Created starter files for the project.
This commit is contained in:
commit
73f0c0db42
1992 changed files with 769897 additions and 0 deletions
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,84 @@
|
|||
import numpy as np
|
||||
import numba as nb
|
||||
|
||||
from numpy.random import PCG64
|
||||
from timeit import timeit
|
||||
|
||||
bit_gen = PCG64()
|
||||
next_d = bit_gen.cffi.next_double
|
||||
state_addr = bit_gen.cffi.state_address
|
||||
|
||||
def normals(n, state):
|
||||
out = np.empty(n)
|
||||
for i in range((n + 1) // 2):
|
||||
x1 = 2.0 * next_d(state) - 1.0
|
||||
x2 = 2.0 * next_d(state) - 1.0
|
||||
r2 = x1 * x1 + x2 * x2
|
||||
while r2 >= 1.0 or r2 == 0.0:
|
||||
x1 = 2.0 * next_d(state) - 1.0
|
||||
x2 = 2.0 * next_d(state) - 1.0
|
||||
r2 = x1 * x1 + x2 * x2
|
||||
f = np.sqrt(-2.0 * np.log(r2) / r2)
|
||||
out[2 * i] = f * x1
|
||||
if 2 * i + 1 < n:
|
||||
out[2 * i + 1] = f * x2
|
||||
return out
|
||||
|
||||
# Compile using Numba
|
||||
normalsj = nb.jit(normals, nopython=True)
|
||||
# Must use state address not state with numba
|
||||
n = 10000
|
||||
|
||||
def numbacall():
|
||||
return normalsj(n, state_addr)
|
||||
|
||||
rg = np.random.Generator(PCG64())
|
||||
|
||||
def numpycall():
|
||||
return rg.normal(size=n)
|
||||
|
||||
# Check that the functions work
|
||||
r1 = numbacall()
|
||||
r2 = numpycall()
|
||||
assert r1.shape == (n,)
|
||||
assert r1.shape == r2.shape
|
||||
|
||||
t1 = timeit(numbacall, number=1000)
|
||||
print('{:.2f} secs for {} PCG64 (Numba/PCG64) gaussian randoms'.format(t1, n))
|
||||
t2 = timeit(numpycall, number=1000)
|
||||
print('{:.2f} secs for {} PCG64 (NumPy/PCG64) gaussian randoms'.format(t2, n))
|
||||
|
||||
# example 2
|
||||
|
||||
next_u32 = bit_gen.ctypes.next_uint32
|
||||
ctypes_state = bit_gen.ctypes.state
|
||||
|
||||
@nb.jit(nopython=True)
|
||||
def bounded_uint(lb, ub, state):
|
||||
mask = delta = ub - lb
|
||||
mask |= mask >> 1
|
||||
mask |= mask >> 2
|
||||
mask |= mask >> 4
|
||||
mask |= mask >> 8
|
||||
mask |= mask >> 16
|
||||
|
||||
val = next_u32(state) & mask
|
||||
while val > delta:
|
||||
val = next_u32(state) & mask
|
||||
|
||||
return lb + val
|
||||
|
||||
|
||||
print(bounded_uint(323, 2394691, ctypes_state.value))
|
||||
|
||||
|
||||
@nb.jit(nopython=True)
|
||||
def bounded_uints(lb, ub, n, state):
|
||||
out = np.empty(n, dtype=np.uint32)
|
||||
for i in range(n):
|
||||
out[i] = bounded_uint(lb, ub, state)
|
||||
|
||||
|
||||
bounded_uints(323, 2394691, 10000000, ctypes_state.value)
|
||||
|
||||
|
|
@ -0,0 +1,67 @@
|
|||
r"""
|
||||
Building the required library in this example requires a source distribution
|
||||
of NumPy or clone of the NumPy git repository since distributions.c is not
|
||||
included in binary distributions.
|
||||
|
||||
On *nix, execute in numpy/random/src/distributions
|
||||
|
||||
export ${PYTHON_VERSION}=3.8 # Python version
|
||||
export PYTHON_INCLUDE=#path to Python's include folder, usually \
|
||||
${PYTHON_HOME}/include/python${PYTHON_VERSION}m
|
||||
export NUMPY_INCLUDE=#path to numpy's include folder, usually \
|
||||
${PYTHON_HOME}/lib/python${PYTHON_VERSION}/site-packages/numpy/core/include
|
||||
gcc -shared -o libdistributions.so -fPIC distributions.c \
|
||||
-I${NUMPY_INCLUDE} -I${PYTHON_INCLUDE}
|
||||
mv libdistributions.so ../../_examples/numba/
|
||||
|
||||
On Windows
|
||||
|
||||
rem PYTHON_HOME and PYTHON_VERSION are setup dependent, this is an example
|
||||
set PYTHON_HOME=c:\Anaconda
|
||||
set PYTHON_VERSION=38
|
||||
cl.exe /LD .\distributions.c -DDLL_EXPORT \
|
||||
-I%PYTHON_HOME%\lib\site-packages\numpy\core\include \
|
||||
-I%PYTHON_HOME%\include %PYTHON_HOME%\libs\python%PYTHON_VERSION%.lib
|
||||
move distributions.dll ../../_examples/numba/
|
||||
"""
|
||||
import os
|
||||
|
||||
import numba as nb
|
||||
import numpy as np
|
||||
from cffi import FFI
|
||||
|
||||
from numpy.random import PCG64
|
||||
|
||||
ffi = FFI()
|
||||
if os.path.exists('./distributions.dll'):
|
||||
lib = ffi.dlopen('./distributions.dll')
|
||||
elif os.path.exists('./libdistributions.so'):
|
||||
lib = ffi.dlopen('./libdistributions.so')
|
||||
else:
|
||||
raise RuntimeError('Required DLL/so file was not found.')
|
||||
|
||||
ffi.cdef("""
|
||||
double random_standard_normal(void *bitgen_state);
|
||||
""")
|
||||
x = PCG64()
|
||||
xffi = x.cffi
|
||||
bit_generator = xffi.bit_generator
|
||||
|
||||
random_standard_normal = lib.random_standard_normal
|
||||
|
||||
|
||||
def normals(n, bit_generator):
|
||||
out = np.empty(n)
|
||||
for i in range(n):
|
||||
out[i] = random_standard_normal(bit_generator)
|
||||
return out
|
||||
|
||||
|
||||
normalsj = nb.jit(normals, nopython=True)
|
||||
|
||||
# Numba requires a memory address for void *
|
||||
# Can also get address from x.ctypes.bit_generator.value
|
||||
bit_generator_address = int(ffi.cast('uintptr_t', bit_generator))
|
||||
|
||||
norm = normalsj(1000, bit_generator_address)
|
||||
print(norm[:12])
|
Loading…
Add table
Add a link
Reference in a new issue