Add augmentation

This commit is contained in:
Feier Zhang 2021-04-05 17:22:31 -04:00
parent fa4f130793
commit a6d4f6582a
333 changed files with 77 additions and 602 deletions

3
.vscode/settings.json vendored Normal file
View file

@ -0,0 +1,3 @@
{
"python.pythonPath": "C:\\Users\\fayer\\anaconda3\\envs\\cv-env\\python.exe"
}

View file

@ -0,0 +1,57 @@
import sys
import cv2
import os
import numpy as np
import math
import random
def facial_recognition_augmentation(label):
aug = 5
image_path = sys.path[0] + '/Facial_images/face_rec/train/' + label + '/'
imagelist = os.listdir(image_path)
for file_name in imagelist:
(nameWithoutExtention, extention) = os.path.splitext(os.path.basename(file_name))
if (extention==".jpg"):
#print(image_path+file_name)
inputImage = cv2.imread(image_path+file_name)
for i in range(aug):
rotate = random.randint(-8,8)
brightness = random.randint(-30, +30)
clahe = random.uniform(0.0, 1.0)
choice = random.randint(0, 10)
(h, w) = inputImage.shape[:2] #10
center = (w // 2, h // 2) #11
M = cv2.getRotationMatrix2D(center, rotate, 1.0) #12
inputImage = cv2.warpAffine(inputImage, M, (w, h)) #13
if (choice%3 == 1):
clahe = cv2.createCLAHE(clipLimit=clahe, tileGridSize=(8,8))
inputImage = cv2.cvtColor(inputImage, cv2.COLOR_BGR2LAB) # convert from BGR to LAB color space
l, a, b = cv2.split(inputImage) # split on 3 different channels
l2 = clahe.apply(l) # apply CLAHE to the L-channel
inputImage = cv2.merge((l2,a,b)) # merge channels
inputImage = cv2.cvtColor(inputImage, cv2.COLOR_LAB2BGR) # convert from LAB to BGR
elif(choice%3 == 2):
fI = inputImage/255.0
gamma = random.uniform(0.2, 0.4)
#inputImage = np.power(fI, gamma)
else:
cv2.addWeighted( inputImage, 0.5, inputImage, 0.5, brightness, inputImage)
choice_1 = random.randint(0, 10)
if (choice_1%2 == 1):
gauss = random.randint(1, 2)*2-1
inputImage = cv2.GaussianBlur(inputImage, (gauss,gauss), 0)
cv2.imwrite(image_path+nameWithoutExtention+"_aug"+str(i)+".jpg", inputImage)

View file

@ -3,10 +3,11 @@ import os
import math
import cv2
import Facial_Recognition_Enrollment
import Facial_Image_Augmentation
def register_your_face(label):
num_cap = 50
num_cap = 10
path = sys.path[0] + '/Facial_images/face_rec/train/' + label
@ -30,14 +31,4 @@ def register_your_face(label):
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
print("Face registration start...")
print()
label = input('Pleas enter your Name/Label: ')
register_your_face(label)
print("Data saved! Starting enrollment...")
print()
Facial_Recognition_Enrollment.enroll_face_dataset() # Need discuss and modify after intergrate with database.
print("Face registration completed!")
print()
Facial_Image_Augmentation.facial_recognition_augmentation(label)

View file

@ -1,298 +0,0 @@
import cv2
import dlib
import numpy as np
import math
# Returns 8 points on the boundary of a rectangle
def getEightBoundaryPoints(h, w):
boundaryPts = []
boundaryPts.append((0,0))
boundaryPts.append((w/2, 0))
boundaryPts.append((w-1,0))
boundaryPts.append((w-1, h/2))
boundaryPts.append((w-1, h-1))
boundaryPts.append((w/2, h-1))
boundaryPts.append((0, h-1))
boundaryPts.append((0, h/2))
return np.array(boundaryPts, dtype=np.float)
# Constrains points to be inside boundary
def constrainPoint(p, w, h):
p = (min(max(p[0], 0), w - 1), min(max(p[1], 0), h - 1))
return p
# convert Dlib shape detector object to list of tuples
def dlibLandmarksToPoints(shape):
points = []
for p in shape.parts():
pt = (p.x, p.y)
points.append(pt)
return points
# Compute similarity transform given two sets of two points.
# OpenCV requires 3 pairs of corresponding points.
# We are faking the third one.
def similarityTransform(inPoints, outPoints):
s60 = math.sin(60*math.pi/180)
c60 = math.cos(60*math.pi/180)
inPts = np.copy(inPoints).tolist()
outPts = np.copy(outPoints).tolist()
# The third point is calculated so that the three points make an equilateral triangle
xin = c60*(inPts[0][0] - inPts[1][0]) - s60*(inPts[0][1] - inPts[1][1]) + inPts[1][0]
yin = s60*(inPts[0][0] - inPts[1][0]) + c60*(inPts[0][1] - inPts[1][1]) + inPts[1][1]
inPts.append([np.int(xin), np.int(yin)])
xout = c60*(outPts[0][0] - outPts[1][0]) - s60*(outPts[0][1] - outPts[1][1]) + outPts[1][0]
yout = s60*(outPts[0][0] - outPts[1][0]) + c60*(outPts[0][1] - outPts[1][1]) + outPts[1][1]
outPts.append([np.int(xout), np.int(yout)])
# Now we can use estimateRigidTransform for calculating the similarity transform.
tform = cv2.estimateAffinePartial2D(np.array([inPts]), np.array([outPts]))
return tform[0]
# Normalizes a facial image to a standard size given by outSize.
# Normalization is done based on Dlib's landmark points passed as pointsIn
# After normalization, left corner of the left eye is at (0.3 * w, h/3 )
# and right corner of the right eye is at ( 0.7 * w, h / 3) where w and h
# are the width and height of outSize.
def normalizeImagesAndLandmarks(outSize, imIn, pointsIn):
h, w = outSize
# Corners of the eye in input image
if len(pointsIn) == 68:
eyecornerSrc = [pointsIn[36], pointsIn[45]]
elif len(pointsIn) == 5:
eyecornerSrc = [pointsIn[2], pointsIn[0]]
# Corners of the eye in normalized image
eyecornerDst = [(np.int(0.3 * w), np.int(h/3)),
(np.int(0.7 * w), np.int(h/3))]
# Calculate similarity transform
tform = similarityTransform(eyecornerSrc, eyecornerDst)
imOut = np.zeros(imIn.shape, dtype=imIn.dtype)
# Apply similarity transform to input image
imOut = cv2.warpAffine(imIn, tform, (w, h))
# reshape pointsIn from numLandmarks x 2 to numLandmarks x 1 x 2
points2 = np.reshape(pointsIn, (pointsIn.shape[0], 1, pointsIn.shape[1]))
# Apply similarity transform to landmarks
pointsOut = cv2.transform(points2, tform)
# reshape pointsOut to numLandmarks x 2
pointsOut = np.reshape(pointsOut, (pointsIn.shape[0], pointsIn.shape[1]))
return imOut, pointsOut
def alignFace(imIn, faceRect, landmarkDetector, outSize):
# Corners of the eye in input image
(w, h) = outSize
landmarks = landmarkDetector(cv2.cvtColor(imIn, cv2.COLOR_BGR2RGB), faceRect)
pointsIn = np.array(dlibLandmarksToPoints(landmarks))
eyecornerSrc = [pointsIn[2], pointsIn[0]]
# Corners of the eye in normalized image
eyecornerDst = [(np.int(0.2 * w), np.int(h/3)),
(np.int(0.8 * w), np.int(h/3))]
# Calculate similarity transform
tform = similarityTransform(eyecornerSrc, eyecornerDst)
imIn = np.float32(imIn)/255.0
imOut = np.zeros(imIn.shape, dtype=imIn.dtype)
# Apply similarity transform to input image
imOut = cv2.warpAffine(imIn, tform, outSize)
imOut = np.uint8(imOut*255)
return imOut
# find the point closest to an array of points
# pointsArray is a Nx2 and point is 1x2 ndarray
def findIndex(pointsArray, point):
dist = np.linalg.norm(pointsArray-point, axis=1)
minIndex = np.argmin(dist)
return minIndex
# Check if a point is inside a rectangle
def rectContains(rect, point):
if point[0] < rect[0]:
return False
elif point[1] < rect[1]:
return False
elif point[0] > rect[2]:
return False
elif point[1] > rect[3]:
return False
return True
# Calculate Delaunay triangles for set of points
# Returns the vector of indices of 3 points for each triangle
def calculateDelaunayTriangles(rect, points):
# Create an instance of Subdiv2D
subdiv = cv2.Subdiv2D(rect)
# Insert points into subdiv
for p in points:
subdiv.insert((p[0], p[1]))
# Get Delaunay triangulation
triangleList = subdiv.getTriangleList()
# Find the indices of triangles in the points array
delaunayTri = []
for t in triangleList:
# The triangle returned by getTriangleList is
# a list of 6 coordinates of the 3 points in
# x1, y1, x2, y2, x3, y3 format.
# Store triangle as a list of three points
pt = []
pt.append((t[0], t[1]))
pt.append((t[2], t[3]))
pt.append((t[4], t[5]))
pt1 = (t[0], t[1])
pt2 = (t[2], t[3])
pt3 = (t[4], t[5])
if rectContains(rect, pt1) and rectContains(rect, pt2) and rectContains(rect, pt3):
# Variable to store a triangle as indices from list of points
ind = []
# Find the index of each vertex in the points list
for j in range(0, 3):
for k in range(0, len(points)):
if(abs(pt[j][0] - points[k][0]) < 1.0 and abs(pt[j][1] - points[k][1]) < 1.0):
ind.append(k)
# Store triangulation as a list of indices
if len(ind) == 3:
delaunayTri.append((ind[0], ind[1], ind[2]))
return delaunayTri
# Apply affine transform calculated using srcTri and dstTri to src and
# output an image of size.
def applyAffineTransform(src, srcTri, dstTri, size):
# Given a pair of triangles, find the affine transform.
warpMat = cv2.getAffineTransform(np.float32(srcTri), np.float32(dstTri))
# Apply the Affine Transform just found to the src image
dst = cv2.warpAffine(src, warpMat, (size[0], size[1]), None,
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
return dst
# Warps and alpha blends triangular regions from img1 and img2 to img
def warpTriangle(img1, img2, t1, t2):
# Find bounding rectangle for each triangle
r1 = cv2.boundingRect(np.float32([t1]))
r2 = cv2.boundingRect(np.float32([t2]))
# Offset points by left top corner of the respective rectangles
t1Rect = []
t2Rect = []
t2RectInt = []
for i in range(0, 3):
t1Rect.append(((t1[i][0] - r1[0]), (t1[i][1] - r1[1])))
t2Rect.append(((t2[i][0] - r2[0]), (t2[i][1] - r2[1])))
t2RectInt.append(((t2[i][0] - r2[0]), (t2[i][1] - r2[1])))
# Get mask by filling triangle
mask = np.zeros((r2[3], r2[2], 3), dtype=np.float32)
cv2.fillConvexPoly(mask, np.int32(t2RectInt), (1.0, 1.0, 1.0), 16, 0)
# Apply warpImage to small rectangular patches
img1Rect = img1[r1[1]:r1[1] + r1[3], r1[0]:r1[0] + r1[2]]
size = (r2[2], r2[3])
img2Rect = applyAffineTransform(img1Rect, t1Rect, t2Rect, size)
img2Rect = img2Rect * mask
# Copy triangular region of the rectangular patch to the output image
img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] = img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] * ((1.0, 1.0, 1.0) - mask)
img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] = img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] + img2Rect
# detect facial landmarks in image
def getLandmarks(faceDetector, landmarkDetector, im, FACE_DOWNSAMPLE_RATIO = 1):
points = []
imSmall = cv2.resize(im,None,
fx=1.0/FACE_DOWNSAMPLE_RATIO,
fy=1.0/FACE_DOWNSAMPLE_RATIO,
interpolation = cv2.INTER_LINEAR)
faceRects = faceDetector(imSmall, 0)
if len(faceRects) > 0:
maxArea = 0
maxRect = None
# TODO: test on images with multiple faces
for face in faceRects:
if face.area() > maxArea:
maxArea = face.area()
maxRect = [face.left(),
face.top(),
face.right(),
face.bottom()
]
rect = dlib.rectangle(*maxRect)
scaledRect = dlib.rectangle(int(rect.left()*FACE_DOWNSAMPLE_RATIO),
int(rect.top()*FACE_DOWNSAMPLE_RATIO),
int(rect.right()*FACE_DOWNSAMPLE_RATIO),
int(rect.bottom()*FACE_DOWNSAMPLE_RATIO))
landmarks = landmarkDetector(im, scaledRect)
points = dlibLandmarksToPoints(landmarks)
return points
# Warps an image in a piecewise affine manner.
# The warp is defined by the movement of landmark points specified by pointsIn
# to a new location specified by pointsOut. The triangulation beween points is specified
# by their indices in delaunayTri.
def warpImage(imIn, pointsIn, pointsOut, delaunayTri):
h, w, ch = imIn.shape
# Output image
imOut = np.zeros(imIn.shape, dtype=imIn.dtype)
# Warp each input triangle to output triangle.
# The triangulation is specified by delaunayTri
for j in range(0, len(delaunayTri)):
# Input and output points corresponding to jth triangle
tin = []
tout = []
for k in range(0, 3):
# Extract a vertex of input triangle
pIn = pointsIn[delaunayTri[j][k]]
# Make sure the vertex is inside the image.
pIn = constrainPoint(pIn, w, h)
# Extract a vertex of the output triangle
pOut = pointsOut[delaunayTri[j][k]]
# Make sure the vertex is inside the image.
pOut = constrainPoint(pOut, w, h)
# Push the input vertex into input triangle
tin.append(pIn)
# Push the output vertex into output triangle
tout.append(pOut)
# Warp pixels inside input triangle to output triangle.
warpTriangle(imIn, imOut, tin, tout)
return imOut

View file

@ -1,290 +0,0 @@
import sys
import os
import math
import cv2
import dlib
import numpy as np
import Facial_Recognition_Render as fr
import _pickle as cPickle
import glob
import DBHelper
faceWidth = 320
faceHeight = 320
SKIP_FRAMES = 1
def alignFace(imFace, landmarks):
l_x = landmarks[39][0]
l_y = landmarks[39][1]
r_x = landmarks[42][0]
r_y = landmarks[42][1]
dy = r_y - l_y
dx = r_x - l_x
# Convert from radians to degrees
angle = math.atan2(dy, dx) * 180.0 / math.pi
eyesCenter = ((l_x + r_x) * 0.5, (l_y + r_y) * 0.5)
rotMatrix = cv2.getRotationMatrix2D(eyesCenter, angle, 1)
alignedImFace = np.zeros(imFace.shape, dtype=np.uint8)
alignedImFace = cv2.warpAffine(imFace, rotMatrix, (imFace.shape[1], imFace.shape[0]))
return alignedImFace
def face_detector_haarcascade(image):
grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
resize_fx = 1
resize_fy = 1
grey = cv2.resize(grey, dsize=None, fx=resize_fx, fy=resize_fy, interpolation=cv2.INTER_AREA)
pwd = sys.path[0]
classfier = cv2.CascadeClassifier(pwd + "/Facial_models/haarcascade_frontalface_alt2.xml")
faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=1, minSize=(16, 16))
if len(faceRects) > 0:
for faceRect in faceRects:
x, y, w, h = faceRect
x = int(x / resize_fx)
y = int(y / resize_fy)
w = int(w / resize_fx)
h = int(h / resize_fy)
cv2.rectangle(image, (x - 10, y - 10), (x + w + 10, y + h + 10), (0, 255, 0), 5)
return image
def face_detector_ssd(image):
pwd = sys.path[0]
net = cv2.dnn.readNetFromCaffe(pwd + "/Facial_models/deploy.prototxt",
pwd + "/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel")
resize = (300, 300)
confidence_thres = 0.65
blob = cv2.dnn.blobFromImage(cv2.resize(image, dsize=resize), 1.0, resize, (104.0, 177.0, 123.0))
# blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
net.setInput(blob)
detections = net.forward()
h, w, c = image.shape
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > confidence_thres:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
text = "{:.2f}%".format(confidence * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 5)
cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 1.00, (0, 255, 0), 3)
return image
def training_data_loader():
imagesFolder = sys.path[0] + "/Facial_images/face_rec/train/"
subfolders = []
for x in os.listdir(imagesFolder):
xpath = os.path.join(imagesFolder, x)
if os.path.isdir(xpath):
subfolders.append(xpath)
imagePaths = []
labels = []
labelsMap = {}
labelsMap[-1] = "unknown"
for i, subfolder in enumerate(subfolders):
labelsMap[i] = DBHelper.get_firstname(os.path.basename(subfolder)) + "_" + DBHelper.get_lastname(
os.path.basename(subfolder))
for x in os.listdir(subfolder):
xpath = os.path.join(subfolder, x)
if x.endswith('jpg') or x.endswith('pgm'):
imagePaths.append(xpath)
labels.append(i)
imagesFaceTrain = []
labelsFaceTrain = []
faceDetector = dlib.get_frontal_face_detector()
landmarkDetector = dlib.shape_predictor(sys.path[0] + "/Facial_models/shape_predictor_68_face_landmarks.dat")
for j, imagePath in enumerate(imagePaths):
im = cv2.imread(imagePath, 0)
imHeight, imWidth = im.shape[:2]
landmarks = fr.getLandmarks(faceDetector, landmarkDetector, im)
landmarks = np.array(landmarks)
if len(landmarks) == 68:
x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0])
x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0])
y1Limit = landmarks[27][1] - 3 * (landmarks[30][1] - landmarks[27][1])
y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1])
x1 = max(x1Limit, 0)
x2 = min(x2Limit, imWidth)
y1 = max(y1Limit, 0)
y2 = min(y2Limit, imHeight)
imFace = im[y1:y2, x1:x2]
alignedFace = alignFace(imFace, landmarks)
alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth))
imagesFaceTrain.append(np.float32(alignedFace) / 255.0)
labelsFaceTrain.append(labels[j])
return imagesFaceTrain, labelsFaceTrain, labelsMap
def training_recognizer(rec_type):
imagesFaceTrain, labelsFaceTrain, labelsMap = training_data_loader()
if (rec_type == 'LBPH'):
faceRecognizer = cv2.face.LBPHFaceRecognizer_create()
print("Training using LBPH Faces")
elif (rec_type == 'Eigen'):
faceRecognizer = cv2.face.EigenFaceRecognizer_create()
print("Training using Eigen Faces")
elif (rec_type == 'Fisher'):
faceRecognizer = cv2.face.FisherFaceRecognizer_create()
print("Training using Fisher Faces")
faceRecognizer.train(imagesFaceTrain, np.array(labelsFaceTrain))
faceRecognizer.write(sys.path[0] + '/Facial_models/face_rec_model.yml')
with open(sys.path[0] + '/Facial_models/labels_map.pkl', 'wb') as f:
cPickle.dump(labelsMap, f)
def face_recognition_inference(rec_type):
# testFiles = glob.glob(sys.path[0]+'/Facial_test_images/face_rec/test/*.jpg')
# testFiles.sort()
i = 0
correct = 0
error = 0
faceDetector = dlib.get_frontal_face_detector()
print(sys.path[0])
landmarkDetector = dlib.shape_predictor(sys.path[0] + '/Facial_models/shape_predictor_68_face_landmarks.dat')
if rec_type == 'LBPH':
faceRecognizer = cv2.face.LBPHFaceRecognizer_create()
print("Test using LBPH Faces")
elif rec_type == 'Eigen':
faceRecognizer = cv2.face.EigenFaceRecognizer_create()
print("Test using Eigen Faces")
elif rec_type == 'Fisher':
faceRecognizer = cv2.face.FisherFaceRecognizer_create()
print("Test using Fisher Faces")
faceRecognizer.read(sys.path[0] + '/Facial_models/face_rec_model.yml')
labelsMap = np.load(sys.path[0] + '/Facial_models/labels_map.pkl', allow_pickle=True)
cam = cv2.VideoCapture(0)
while DBHelper.get_power() == "on":
# imagePath = testFiles[i]
success, original = cam.read()
im = cv2.resize(original, (640, 480))
i += 1
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
imHeight, imWidth = im.shape[:2]
landmarks = fr.getLandmarks(faceDetector, landmarkDetector, im)
landmarks = np.array(landmarks)
cond = False
cond2 = False
if len(landmarks) == 68:
x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0])
x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0])
y1Limit = landmarks[27][1] - 3 * (landmarks[30][1] - landmarks[27][1])
y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1])
x1 = max(x1Limit, 0)
x2 = min(x2Limit, imWidth)
y1 = max(y1Limit, 0)
y2 = min(y2Limit, imHeight)
imFace = im[y1:y2, x1:x2]
alignedFace = alignFace(imFace, landmarks)
alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth))
imFaceFloat = np.float32(alignedFace) / 255.0
predictedLabel = -1
predictedLabel, score = faceRecognizer.predict(imFaceFloat)
center = (int((x1 + x2) / 2), int((y1 + y2) / 2))
radius = int((y2 - y1) / 2.0)
text = '{} {}%'.format(labelsMap[predictedLabel], round(score, 5))
cv2.rectangle(original, (x1, y1), (x2, y2), (0, 255, 0), 5)
cv2.putText(original, text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 3)
cond = True
if cond:
DBHelper.set_motor("on")
DBHelper.set_alarm("off")
elif not cond:
DBHelper.set_motor("off")
DBHelper.set_alarm("on")
cv2.imshow('Face Recognition Demo', original)
k = cv2.waitKey(10)
DBHelper.set_alarm("off")
DBHelper.set_motor("off")
cam.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
mode = 'test'
rec_type = 'LBPH' # 'LBPH' 'Fisher' 'Eigen'
if mode == 'train':
training_recognizer(rec_type)
elif mode == 'test':
face_recognition_inference(rec_type)
# video process (keep it in case if needed)
'''
cameraCapture = cv2.VideoCapture(1)
success, frame = cameraCapture.read()
while success and cv2.waitKey(1) == -1:
success, frame = cameraCapture.read()
face_detector_ssd(frame)
cv2.imshow("video", frame)
cameraCapture.release()
cv2.destroyAllWindows()
'''
# image process (keep it in case if needed)
'''
image_name = "8.jpg"
split_name = image_name.split(".")
image_read_path = sys.path[0]+"/Facial_test_images/"+image_name
image_save_path = sys.path[0]+"/Facial_test_images/output/"+split_name[0]+"_result."+split_name[1]
image = cv2.imread(image_read_path)
image = face_detector_ssd(image)
image = face_detector_haarcascade(image)
print(image_save_path)
cv2.imwrite(image_save_path, image)
cv2.imshow("result", image)
cv2.waitKey()
cv2.destroyAllWindows()
'''

Binary file not shown.

Before

Width:  |  Height:  |  Size: 75 KiB

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 79 KiB

After

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 77 KiB

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 75 KiB

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

After

Width:  |  Height:  |  Size: 75 KiB

Some files were not shown because too many files have changed in this diff Show more