DerSequence().decode(p8_private_key, nr_elements=(2, 3, 4))
if len(pk_info) == 2 and not passphrase:
raise ValueError("Not a valid clear PKCS#8 structure "
"(maybe it is encrypted?)")
#
# PrivateKeyInfo ::= SEQUENCE {
# version Version,
# privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
# privateKey PrivateKey,
# attributes [0] IMPLICIT Attributes OPTIONAL
# }
# Version ::= INTEGER
if pk_info[0] != 0:
raise ValueError("Not a valid PrivateKeyInfo SEQUENCE")
# PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
#
# EncryptedPrivateKeyInfo ::= SEQUENCE {
# encryptionAlgorithm EncryptionAlgorithmIdentifier,
# encryptedData EncryptedData
# }
# EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
# AlgorithmIdentifier ::= SEQUENCE {
# algorithm OBJECT IDENTIFIER,
# parameters ANY DEFINED BY algorithm OPTIONAL
# }
algo = DerSequence().decode(pk_info[1], nr_elements=(1, 2))
algo_oid = DerObjectId().decode(algo[0]).value
if len(algo) == 1:
algo_params = None
else:
try:
DerNull().decode(algo[1])
algo_params = None
except:
algo_params = algo[1]
# EncryptedData ::= OCTET STRING
private_key = DerOctetString().decode(pk_info[2]).payload
return (algo_oid, private_key, algo_params)

View file

@ -0,0 +1,388 @@
#
# PublicKey/_PBES.py : Password-Based Encryption functions
#
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
from Crypto.Util.py3compat import *
from Crypto import Random
from Crypto.Util.asn1 import (
DerSequence, DerOctetString,
DerObjectId, DerInteger,
)
from Crypto.Util.Padding import pad, unpad
from Crypto.Hash import MD5, SHA1
from Crypto.Cipher import DES, ARC2, DES3, AES
from Crypto.Protocol.KDF import PBKDF1, PBKDF2, scrypt
class PbesError(ValueError):
pass
# These are the ASN.1 definitions used by the PBES1/2 logic:
#
# EncryptedPrivateKeyInfo ::= SEQUENCE {
# encryptionAlgorithm EncryptionAlgorithmIdentifier,
# encryptedData EncryptedData
# }
#
# EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
#
# EncryptedData ::= OCTET STRING
#
# AlgorithmIdentifier ::= SEQUENCE {
# algorithm OBJECT IDENTIFIER,
# parameters ANY DEFINED BY algorithm OPTIONAL
# }
#
# PBEParameter ::= SEQUENCE {
# salt OCTET STRING (SIZE(8)),
# iterationCount INTEGER
# }
#
# PBES2-params ::= SEQUENCE {
# keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
# encryptionScheme AlgorithmIdentifier {{PBES2-Encs}}
# }
#
# PBKDF2-params ::= SEQUENCE {
# salt CHOICE {
# specified OCTET STRING,
# otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}
# },
# iterationCount INTEGER (1..MAX),
# keyLength INTEGER (1..MAX) OPTIONAL,
# prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT algid-hmacWithSHA1
# }
#
# scrypt-params ::= SEQUENCE {
# salt OCTET STRING,
# costParameter INTEGER (1..MAX),
# blockSize INTEGER (1..MAX),
# parallelizationParameter INTEGER (1..MAX),
# keyLength INTEGER (1..MAX) OPTIONAL
# }
class PBES1(object):
"""Deprecated encryption scheme with password-based key derivation
(originally defined in PKCS#5 v1.5, but still present in `v2.0`__).
.. __: http://www.ietf.org/rfc/rfc2898.txt
"""
@staticmethod
def decrypt(data, passphrase):
"""Decrypt a piece of data using a passphrase and *PBES1*.
The algorithm to use is automatically detected.
:Parameters:
data : byte string
The piece of data to decrypt.
passphrase : byte string
The passphrase to use for decrypting the data.
:Returns:
The decrypted data, as a binary string.
"""
enc_private_key_info = DerSequence().decode(data)
encrypted_algorithm = DerSequence().decode(enc_private_key_info[0])
encrypted_data = DerOctetString().decode(enc_private_key_info[1]).payload
pbe_oid = DerObjectId().decode(encrypted_algorithm[0]).value
cipher_params = {}
if pbe_oid == "1.2.840.113549.1.5.3":
# PBE_MD5_DES_CBC
hashmod = MD5
ciphermod = DES
elif pbe_oid == "1.2.840.113549.1.5.6":
# PBE_MD5_RC2_CBC
hashmod = MD5
ciphermod = ARC2
cipher_params['effective_keylen'] = 64
elif pbe_oid == "1.2.840.113549.1.5.10":
# PBE_SHA1_DES_CBC
hashmod = SHA1
ciphermod = DES
elif pbe_oid == "1.2.840.113549.1.5.11":
# PBE_SHA1_RC2_CBC
hashmod = SHA1
ciphermod = ARC2
cipher_params['effective_keylen'] = 64
else:
raise PbesError("Unknown OID for PBES1")
pbe_params = DerSequence().decode(encrypted_algorithm[1], nr_elements=2)
salt = DerOctetString().decode(pbe_params[0]).payload
iterations = pbe_params[1]
key_iv = PBKDF1(passphrase, salt, 16, iterations, hashmod)
key, iv = key_iv[:8], key_iv[8:]
cipher = ciphermod.new(key, ciphermod.MODE_CBC, iv, **cipher_params)
pt = cipher.decrypt(encrypted_data)
return unpad(pt, cipher.block_size)
class PBES2(object):
"""Encryption scheme with password-based key derivation
(defined in `PKCS#5 v2.0`__).
.. __: http://www.ietf.org/rfc/rfc2898.txt."""
@staticmethod
def encrypt(data, passphrase, protection, prot_params=None, randfunc=None):
"""Encrypt a piece of data using a passphrase and *PBES2*.
:Parameters:
data : byte string
The piece of data to encrypt.
passphrase : byte string
The passphrase to use for encrypting the data.
protection : string
The identifier of the encryption algorithm to use.
The default value is '``PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC``'.
prot_params : dictionary
Parameters of the protection algorithm.
+------------------+-----------------------------------------------+
| Key | Description |
+==================+===============================================+
| iteration_count | The KDF algorithm is repeated several times to|
| | slow down brute force attacks on passwords |
| | (called *N* or CPU/memory cost in scrypt). |
| | |
| | The default value for PBKDF2 is 1 000. |
| | The default value for scrypt is 16 384. |
+------------------+-----------------------------------------------+
| salt_size | Salt is used to thwart dictionary and rainbow |
| | attacks on passwords. The default value is 8 |
| | bytes. |
+------------------+-----------------------------------------------+
| block_size | *(scrypt only)* Memory-cost (r). The default |
| | value is 8. |
+------------------+-----------------------------------------------+
| parallelization | *(scrypt only)* CPU-cost (p). The default |
| | value is 1. |
+------------------+-----------------------------------------------+
randfunc : callable
Random number generation function; it should accept
a single integer N and return a string of random data,
N bytes long. If not specified, a new RNG will be
instantiated from ``Crypto.Random``.
:Returns:
The encrypted data, as a binary string.
"""
if prot_params is None:
prot_params = {}
if randfunc is None:
randfunc = Random.new().read
if protection == 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC':
key_size = 24
module = DES3
cipher_mode = DES3.MODE_CBC
enc_oid = "1.2.840.113549.3.7"
elif protection in ('PBKDF2WithHMAC-SHA1AndAES128-CBC',
'scryptAndAES128-CBC'):
key_size = 16
module = AES
cipher_mode = AES.MODE_CBC
enc_oid = "2.16.840.1.101.3.4.1.2"
elif protection in ('PBKDF2WithHMAC-SHA1AndAES192-CBC',
'scryptAndAES192-CBC'):
key_size = 24
module = AES
cipher_mode = AES.MODE_CBC
enc_oid = "2.16.840.1.101.3.4.1.22"
elif protection in ('PBKDF2WithHMAC-SHA1AndAES256-CBC',
'scryptAndAES256-CBC'):
key_size = 32
module = AES
cipher_mode = AES.MODE_CBC
enc_oid = "2.16.840.1.101.3.4.1.42"
else:
raise ValueError("Unknown PBES2 mode")
# Get random data
iv = randfunc(module.block_size)
salt = randfunc(prot_params.get("salt_size", 8))
# Derive key from password
if protection.startswith('PBKDF2'):
count = prot_params.get("iteration_count", 1000)
key = PBKDF2(passphrase, salt, key_size, count)
kdf_info = DerSequence([
DerObjectId("1.2.840.113549.1.5.12"), # PBKDF2
DerSequence([
DerOctetString(salt),
DerInteger(count)
])
])
else:
# It must be scrypt
count = prot_params.get("iteration_count", 16384)
scrypt_r = prot_params.get('block_size', 8)
scrypt_p = prot_params.get('parallelization', 1)
key = scrypt(passphrase, salt, key_size,
count, scrypt_r, scrypt_p)
kdf_info = DerSequence([
DerObjectId("1.3.6.1.4.1.11591.4.11"), # scrypt
DerSequence([
DerOctetString(salt),
DerInteger(count),
DerInteger(scrypt_r),
DerInteger(scrypt_p)
])
])
# Create cipher and use it
cipher = module.new(key, cipher_mode, iv)
encrypted_data = cipher.encrypt(pad(data, cipher.block_size))
enc_info = DerSequence([
DerObjectId(enc_oid),
DerOctetString(iv)
])
# Result
enc_private_key_info = DerSequence([
# encryptionAlgorithm
DerSequence([
DerObjectId("1.2.840.113549.1.5.13"), # PBES2
DerSequence([
kdf_info,
enc_info
]),
]),
DerOctetString(encrypted_data)
])
return enc_private_key_info.encode()
@staticmethod
def decrypt(data, passphrase):
"""Decrypt a piece of data using a passphrase and *PBES2*.
The algorithm to use is automatically detected.
:Parameters:
data : byte string
The piece of data to decrypt.
passphrase : byte string
The passphrase to use for decrypting the data.
:Returns:
The decrypted data, as a binary string.
"""
enc_private_key_info = DerSequence().decode(data, nr_elements=2)
enc_algo = DerSequence().decode(enc_private_key_info[0])
encrypted_data = DerOctetString().decode(enc_private_key_info[1]).payload
pbe_oid = DerObjectId().decode(enc_algo[0]).value
if pbe_oid != "1.2.840.113549.1.5.13":
raise PbesError("Not a PBES2 object")
pbes2_params = DerSequence().decode(enc_algo[1], nr_elements=2)
### Key Derivation Function selection
kdf_info = DerSequence().decode(pbes2_params[0], nr_elements=2)
kdf_oid = DerObjectId().decode(kdf_info[0]).value
# We only support PBKDF2 or scrypt
if kdf_oid == "1.2.840.113549.1.5.12":
pbkdf2_params = DerSequence().decode(kdf_info[1], nr_elements=(2, 3, 4))
salt = DerOctetString().decode(pbkdf2_params[0]).payload
iteration_count = pbkdf2_params[1]
if len(pbkdf2_params) > 2:
kdf_key_length = pbkdf2_params[2]
else:
kdf_key_length = None
if len(pbkdf2_params) > 3:
raise PbesError("Unsupported PRF for PBKDF2")
elif kdf_oid == "1.3.6.1.4.1.11591.4.11":
scrypt_params = DerSequence().decode(kdf_info[1], nr_elements=(4, 5))
salt = DerOctetString().decode(scrypt_params[0]).payload
iteration_count, scrypt_r, scrypt_p = [scrypt_params[x]
for x in (1, 2, 3)]
if len(scrypt_params) > 4:
kdf_key_length = scrypt_params[4]
else:
kdf_key_length = None
else:
raise PbesError("Unsupported PBES2 KDF")
### Cipher selection
enc_info = DerSequence().decode(pbes2_params[1])
enc_oid = DerObjectId().decode(enc_info[0]).value
if enc_oid == "1.2.840.113549.3.7":
# DES_EDE3_CBC
ciphermod = DES3
key_size = 24
elif enc_oid == "2.16.840.1.101.3.4.1.2":
# AES128_CBC
ciphermod = AES
key_size = 16
elif enc_oid == "2.16.840.1.101.3.4.1.22":
# AES192_CBC
ciphermod = AES
key_size = 24
elif enc_oid == "2.16.840.1.101.3.4.1.42":
# AES256_CBC
ciphermod = AES
key_size = 32
else:
raise PbesError("Unsupported PBES2 cipher")
if kdf_key_length and kdf_key_length != key_size:
raise PbesError("Mismatch between PBES2 KDF parameters"
" and selected cipher")
IV = DerOctetString().decode(enc_info[1]).payload
# Create cipher
if kdf_oid == "1.2.840.113549.1.5.12": # PBKDF2
key = PBKDF2(passphrase, salt, key_size, iteration_count)
else:
key = scrypt(passphrase, salt, key_size, iteration_count,
scrypt_r, scrypt_p)
cipher = ciphermod.new(key, ciphermod.MODE_CBC, IV)
# Decrypt data
pt = cipher.decrypt(encrypted_data)
return unpad(pt, cipher.block_size)

View file

@ -0,0 +1,44 @@
# ===================================================================
#
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
"""
Modules for reading and writing cryptographic data.
======================== =============================================
Module Description
======================== =============================================
Crypto.Util.PEM Set of functions for encapsulating data according to the PEM format.
Crypto.Util.PKCS8 Set of functions for wrapping/unwrapping private keys.
======================== =============================================
:undocumented: _PBES
"""
__all__ = ['PEM', 'PKCS8']