Created starter files for the project.
This commit is contained in:
commit
73f0c0db42
1992 changed files with 769897 additions and 0 deletions
0
venv/Lib/site-packages/numpy/tests/__init__.py
Normal file
0
venv/Lib/site-packages/numpy/tests/__init__.py
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
365
venv/Lib/site-packages/numpy/tests/test_ctypeslib.py
Normal file
365
venv/Lib/site-packages/numpy/tests/test_ctypeslib.py
Normal file
|
@ -0,0 +1,365 @@
|
|||
import sys
|
||||
import pytest
|
||||
import weakref
|
||||
|
||||
import numpy as np
|
||||
from numpy.ctypeslib import ndpointer, load_library, as_array
|
||||
from numpy.distutils.misc_util import get_shared_lib_extension
|
||||
from numpy.testing import assert_, assert_array_equal, assert_raises, assert_equal
|
||||
|
||||
try:
|
||||
import ctypes
|
||||
except ImportError:
|
||||
ctypes = None
|
||||
else:
|
||||
cdll = None
|
||||
test_cdll = None
|
||||
if hasattr(sys, 'gettotalrefcount'):
|
||||
try:
|
||||
cdll = load_library('_multiarray_umath_d', np.core._multiarray_umath.__file__)
|
||||
except OSError:
|
||||
pass
|
||||
try:
|
||||
test_cdll = load_library('_multiarray_tests', np.core._multiarray_tests.__file__)
|
||||
except OSError:
|
||||
pass
|
||||
if cdll is None:
|
||||
cdll = load_library('_multiarray_umath', np.core._multiarray_umath.__file__)
|
||||
if test_cdll is None:
|
||||
test_cdll = load_library('_multiarray_tests', np.core._multiarray_tests.__file__)
|
||||
|
||||
c_forward_pointer = test_cdll.forward_pointer
|
||||
|
||||
|
||||
@pytest.mark.skipif(ctypes is None,
|
||||
reason="ctypes not available in this python")
|
||||
@pytest.mark.skipif(sys.platform == 'cygwin',
|
||||
reason="Known to fail on cygwin")
|
||||
class TestLoadLibrary:
|
||||
def test_basic(self):
|
||||
try:
|
||||
# Should succeed
|
||||
load_library('_multiarray_umath', np.core._multiarray_umath.__file__)
|
||||
except ImportError as e:
|
||||
msg = ("ctypes is not available on this python: skipping the test"
|
||||
" (import error was: %s)" % str(e))
|
||||
print(msg)
|
||||
|
||||
def test_basic2(self):
|
||||
# Regression for #801: load_library with a full library name
|
||||
# (including extension) does not work.
|
||||
try:
|
||||
try:
|
||||
so = get_shared_lib_extension(is_python_ext=True)
|
||||
# Should succeed
|
||||
load_library('_multiarray_umath%s' % so, np.core._multiarray_umath.__file__)
|
||||
except ImportError:
|
||||
print("No distutils available, skipping test.")
|
||||
except ImportError as e:
|
||||
msg = ("ctypes is not available on this python: skipping the test"
|
||||
" (import error was: %s)" % str(e))
|
||||
print(msg)
|
||||
|
||||
|
||||
class TestNdpointer:
|
||||
def test_dtype(self):
|
||||
dt = np.intc
|
||||
p = ndpointer(dtype=dt)
|
||||
assert_(p.from_param(np.array([1], dt)))
|
||||
dt = '<i4'
|
||||
p = ndpointer(dtype=dt)
|
||||
assert_(p.from_param(np.array([1], dt)))
|
||||
dt = np.dtype('>i4')
|
||||
p = ndpointer(dtype=dt)
|
||||
p.from_param(np.array([1], dt))
|
||||
assert_raises(TypeError, p.from_param,
|
||||
np.array([1], dt.newbyteorder('swap')))
|
||||
dtnames = ['x', 'y']
|
||||
dtformats = [np.intc, np.float64]
|
||||
dtdescr = {'names': dtnames, 'formats': dtformats}
|
||||
dt = np.dtype(dtdescr)
|
||||
p = ndpointer(dtype=dt)
|
||||
assert_(p.from_param(np.zeros((10,), dt)))
|
||||
samedt = np.dtype(dtdescr)
|
||||
p = ndpointer(dtype=samedt)
|
||||
assert_(p.from_param(np.zeros((10,), dt)))
|
||||
dt2 = np.dtype(dtdescr, align=True)
|
||||
if dt.itemsize != dt2.itemsize:
|
||||
assert_raises(TypeError, p.from_param, np.zeros((10,), dt2))
|
||||
else:
|
||||
assert_(p.from_param(np.zeros((10,), dt2)))
|
||||
|
||||
def test_ndim(self):
|
||||
p = ndpointer(ndim=0)
|
||||
assert_(p.from_param(np.array(1)))
|
||||
assert_raises(TypeError, p.from_param, np.array([1]))
|
||||
p = ndpointer(ndim=1)
|
||||
assert_raises(TypeError, p.from_param, np.array(1))
|
||||
assert_(p.from_param(np.array([1])))
|
||||
p = ndpointer(ndim=2)
|
||||
assert_(p.from_param(np.array([[1]])))
|
||||
|
||||
def test_shape(self):
|
||||
p = ndpointer(shape=(1, 2))
|
||||
assert_(p.from_param(np.array([[1, 2]])))
|
||||
assert_raises(TypeError, p.from_param, np.array([[1], [2]]))
|
||||
p = ndpointer(shape=())
|
||||
assert_(p.from_param(np.array(1)))
|
||||
|
||||
def test_flags(self):
|
||||
x = np.array([[1, 2], [3, 4]], order='F')
|
||||
p = ndpointer(flags='FORTRAN')
|
||||
assert_(p.from_param(x))
|
||||
p = ndpointer(flags='CONTIGUOUS')
|
||||
assert_raises(TypeError, p.from_param, x)
|
||||
p = ndpointer(flags=x.flags.num)
|
||||
assert_(p.from_param(x))
|
||||
assert_raises(TypeError, p.from_param, np.array([[1, 2], [3, 4]]))
|
||||
|
||||
def test_cache(self):
|
||||
assert_(ndpointer(dtype=np.float64) is ndpointer(dtype=np.float64))
|
||||
|
||||
# shapes are normalized
|
||||
assert_(ndpointer(shape=2) is ndpointer(shape=(2,)))
|
||||
|
||||
# 1.12 <= v < 1.16 had a bug that made these fail
|
||||
assert_(ndpointer(shape=2) is not ndpointer(ndim=2))
|
||||
assert_(ndpointer(ndim=2) is not ndpointer(shape=2))
|
||||
|
||||
@pytest.mark.skipif(ctypes is None,
|
||||
reason="ctypes not available on this python installation")
|
||||
class TestNdpointerCFunc:
|
||||
def test_arguments(self):
|
||||
""" Test that arguments are coerced from arrays """
|
||||
c_forward_pointer.restype = ctypes.c_void_p
|
||||
c_forward_pointer.argtypes = (ndpointer(ndim=2),)
|
||||
|
||||
c_forward_pointer(np.zeros((2, 3)))
|
||||
# too many dimensions
|
||||
assert_raises(
|
||||
ctypes.ArgumentError, c_forward_pointer, np.zeros((2, 3, 4)))
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'dt', [
|
||||
float,
|
||||
np.dtype(dict(
|
||||
formats=['<i4', '<i4'],
|
||||
names=['a', 'b'],
|
||||
offsets=[0, 2],
|
||||
itemsize=6
|
||||
))
|
||||
], ids=[
|
||||
'float',
|
||||
'overlapping-fields'
|
||||
]
|
||||
)
|
||||
def test_return(self, dt):
|
||||
""" Test that return values are coerced to arrays """
|
||||
arr = np.zeros((2, 3), dt)
|
||||
ptr_type = ndpointer(shape=arr.shape, dtype=arr.dtype)
|
||||
|
||||
c_forward_pointer.restype = ptr_type
|
||||
c_forward_pointer.argtypes = (ptr_type,)
|
||||
|
||||
# check that the arrays are equivalent views on the same data
|
||||
arr2 = c_forward_pointer(arr)
|
||||
assert_equal(arr2.dtype, arr.dtype)
|
||||
assert_equal(arr2.shape, arr.shape)
|
||||
assert_equal(
|
||||
arr2.__array_interface__['data'],
|
||||
arr.__array_interface__['data']
|
||||
)
|
||||
|
||||
def test_vague_return_value(self):
|
||||
""" Test that vague ndpointer return values do not promote to arrays """
|
||||
arr = np.zeros((2, 3))
|
||||
ptr_type = ndpointer(dtype=arr.dtype)
|
||||
|
||||
c_forward_pointer.restype = ptr_type
|
||||
c_forward_pointer.argtypes = (ptr_type,)
|
||||
|
||||
ret = c_forward_pointer(arr)
|
||||
assert_(isinstance(ret, ptr_type))
|
||||
|
||||
|
||||
@pytest.mark.skipif(ctypes is None,
|
||||
reason="ctypes not available on this python installation")
|
||||
class TestAsArray:
|
||||
def test_array(self):
|
||||
from ctypes import c_int
|
||||
|
||||
pair_t = c_int * 2
|
||||
a = as_array(pair_t(1, 2))
|
||||
assert_equal(a.shape, (2,))
|
||||
assert_array_equal(a, np.array([1, 2]))
|
||||
a = as_array((pair_t * 3)(pair_t(1, 2), pair_t(3, 4), pair_t(5, 6)))
|
||||
assert_equal(a.shape, (3, 2))
|
||||
assert_array_equal(a, np.array([[1, 2], [3, 4], [5, 6]]))
|
||||
|
||||
def test_pointer(self):
|
||||
from ctypes import c_int, cast, POINTER
|
||||
|
||||
p = cast((c_int * 10)(*range(10)), POINTER(c_int))
|
||||
|
||||
a = as_array(p, shape=(10,))
|
||||
assert_equal(a.shape, (10,))
|
||||
assert_array_equal(a, np.arange(10))
|
||||
|
||||
a = as_array(p, shape=(2, 5))
|
||||
assert_equal(a.shape, (2, 5))
|
||||
assert_array_equal(a, np.arange(10).reshape((2, 5)))
|
||||
|
||||
# shape argument is required
|
||||
assert_raises(TypeError, as_array, p)
|
||||
|
||||
def test_struct_array_pointer(self):
|
||||
from ctypes import c_int16, Structure, pointer
|
||||
|
||||
class Struct(Structure):
|
||||
_fields_ = [('a', c_int16)]
|
||||
|
||||
Struct3 = 3 * Struct
|
||||
|
||||
c_array = (2 * Struct3)(
|
||||
Struct3(Struct(a=1), Struct(a=2), Struct(a=3)),
|
||||
Struct3(Struct(a=4), Struct(a=5), Struct(a=6))
|
||||
)
|
||||
|
||||
expected = np.array([
|
||||
[(1,), (2,), (3,)],
|
||||
[(4,), (5,), (6,)],
|
||||
], dtype=[('a', np.int16)])
|
||||
|
||||
def check(x):
|
||||
assert_equal(x.dtype, expected.dtype)
|
||||
assert_equal(x, expected)
|
||||
|
||||
# all of these should be equivalent
|
||||
check(as_array(c_array))
|
||||
check(as_array(pointer(c_array), shape=()))
|
||||
check(as_array(pointer(c_array[0]), shape=(2,)))
|
||||
check(as_array(pointer(c_array[0][0]), shape=(2, 3)))
|
||||
|
||||
def test_reference_cycles(self):
|
||||
# related to gh-6511
|
||||
import ctypes
|
||||
|
||||
# create array to work with
|
||||
# don't use int/long to avoid running into bpo-10746
|
||||
N = 100
|
||||
a = np.arange(N, dtype=np.short)
|
||||
|
||||
# get pointer to array
|
||||
pnt = np.ctypeslib.as_ctypes(a)
|
||||
|
||||
with np.testing.assert_no_gc_cycles():
|
||||
# decay the array above to a pointer to its first element
|
||||
newpnt = ctypes.cast(pnt, ctypes.POINTER(ctypes.c_short))
|
||||
# and construct an array using this data
|
||||
b = np.ctypeslib.as_array(newpnt, (N,))
|
||||
# now delete both, which should cleanup both objects
|
||||
del newpnt, b
|
||||
|
||||
def test_segmentation_fault(self):
|
||||
arr = np.zeros((224, 224, 3))
|
||||
c_arr = np.ctypeslib.as_ctypes(arr)
|
||||
arr_ref = weakref.ref(arr)
|
||||
del arr
|
||||
|
||||
# check the reference wasn't cleaned up
|
||||
assert_(arr_ref() is not None)
|
||||
|
||||
# check we avoid the segfault
|
||||
c_arr[0][0][0]
|
||||
|
||||
|
||||
@pytest.mark.skipif(ctypes is None,
|
||||
reason="ctypes not available on this python installation")
|
||||
class TestAsCtypesType:
|
||||
""" Test conversion from dtypes to ctypes types """
|
||||
def test_scalar(self):
|
||||
dt = np.dtype('<u2')
|
||||
ct = np.ctypeslib.as_ctypes_type(dt)
|
||||
assert_equal(ct, ctypes.c_uint16.__ctype_le__)
|
||||
|
||||
dt = np.dtype('>u2')
|
||||
ct = np.ctypeslib.as_ctypes_type(dt)
|
||||
assert_equal(ct, ctypes.c_uint16.__ctype_be__)
|
||||
|
||||
dt = np.dtype('u2')
|
||||
ct = np.ctypeslib.as_ctypes_type(dt)
|
||||
assert_equal(ct, ctypes.c_uint16)
|
||||
|
||||
def test_subarray(self):
|
||||
dt = np.dtype((np.int32, (2, 3)))
|
||||
ct = np.ctypeslib.as_ctypes_type(dt)
|
||||
assert_equal(ct, 2 * (3 * ctypes.c_int32))
|
||||
|
||||
def test_structure(self):
|
||||
dt = np.dtype([
|
||||
('a', np.uint16),
|
||||
('b', np.uint32),
|
||||
])
|
||||
|
||||
ct = np.ctypeslib.as_ctypes_type(dt)
|
||||
assert_(issubclass(ct, ctypes.Structure))
|
||||
assert_equal(ctypes.sizeof(ct), dt.itemsize)
|
||||
assert_equal(ct._fields_, [
|
||||
('a', ctypes.c_uint16),
|
||||
('b', ctypes.c_uint32),
|
||||
])
|
||||
|
||||
def test_structure_aligned(self):
|
||||
dt = np.dtype([
|
||||
('a', np.uint16),
|
||||
('b', np.uint32),
|
||||
], align=True)
|
||||
|
||||
ct = np.ctypeslib.as_ctypes_type(dt)
|
||||
assert_(issubclass(ct, ctypes.Structure))
|
||||
assert_equal(ctypes.sizeof(ct), dt.itemsize)
|
||||
assert_equal(ct._fields_, [
|
||||
('a', ctypes.c_uint16),
|
||||
('', ctypes.c_char * 2), # padding
|
||||
('b', ctypes.c_uint32),
|
||||
])
|
||||
|
||||
def test_union(self):
|
||||
dt = np.dtype(dict(
|
||||
names=['a', 'b'],
|
||||
offsets=[0, 0],
|
||||
formats=[np.uint16, np.uint32]
|
||||
))
|
||||
|
||||
ct = np.ctypeslib.as_ctypes_type(dt)
|
||||
assert_(issubclass(ct, ctypes.Union))
|
||||
assert_equal(ctypes.sizeof(ct), dt.itemsize)
|
||||
assert_equal(ct._fields_, [
|
||||
('a', ctypes.c_uint16),
|
||||
('b', ctypes.c_uint32),
|
||||
])
|
||||
|
||||
def test_padded_union(self):
|
||||
dt = np.dtype(dict(
|
||||
names=['a', 'b'],
|
||||
offsets=[0, 0],
|
||||
formats=[np.uint16, np.uint32],
|
||||
itemsize=5,
|
||||
))
|
||||
|
||||
ct = np.ctypeslib.as_ctypes_type(dt)
|
||||
assert_(issubclass(ct, ctypes.Union))
|
||||
assert_equal(ctypes.sizeof(ct), dt.itemsize)
|
||||
assert_equal(ct._fields_, [
|
||||
('a', ctypes.c_uint16),
|
||||
('b', ctypes.c_uint32),
|
||||
('', ctypes.c_char * 5), # padding
|
||||
])
|
||||
|
||||
def test_overlapping(self):
|
||||
dt = np.dtype(dict(
|
||||
names=['a', 'b'],
|
||||
offsets=[0, 2],
|
||||
formats=[np.uint32, np.uint32]
|
||||
))
|
||||
assert_raises(NotImplementedError, np.ctypeslib.as_ctypes_type, dt)
|
58
venv/Lib/site-packages/numpy/tests/test_matlib.py
Normal file
58
venv/Lib/site-packages/numpy/tests/test_matlib.py
Normal file
|
@ -0,0 +1,58 @@
|
|||
import numpy as np
|
||||
import numpy.matlib
|
||||
from numpy.testing import assert_array_equal, assert_
|
||||
|
||||
def test_empty():
|
||||
x = numpy.matlib.empty((2,))
|
||||
assert_(isinstance(x, np.matrix))
|
||||
assert_(x.shape, (1, 2))
|
||||
|
||||
def test_ones():
|
||||
assert_array_equal(numpy.matlib.ones((2, 3)),
|
||||
np.matrix([[ 1., 1., 1.],
|
||||
[ 1., 1., 1.]]))
|
||||
|
||||
assert_array_equal(numpy.matlib.ones(2), np.matrix([[ 1., 1.]]))
|
||||
|
||||
def test_zeros():
|
||||
assert_array_equal(numpy.matlib.zeros((2, 3)),
|
||||
np.matrix([[ 0., 0., 0.],
|
||||
[ 0., 0., 0.]]))
|
||||
|
||||
assert_array_equal(numpy.matlib.zeros(2), np.matrix([[ 0., 0.]]))
|
||||
|
||||
def test_identity():
|
||||
x = numpy.matlib.identity(2, dtype=int)
|
||||
assert_array_equal(x, np.matrix([[1, 0], [0, 1]]))
|
||||
|
||||
def test_eye():
|
||||
xc = numpy.matlib.eye(3, k=1, dtype=int)
|
||||
assert_array_equal(xc, np.matrix([[ 0, 1, 0],
|
||||
[ 0, 0, 1],
|
||||
[ 0, 0, 0]]))
|
||||
assert xc.flags.c_contiguous
|
||||
assert not xc.flags.f_contiguous
|
||||
|
||||
xf = numpy.matlib.eye(3, 4, dtype=int, order='F')
|
||||
assert_array_equal(xf, np.matrix([[ 1, 0, 0, 0],
|
||||
[ 0, 1, 0, 0],
|
||||
[ 0, 0, 1, 0]]))
|
||||
assert not xf.flags.c_contiguous
|
||||
assert xf.flags.f_contiguous
|
||||
|
||||
def test_rand():
|
||||
x = numpy.matlib.rand(3)
|
||||
# check matrix type, array would have shape (3,)
|
||||
assert_(x.ndim == 2)
|
||||
|
||||
def test_randn():
|
||||
x = np.matlib.randn(3)
|
||||
# check matrix type, array would have shape (3,)
|
||||
assert_(x.ndim == 2)
|
||||
|
||||
def test_repmat():
|
||||
a1 = np.arange(4)
|
||||
x = numpy.matlib.repmat(a1, 2, 2)
|
||||
y = np.array([[0, 1, 2, 3, 0, 1, 2, 3],
|
||||
[0, 1, 2, 3, 0, 1, 2, 3]])
|
||||
assert_array_equal(x, y)
|
17
venv/Lib/site-packages/numpy/tests/test_numpy_version.py
Normal file
17
venv/Lib/site-packages/numpy/tests/test_numpy_version.py
Normal file
|
@ -0,0 +1,17 @@
|
|||
import re
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_
|
||||
|
||||
|
||||
def test_valid_numpy_version():
|
||||
# Verify that the numpy version is a valid one (no .post suffix or other
|
||||
# nonsense). See gh-6431 for an issue caused by an invalid version.
|
||||
version_pattern = r"^[0-9]+\.[0-9]+\.[0-9]+(|a[0-9]|b[0-9]|rc[0-9])"
|
||||
dev_suffix = r"(\.dev0\+([0-9a-f]{7}|Unknown))"
|
||||
if np.version.release:
|
||||
res = re.match(version_pattern, np.__version__)
|
||||
else:
|
||||
res = re.match(version_pattern + dev_suffix, np.__version__)
|
||||
|
||||
assert_(res is not None, np.__version__)
|
490
venv/Lib/site-packages/numpy/tests/test_public_api.py
Normal file
490
venv/Lib/site-packages/numpy/tests/test_public_api.py
Normal file
|
@ -0,0 +1,490 @@
|
|||
import sys
|
||||
import subprocess
|
||||
import pkgutil
|
||||
import types
|
||||
import importlib
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
import numpy
|
||||
import pytest
|
||||
|
||||
try:
|
||||
import ctypes
|
||||
except ImportError:
|
||||
ctypes = None
|
||||
|
||||
|
||||
def check_dir(module, module_name=None):
|
||||
"""Returns a mapping of all objects with the wrong __module__ attribute."""
|
||||
if module_name is None:
|
||||
module_name = module.__name__
|
||||
results = {}
|
||||
for name in dir(module):
|
||||
item = getattr(module, name)
|
||||
if (hasattr(item, '__module__') and hasattr(item, '__name__')
|
||||
and item.__module__ != module_name):
|
||||
results[name] = item.__module__ + '.' + item.__name__
|
||||
return results
|
||||
|
||||
|
||||
def test_numpy_namespace():
|
||||
# None of these objects are publicly documented to be part of the main
|
||||
# NumPy namespace (some are useful though, others need to be cleaned up)
|
||||
undocumented = {
|
||||
'Tester': 'numpy.testing._private.nosetester.NoseTester',
|
||||
'_add_newdoc_ufunc': 'numpy.core._multiarray_umath._add_newdoc_ufunc',
|
||||
'add_docstring': 'numpy.core._multiarray_umath.add_docstring',
|
||||
'add_newdoc': 'numpy.core.function_base.add_newdoc',
|
||||
'add_newdoc_ufunc': 'numpy.core._multiarray_umath._add_newdoc_ufunc',
|
||||
'byte_bounds': 'numpy.lib.utils.byte_bounds',
|
||||
'compare_chararrays': 'numpy.core._multiarray_umath.compare_chararrays',
|
||||
'deprecate': 'numpy.lib.utils.deprecate',
|
||||
'deprecate_with_doc': 'numpy.lib.utils.<lambda>',
|
||||
'disp': 'numpy.lib.function_base.disp',
|
||||
'fastCopyAndTranspose': 'numpy.core._multiarray_umath._fastCopyAndTranspose',
|
||||
'get_array_wrap': 'numpy.lib.shape_base.get_array_wrap',
|
||||
'get_include': 'numpy.lib.utils.get_include',
|
||||
'mafromtxt': 'numpy.lib.npyio.mafromtxt',
|
||||
'ndfromtxt': 'numpy.lib.npyio.ndfromtxt',
|
||||
'recfromcsv': 'numpy.lib.npyio.recfromcsv',
|
||||
'recfromtxt': 'numpy.lib.npyio.recfromtxt',
|
||||
'safe_eval': 'numpy.lib.utils.safe_eval',
|
||||
'set_string_function': 'numpy.core.arrayprint.set_string_function',
|
||||
'show_config': 'numpy.__config__.show',
|
||||
'who': 'numpy.lib.utils.who',
|
||||
}
|
||||
# These built-in types are re-exported by numpy.
|
||||
builtins = {
|
||||
'bool': 'builtins.bool',
|
||||
'complex': 'builtins.complex',
|
||||
'float': 'builtins.float',
|
||||
'int': 'builtins.int',
|
||||
'long': 'builtins.int',
|
||||
'object': 'builtins.object',
|
||||
'str': 'builtins.str',
|
||||
'unicode': 'builtins.str',
|
||||
}
|
||||
whitelist = dict(undocumented, **builtins)
|
||||
bad_results = check_dir(np)
|
||||
# pytest gives better error messages with the builtin assert than with
|
||||
# assert_equal
|
||||
assert bad_results == whitelist
|
||||
|
||||
|
||||
@pytest.mark.parametrize('name', ['testing', 'Tester'])
|
||||
def test_import_lazy_import(name):
|
||||
"""Make sure we can actually use the modules we lazy load.
|
||||
|
||||
While not exported as part of the public API, it was accessible. With the
|
||||
use of __getattr__ and __dir__, this isn't always true It can happen that
|
||||
an infinite recursion may happen.
|
||||
|
||||
This is the only way I found that would force the failure to appear on the
|
||||
badly implemented code.
|
||||
|
||||
We also test for the presence of the lazily imported modules in dir
|
||||
|
||||
"""
|
||||
exe = (sys.executable, '-c', "import numpy; numpy." + name)
|
||||
result = subprocess.check_output(exe)
|
||||
assert not result
|
||||
|
||||
# Make sure they are still in the __dir__
|
||||
assert name in dir(np)
|
||||
|
||||
|
||||
def test_dir_testing():
|
||||
"""Assert that output of dir has only one "testing/tester"
|
||||
attribute without duplicate"""
|
||||
assert len(dir(np)) == len(set(dir(np)))
|
||||
|
||||
|
||||
def test_numpy_linalg():
|
||||
bad_results = check_dir(np.linalg)
|
||||
assert bad_results == {}
|
||||
|
||||
|
||||
def test_numpy_fft():
|
||||
bad_results = check_dir(np.fft)
|
||||
assert bad_results == {}
|
||||
|
||||
|
||||
@pytest.mark.skipif(ctypes is None,
|
||||
reason="ctypes not available in this python")
|
||||
def test_NPY_NO_EXPORT():
|
||||
cdll = ctypes.CDLL(np.core._multiarray_tests.__file__)
|
||||
# Make sure an arbitrary NPY_NO_EXPORT function is actually hidden
|
||||
f = getattr(cdll, 'test_not_exported', None)
|
||||
assert f is None, ("'test_not_exported' is mistakenly exported, "
|
||||
"NPY_NO_EXPORT does not work")
|
||||
|
||||
|
||||
# Historically NumPy has not used leading underscores for private submodules
|
||||
# much. This has resulted in lots of things that look like public modules
|
||||
# (i.e. things that can be imported as `import numpy.somesubmodule.somefile`),
|
||||
# but were never intended to be public. The PUBLIC_MODULES list contains
|
||||
# modules that are either public because they were meant to be, or because they
|
||||
# contain public functions/objects that aren't present in any other namespace
|
||||
# for whatever reason and therefore should be treated as public.
|
||||
#
|
||||
# The PRIVATE_BUT_PRESENT_MODULES list contains modules that look public (lack
|
||||
# of underscores) but should not be used. For many of those modules the
|
||||
# current status is fine. For others it may make sense to work on making them
|
||||
# private, to clean up our public API and avoid confusion.
|
||||
PUBLIC_MODULES = ['numpy.' + s for s in [
|
||||
"ctypeslib",
|
||||
"distutils",
|
||||
"distutils.cpuinfo",
|
||||
"distutils.exec_command",
|
||||
"distutils.misc_util",
|
||||
"distutils.log",
|
||||
"distutils.system_info",
|
||||
"doc",
|
||||
"doc.basics",
|
||||
"doc.broadcasting",
|
||||
"doc.byteswapping",
|
||||
"doc.constants",
|
||||
"doc.creation",
|
||||
"doc.dispatch",
|
||||
"doc.glossary",
|
||||
"doc.indexing",
|
||||
"doc.internals",
|
||||
"doc.misc",
|
||||
"doc.structured_arrays",
|
||||
"doc.subclassing",
|
||||
"doc.ufuncs",
|
||||
"dual",
|
||||
"f2py",
|
||||
"fft",
|
||||
"lib",
|
||||
"lib.format", # was this meant to be public?
|
||||
"lib.mixins",
|
||||
"lib.recfunctions",
|
||||
"lib.scimath",
|
||||
"linalg",
|
||||
"ma",
|
||||
"ma.extras",
|
||||
"ma.mrecords",
|
||||
"matlib",
|
||||
"polynomial",
|
||||
"polynomial.chebyshev",
|
||||
"polynomial.hermite",
|
||||
"polynomial.hermite_e",
|
||||
"polynomial.laguerre",
|
||||
"polynomial.legendre",
|
||||
"polynomial.polynomial",
|
||||
"polynomial.polyutils",
|
||||
"random",
|
||||
"testing",
|
||||
"version",
|
||||
]]
|
||||
|
||||
|
||||
PUBLIC_ALIASED_MODULES = [
|
||||
"numpy.char",
|
||||
"numpy.emath",
|
||||
"numpy.rec",
|
||||
]
|
||||
|
||||
|
||||
PRIVATE_BUT_PRESENT_MODULES = ['numpy.' + s for s in [
|
||||
"compat",
|
||||
"compat.py3k",
|
||||
"conftest",
|
||||
"core",
|
||||
"core.arrayprint",
|
||||
"core.defchararray",
|
||||
"core.einsumfunc",
|
||||
"core.fromnumeric",
|
||||
"core.function_base",
|
||||
"core.getlimits",
|
||||
"core.machar",
|
||||
"core.memmap",
|
||||
"core.multiarray",
|
||||
"core.numeric",
|
||||
"core.numerictypes",
|
||||
"core.overrides",
|
||||
"core.records",
|
||||
"core.shape_base",
|
||||
"core.umath",
|
||||
"core.umath_tests",
|
||||
"distutils.ccompiler",
|
||||
"distutils.command",
|
||||
"distutils.command.autodist",
|
||||
"distutils.command.bdist_rpm",
|
||||
"distutils.command.build",
|
||||
"distutils.command.build_clib",
|
||||
"distutils.command.build_ext",
|
||||
"distutils.command.build_py",
|
||||
"distutils.command.build_scripts",
|
||||
"distutils.command.build_src",
|
||||
"distutils.command.config",
|
||||
"distutils.command.config_compiler",
|
||||
"distutils.command.develop",
|
||||
"distutils.command.egg_info",
|
||||
"distutils.command.install",
|
||||
"distutils.command.install_clib",
|
||||
"distutils.command.install_data",
|
||||
"distutils.command.install_headers",
|
||||
"distutils.command.sdist",
|
||||
"distutils.conv_template",
|
||||
"distutils.core",
|
||||
"distutils.extension",
|
||||
"distutils.fcompiler",
|
||||
"distutils.fcompiler.absoft",
|
||||
"distutils.fcompiler.compaq",
|
||||
"distutils.fcompiler.environment",
|
||||
"distutils.fcompiler.g95",
|
||||
"distutils.fcompiler.gnu",
|
||||
"distutils.fcompiler.hpux",
|
||||
"distutils.fcompiler.ibm",
|
||||
"distutils.fcompiler.intel",
|
||||
"distutils.fcompiler.lahey",
|
||||
"distutils.fcompiler.mips",
|
||||
"distutils.fcompiler.nag",
|
||||
"distutils.fcompiler.none",
|
||||
"distutils.fcompiler.pathf95",
|
||||
"distutils.fcompiler.pg",
|
||||
"distutils.fcompiler.sun",
|
||||
"distutils.fcompiler.vast",
|
||||
"distutils.from_template",
|
||||
"distutils.intelccompiler",
|
||||
"distutils.lib2def",
|
||||
"distutils.line_endings",
|
||||
"distutils.mingw32ccompiler",
|
||||
"distutils.msvccompiler",
|
||||
"distutils.npy_pkg_config",
|
||||
"distutils.numpy_distribution",
|
||||
"distutils.pathccompiler",
|
||||
"distutils.unixccompiler",
|
||||
"f2py.auxfuncs",
|
||||
"f2py.capi_maps",
|
||||
"f2py.cb_rules",
|
||||
"f2py.cfuncs",
|
||||
"f2py.common_rules",
|
||||
"f2py.crackfortran",
|
||||
"f2py.diagnose",
|
||||
"f2py.f2py2e",
|
||||
"f2py.f2py_testing",
|
||||
"f2py.f90mod_rules",
|
||||
"f2py.func2subr",
|
||||
"f2py.rules",
|
||||
"f2py.use_rules",
|
||||
"fft.helper",
|
||||
"lib.arraypad",
|
||||
"lib.arraysetops",
|
||||
"lib.arrayterator",
|
||||
"lib.financial",
|
||||
"lib.function_base",
|
||||
"lib.histograms",
|
||||
"lib.index_tricks",
|
||||
"lib.nanfunctions",
|
||||
"lib.npyio",
|
||||
"lib.polynomial",
|
||||
"lib.shape_base",
|
||||
"lib.stride_tricks",
|
||||
"lib.twodim_base",
|
||||
"lib.type_check",
|
||||
"lib.ufunclike",
|
||||
"lib.user_array", # note: not in np.lib, but probably should just be deleted
|
||||
"lib.utils",
|
||||
"linalg.lapack_lite",
|
||||
"linalg.linalg",
|
||||
"ma.bench",
|
||||
"ma.core",
|
||||
"ma.testutils",
|
||||
"ma.timer_comparison",
|
||||
"matrixlib",
|
||||
"matrixlib.defmatrix",
|
||||
"random.mtrand",
|
||||
"random.bit_generator",
|
||||
"testing.print_coercion_tables",
|
||||
"testing.utils",
|
||||
]]
|
||||
|
||||
|
||||
def is_unexpected(name):
|
||||
"""Check if this needs to be considered."""
|
||||
if '._' in name or '.tests' in name or '.setup' in name:
|
||||
return False
|
||||
|
||||
if name in PUBLIC_MODULES:
|
||||
return False
|
||||
|
||||
if name in PUBLIC_ALIASED_MODULES:
|
||||
return False
|
||||
|
||||
if name in PRIVATE_BUT_PRESENT_MODULES:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
# These are present in a directory with an __init__.py but cannot be imported
|
||||
# code_generators/ isn't installed, but present for an inplace build
|
||||
SKIP_LIST = [
|
||||
"numpy.core.code_generators",
|
||||
"numpy.core.code_generators.genapi",
|
||||
"numpy.core.code_generators.generate_umath",
|
||||
"numpy.core.code_generators.ufunc_docstrings",
|
||||
"numpy.core.code_generators.generate_numpy_api",
|
||||
"numpy.core.code_generators.generate_ufunc_api",
|
||||
"numpy.core.code_generators.numpy_api",
|
||||
"numpy.core.cversions",
|
||||
"numpy.core.generate_numpy_api",
|
||||
"numpy.distutils.msvc9compiler",
|
||||
]
|
||||
|
||||
|
||||
def test_all_modules_are_expected():
|
||||
"""
|
||||
Test that we don't add anything that looks like a new public module by
|
||||
accident. Check is based on filenames.
|
||||
"""
|
||||
|
||||
modnames = []
|
||||
for _, modname, ispkg in pkgutil.walk_packages(path=np.__path__,
|
||||
prefix=np.__name__ + '.',
|
||||
onerror=None):
|
||||
if is_unexpected(modname) and modname not in SKIP_LIST:
|
||||
# We have a name that is new. If that's on purpose, add it to
|
||||
# PUBLIC_MODULES. We don't expect to have to add anything to
|
||||
# PRIVATE_BUT_PRESENT_MODULES. Use an underscore in the name!
|
||||
modnames.append(modname)
|
||||
|
||||
if modnames:
|
||||
raise AssertionError("Found unexpected modules: {}".format(modnames))
|
||||
|
||||
|
||||
# Stuff that clearly shouldn't be in the API and is detected by the next test
|
||||
# below
|
||||
SKIP_LIST_2 = [
|
||||
'numpy.math',
|
||||
'numpy.distutils.log.sys',
|
||||
'numpy.distutils.system_info.copy',
|
||||
'numpy.distutils.system_info.distutils',
|
||||
'numpy.distutils.system_info.log',
|
||||
'numpy.distutils.system_info.os',
|
||||
'numpy.distutils.system_info.platform',
|
||||
'numpy.distutils.system_info.re',
|
||||
'numpy.distutils.system_info.shutil',
|
||||
'numpy.distutils.system_info.subprocess',
|
||||
'numpy.distutils.system_info.sys',
|
||||
'numpy.distutils.system_info.tempfile',
|
||||
'numpy.distutils.system_info.textwrap',
|
||||
'numpy.distutils.system_info.warnings',
|
||||
'numpy.doc.constants.re',
|
||||
'numpy.doc.constants.textwrap',
|
||||
'numpy.lib.emath',
|
||||
'numpy.lib.math',
|
||||
'numpy.matlib.char',
|
||||
'numpy.matlib.rec',
|
||||
'numpy.matlib.emath',
|
||||
'numpy.matlib.math',
|
||||
'numpy.matlib.linalg',
|
||||
'numpy.matlib.fft',
|
||||
'numpy.matlib.random',
|
||||
'numpy.matlib.ctypeslib',
|
||||
'numpy.matlib.ma',
|
||||
]
|
||||
|
||||
|
||||
def test_all_modules_are_expected_2():
|
||||
"""
|
||||
Method checking all objects. The pkgutil-based method in
|
||||
`test_all_modules_are_expected` does not catch imports into a namespace,
|
||||
only filenames. So this test is more thorough, and checks this like:
|
||||
|
||||
import .lib.scimath as emath
|
||||
|
||||
To check if something in a module is (effectively) public, one can check if
|
||||
there's anything in that namespace that's a public function/object but is
|
||||
not exposed in a higher-level namespace. For example for a `numpy.lib`
|
||||
submodule::
|
||||
|
||||
mod = np.lib.mixins
|
||||
for obj in mod.__all__:
|
||||
if obj in np.__all__:
|
||||
continue
|
||||
elif obj in np.lib.__all__:
|
||||
continue
|
||||
|
||||
else:
|
||||
print(obj)
|
||||
|
||||
"""
|
||||
|
||||
def find_unexpected_members(mod_name):
|
||||
members = []
|
||||
module = importlib.import_module(mod_name)
|
||||
if hasattr(module, '__all__'):
|
||||
objnames = module.__all__
|
||||
else:
|
||||
objnames = dir(module)
|
||||
|
||||
for objname in objnames:
|
||||
if not objname.startswith('_'):
|
||||
fullobjname = mod_name + '.' + objname
|
||||
if isinstance(getattr(module, objname), types.ModuleType):
|
||||
if is_unexpected(fullobjname):
|
||||
if fullobjname not in SKIP_LIST_2:
|
||||
members.append(fullobjname)
|
||||
|
||||
return members
|
||||
|
||||
unexpected_members = find_unexpected_members("numpy")
|
||||
for modname in PUBLIC_MODULES:
|
||||
unexpected_members.extend(find_unexpected_members(modname))
|
||||
|
||||
if unexpected_members:
|
||||
raise AssertionError("Found unexpected object(s) that look like "
|
||||
"modules: {}".format(unexpected_members))
|
||||
|
||||
|
||||
def test_api_importable():
|
||||
"""
|
||||
Check that all submodules listed higher up in this file can be imported
|
||||
|
||||
Note that if a PRIVATE_BUT_PRESENT_MODULES entry goes missing, it may
|
||||
simply need to be removed from the list (deprecation may or may not be
|
||||
needed - apply common sense).
|
||||
"""
|
||||
def check_importable(module_name):
|
||||
try:
|
||||
importlib.import_module(module_name)
|
||||
except (ImportError, AttributeError):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
module_names = []
|
||||
for module_name in PUBLIC_MODULES:
|
||||
if not check_importable(module_name):
|
||||
module_names.append(module_name)
|
||||
|
||||
if module_names:
|
||||
raise AssertionError("Modules in the public API that cannot be "
|
||||
"imported: {}".format(module_names))
|
||||
|
||||
for module_name in PUBLIC_ALIASED_MODULES:
|
||||
try:
|
||||
eval(module_name)
|
||||
except AttributeError:
|
||||
module_names.append(module_name)
|
||||
|
||||
if module_names:
|
||||
raise AssertionError("Modules in the public API that were not "
|
||||
"found: {}".format(module_names))
|
||||
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
warnings.filterwarnings('always', category=DeprecationWarning)
|
||||
warnings.filterwarnings('always', category=ImportWarning)
|
||||
for module_name in PRIVATE_BUT_PRESENT_MODULES:
|
||||
if not check_importable(module_name):
|
||||
module_names.append(module_name)
|
||||
|
||||
if module_names:
|
||||
raise AssertionError("Modules that are not really public but looked "
|
||||
"public and can not be imported: "
|
||||
"{}".format(module_names))
|
57
venv/Lib/site-packages/numpy/tests/test_reloading.py
Normal file
57
venv/Lib/site-packages/numpy/tests/test_reloading.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
from numpy.testing import assert_raises, assert_, assert_equal
|
||||
from numpy.compat import pickle
|
||||
|
||||
import sys
|
||||
import subprocess
|
||||
import textwrap
|
||||
from importlib import reload
|
||||
|
||||
|
||||
def test_numpy_reloading():
|
||||
# gh-7844. Also check that relevant globals retain their identity.
|
||||
import numpy as np
|
||||
import numpy._globals
|
||||
|
||||
_NoValue = np._NoValue
|
||||
VisibleDeprecationWarning = np.VisibleDeprecationWarning
|
||||
ModuleDeprecationWarning = np.ModuleDeprecationWarning
|
||||
|
||||
reload(np)
|
||||
assert_(_NoValue is np._NoValue)
|
||||
assert_(ModuleDeprecationWarning is np.ModuleDeprecationWarning)
|
||||
assert_(VisibleDeprecationWarning is np.VisibleDeprecationWarning)
|
||||
|
||||
assert_raises(RuntimeError, reload, numpy._globals)
|
||||
reload(np)
|
||||
assert_(_NoValue is np._NoValue)
|
||||
assert_(ModuleDeprecationWarning is np.ModuleDeprecationWarning)
|
||||
assert_(VisibleDeprecationWarning is np.VisibleDeprecationWarning)
|
||||
|
||||
def test_novalue():
|
||||
import numpy as np
|
||||
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
|
||||
assert_equal(repr(np._NoValue), '<no value>')
|
||||
assert_(pickle.loads(pickle.dumps(np._NoValue,
|
||||
protocol=proto)) is np._NoValue)
|
||||
|
||||
|
||||
def test_full_reimport():
|
||||
"""At the time of writing this, it is *not* truly supported, but
|
||||
apparently enough users rely on it, for it to be an annoying change
|
||||
when it started failing previously.
|
||||
"""
|
||||
# Test within a new process, to ensure that we do not mess with the
|
||||
# global state during the test run (could lead to cryptic test failures).
|
||||
# This is generally unsafe, especially, since we also reload the C-modules.
|
||||
code = textwrap.dedent(r"""
|
||||
import sys
|
||||
import numpy as np
|
||||
|
||||
for k in list(sys.modules.keys()):
|
||||
if "numpy" in k:
|
||||
del sys.modules[k]
|
||||
|
||||
import numpy as np
|
||||
""")
|
||||
p = subprocess.run([sys.executable, '-c', code])
|
||||
assert p.returncode == 0
|
46
venv/Lib/site-packages/numpy/tests/test_scripts.py
Normal file
46
venv/Lib/site-packages/numpy/tests/test_scripts.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
""" Test scripts
|
||||
|
||||
Test that we can run executable scripts that have been installed with numpy.
|
||||
"""
|
||||
import sys
|
||||
import os
|
||||
import pytest
|
||||
from os.path import join as pathjoin, isfile, dirname
|
||||
import subprocess
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_equal
|
||||
|
||||
is_inplace = isfile(pathjoin(dirname(np.__file__), '..', 'setup.py'))
|
||||
|
||||
|
||||
def find_f2py_commands():
|
||||
if sys.platform == 'win32':
|
||||
exe_dir = dirname(sys.executable)
|
||||
if exe_dir.endswith('Scripts'): # virtualenv
|
||||
return [os.path.join(exe_dir, 'f2py')]
|
||||
else:
|
||||
return [os.path.join(exe_dir, "Scripts", 'f2py')]
|
||||
else:
|
||||
# Three scripts are installed in Unix-like systems:
|
||||
# 'f2py', 'f2py{major}', and 'f2py{major.minor}'. For example,
|
||||
# if installed with python3.7 the scripts would be named
|
||||
# 'f2py', 'f2py3', and 'f2py3.7'.
|
||||
version = sys.version_info
|
||||
major = str(version.major)
|
||||
minor = str(version.minor)
|
||||
return ['f2py', 'f2py' + major, 'f2py' + major + '.' + minor]
|
||||
|
||||
|
||||
@pytest.mark.skipif(is_inplace, reason="Cannot test f2py command inplace")
|
||||
@pytest.mark.xfail(reason="Test is unreliable")
|
||||
@pytest.mark.parametrize('f2py_cmd', find_f2py_commands())
|
||||
def test_f2py(f2py_cmd):
|
||||
# test that we can run f2py script
|
||||
stdout = subprocess.check_output([f2py_cmd, '-v'])
|
||||
assert_equal(stdout.strip(), b'2')
|
||||
|
||||
|
||||
def test_pep338():
|
||||
stdout = subprocess.check_output([sys.executable, '-mnumpy.f2py', '-v'])
|
||||
assert_equal(stdout.strip(), b'2')
|
74
venv/Lib/site-packages/numpy/tests/test_warnings.py
Normal file
74
venv/Lib/site-packages/numpy/tests/test_warnings.py
Normal file
|
@ -0,0 +1,74 @@
|
|||
"""
|
||||
Tests which scan for certain occurrences in the code, they may not find
|
||||
all of these occurrences but should catch almost all.
|
||||
"""
|
||||
import pytest
|
||||
|
||||
from pathlib import Path
|
||||
import ast
|
||||
import tokenize
|
||||
import numpy
|
||||
|
||||
class ParseCall(ast.NodeVisitor):
|
||||
def __init__(self):
|
||||
self.ls = []
|
||||
|
||||
def visit_Attribute(self, node):
|
||||
ast.NodeVisitor.generic_visit(self, node)
|
||||
self.ls.append(node.attr)
|
||||
|
||||
def visit_Name(self, node):
|
||||
self.ls.append(node.id)
|
||||
|
||||
|
||||
class FindFuncs(ast.NodeVisitor):
|
||||
def __init__(self, filename):
|
||||
super().__init__()
|
||||
self.__filename = filename
|
||||
|
||||
def visit_Call(self, node):
|
||||
p = ParseCall()
|
||||
p.visit(node.func)
|
||||
ast.NodeVisitor.generic_visit(self, node)
|
||||
|
||||
if p.ls[-1] == 'simplefilter' or p.ls[-1] == 'filterwarnings':
|
||||
if node.args[0].s == "ignore":
|
||||
raise AssertionError(
|
||||
"warnings should have an appropriate stacklevel; found in "
|
||||
"{} on line {}".format(self.__filename, node.lineno))
|
||||
|
||||
if p.ls[-1] == 'warn' and (
|
||||
len(p.ls) == 1 or p.ls[-2] == 'warnings'):
|
||||
|
||||
if "testing/tests/test_warnings.py" == self.__filename:
|
||||
# This file
|
||||
return
|
||||
|
||||
# See if stacklevel exists:
|
||||
if len(node.args) == 3:
|
||||
return
|
||||
args = {kw.arg for kw in node.keywords}
|
||||
if "stacklevel" in args:
|
||||
return
|
||||
raise AssertionError(
|
||||
"warnings should have an appropriate stacklevel; found in "
|
||||
"{} on line {}".format(self.__filename, node.lineno))
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_warning_calls():
|
||||
# combined "ignore" and stacklevel error
|
||||
base = Path(numpy.__file__).parent
|
||||
|
||||
for path in base.rglob("*.py"):
|
||||
if base / "testing" in path.parents:
|
||||
continue
|
||||
if path == base / "__init__.py":
|
||||
continue
|
||||
if path == base / "random" / "__init__.py":
|
||||
continue
|
||||
# use tokenize to auto-detect encoding on systems where no
|
||||
# default encoding is defined (e.g. LANG='C')
|
||||
with tokenize.open(str(path)) as file:
|
||||
tree = ast.parse(file.read())
|
||||
FindFuncs(path).visit(tree)
|
Loading…
Add table
Add a link
Reference in a new issue