Created starter files for the project.
This commit is contained in:
commit
73f0c0db42
1992 changed files with 769897 additions and 0 deletions
0
venv/Lib/site-packages/numpy/ma/tests/__init__.py
Normal file
0
venv/Lib/site-packages/numpy/ma/tests/__init__.py
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
5285
venv/Lib/site-packages/numpy/ma/tests/test_core.py
Normal file
5285
venv/Lib/site-packages/numpy/ma/tests/test_core.py
Normal file
File diff suppressed because it is too large
Load diff
68
venv/Lib/site-packages/numpy/ma/tests/test_deprecations.py
Normal file
68
venv/Lib/site-packages/numpy/ma/tests/test_deprecations.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
"""Test deprecation and future warnings.
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
from numpy.testing import assert_warns
|
||||
from numpy.ma.testutils import assert_equal
|
||||
from numpy.ma.core import MaskedArrayFutureWarning
|
||||
|
||||
class TestArgsort:
|
||||
""" gh-8701 """
|
||||
def _test_base(self, argsort, cls):
|
||||
arr_0d = np.array(1).view(cls)
|
||||
argsort(arr_0d)
|
||||
|
||||
arr_1d = np.array([1, 2, 3]).view(cls)
|
||||
argsort(arr_1d)
|
||||
|
||||
# argsort has a bad default for >1d arrays
|
||||
arr_2d = np.array([[1, 2], [3, 4]]).view(cls)
|
||||
result = assert_warns(
|
||||
np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d)
|
||||
assert_equal(result, argsort(arr_2d, axis=None))
|
||||
|
||||
# should be no warnings for explicitly specifying it
|
||||
argsort(arr_2d, axis=None)
|
||||
argsort(arr_2d, axis=-1)
|
||||
|
||||
def test_function_ndarray(self):
|
||||
return self._test_base(np.ma.argsort, np.ndarray)
|
||||
|
||||
def test_function_maskedarray(self):
|
||||
return self._test_base(np.ma.argsort, np.ma.MaskedArray)
|
||||
|
||||
def test_method(self):
|
||||
return self._test_base(np.ma.MaskedArray.argsort, np.ma.MaskedArray)
|
||||
|
||||
|
||||
class TestMinimumMaximum:
|
||||
def test_minimum(self):
|
||||
assert_warns(DeprecationWarning, np.ma.minimum, np.ma.array([1, 2]))
|
||||
|
||||
def test_maximum(self):
|
||||
assert_warns(DeprecationWarning, np.ma.maximum, np.ma.array([1, 2]))
|
||||
|
||||
def test_axis_default(self):
|
||||
# NumPy 1.13, 2017-05-06
|
||||
|
||||
data1d = np.ma.arange(6)
|
||||
data2d = data1d.reshape(2, 3)
|
||||
|
||||
ma_min = np.ma.minimum.reduce
|
||||
ma_max = np.ma.maximum.reduce
|
||||
|
||||
# check that the default axis is still None, but warns on 2d arrays
|
||||
result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d)
|
||||
assert_equal(result, ma_max(data2d, axis=None))
|
||||
|
||||
result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d)
|
||||
assert_equal(result, ma_min(data2d, axis=None))
|
||||
|
||||
# no warnings on 1d, as both new and old defaults are equivalent
|
||||
result = ma_min(data1d)
|
||||
assert_equal(result, ma_min(data1d, axis=None))
|
||||
assert_equal(result, ma_min(data1d, axis=0))
|
||||
|
||||
result = ma_max(data1d)
|
||||
assert_equal(result, ma_max(data1d, axis=None))
|
||||
assert_equal(result, ma_max(data1d, axis=0))
|
1688
venv/Lib/site-packages/numpy/ma/tests/test_extras.py
Normal file
1688
venv/Lib/site-packages/numpy/ma/tests/test_extras.py
Normal file
File diff suppressed because it is too large
Load diff
493
venv/Lib/site-packages/numpy/ma/tests/test_mrecords.py
Normal file
493
venv/Lib/site-packages/numpy/ma/tests/test_mrecords.py
Normal file
|
@ -0,0 +1,493 @@
|
|||
# pylint: disable-msg=W0611, W0612, W0511,R0201
|
||||
"""Tests suite for mrecords.
|
||||
|
||||
:author: Pierre Gerard-Marchant
|
||||
:contact: pierregm_at_uga_dot_edu
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
import numpy.ma as ma
|
||||
from numpy import recarray
|
||||
from numpy.ma import masked, nomask
|
||||
from numpy.testing import temppath
|
||||
from numpy.core.records import (
|
||||
fromrecords as recfromrecords, fromarrays as recfromarrays
|
||||
)
|
||||
from numpy.ma.mrecords import (
|
||||
MaskedRecords, mrecarray, fromarrays, fromtextfile, fromrecords,
|
||||
addfield
|
||||
)
|
||||
from numpy.ma.testutils import (
|
||||
assert_, assert_equal,
|
||||
assert_equal_records,
|
||||
)
|
||||
from numpy.compat import pickle
|
||||
|
||||
|
||||
class TestMRecords:
|
||||
|
||||
ilist = [1, 2, 3, 4, 5]
|
||||
flist = [1.1, 2.2, 3.3, 4.4, 5.5]
|
||||
slist = [b'one', b'two', b'three', b'four', b'five']
|
||||
ddtype = [('a', int), ('b', float), ('c', '|S8')]
|
||||
mask = [0, 1, 0, 0, 1]
|
||||
base = ma.array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype)
|
||||
|
||||
def test_byview(self):
|
||||
# Test creation by view
|
||||
base = self.base
|
||||
mbase = base.view(mrecarray)
|
||||
assert_equal(mbase.recordmask, base.recordmask)
|
||||
assert_equal_records(mbase._mask, base._mask)
|
||||
assert_(isinstance(mbase._data, recarray))
|
||||
assert_equal_records(mbase._data, base._data.view(recarray))
|
||||
for field in ('a', 'b', 'c'):
|
||||
assert_equal(base[field], mbase[field])
|
||||
assert_equal_records(mbase.view(mrecarray), mbase)
|
||||
|
||||
def test_get(self):
|
||||
# Tests fields retrieval
|
||||
base = self.base.copy()
|
||||
mbase = base.view(mrecarray)
|
||||
# As fields..........
|
||||
for field in ('a', 'b', 'c'):
|
||||
assert_equal(getattr(mbase, field), mbase[field])
|
||||
assert_equal(base[field], mbase[field])
|
||||
# as elements .......
|
||||
mbase_first = mbase[0]
|
||||
assert_(isinstance(mbase_first, mrecarray))
|
||||
assert_equal(mbase_first.dtype, mbase.dtype)
|
||||
assert_equal(mbase_first.tolist(), (1, 1.1, b'one'))
|
||||
# Used to be mask, now it's recordmask
|
||||
assert_equal(mbase_first.recordmask, nomask)
|
||||
assert_equal(mbase_first._mask.item(), (False, False, False))
|
||||
assert_equal(mbase_first['a'], mbase['a'][0])
|
||||
mbase_last = mbase[-1]
|
||||
assert_(isinstance(mbase_last, mrecarray))
|
||||
assert_equal(mbase_last.dtype, mbase.dtype)
|
||||
assert_equal(mbase_last.tolist(), (None, None, None))
|
||||
# Used to be mask, now it's recordmask
|
||||
assert_equal(mbase_last.recordmask, True)
|
||||
assert_equal(mbase_last._mask.item(), (True, True, True))
|
||||
assert_equal(mbase_last['a'], mbase['a'][-1])
|
||||
assert_((mbase_last['a'] is masked))
|
||||
# as slice ..........
|
||||
mbase_sl = mbase[:2]
|
||||
assert_(isinstance(mbase_sl, mrecarray))
|
||||
assert_equal(mbase_sl.dtype, mbase.dtype)
|
||||
# Used to be mask, now it's recordmask
|
||||
assert_equal(mbase_sl.recordmask, [0, 1])
|
||||
assert_equal_records(mbase_sl.mask,
|
||||
np.array([(False, False, False),
|
||||
(True, True, True)],
|
||||
dtype=mbase._mask.dtype))
|
||||
assert_equal_records(mbase_sl, base[:2].view(mrecarray))
|
||||
for field in ('a', 'b', 'c'):
|
||||
assert_equal(getattr(mbase_sl, field), base[:2][field])
|
||||
|
||||
def test_set_fields(self):
|
||||
# Tests setting fields.
|
||||
base = self.base.copy()
|
||||
mbase = base.view(mrecarray)
|
||||
mbase = mbase.copy()
|
||||
mbase.fill_value = (999999, 1e20, 'N/A')
|
||||
# Change the data, the mask should be conserved
|
||||
mbase.a._data[:] = 5
|
||||
assert_equal(mbase['a']._data, [5, 5, 5, 5, 5])
|
||||
assert_equal(mbase['a']._mask, [0, 1, 0, 0, 1])
|
||||
# Change the elements, and the mask will follow
|
||||
mbase.a = 1
|
||||
assert_equal(mbase['a']._data, [1]*5)
|
||||
assert_equal(ma.getmaskarray(mbase['a']), [0]*5)
|
||||
# Use to be _mask, now it's recordmask
|
||||
assert_equal(mbase.recordmask, [False]*5)
|
||||
assert_equal(mbase._mask.tolist(),
|
||||
np.array([(0, 0, 0),
|
||||
(0, 1, 1),
|
||||
(0, 0, 0),
|
||||
(0, 0, 0),
|
||||
(0, 1, 1)],
|
||||
dtype=bool))
|
||||
# Set a field to mask ........................
|
||||
mbase.c = masked
|
||||
# Use to be mask, and now it's still mask !
|
||||
assert_equal(mbase.c.mask, [1]*5)
|
||||
assert_equal(mbase.c.recordmask, [1]*5)
|
||||
assert_equal(ma.getmaskarray(mbase['c']), [1]*5)
|
||||
assert_equal(ma.getdata(mbase['c']), [b'N/A']*5)
|
||||
assert_equal(mbase._mask.tolist(),
|
||||
np.array([(0, 0, 1),
|
||||
(0, 1, 1),
|
||||
(0, 0, 1),
|
||||
(0, 0, 1),
|
||||
(0, 1, 1)],
|
||||
dtype=bool))
|
||||
# Set fields by slices .......................
|
||||
mbase = base.view(mrecarray).copy()
|
||||
mbase.a[3:] = 5
|
||||
assert_equal(mbase.a, [1, 2, 3, 5, 5])
|
||||
assert_equal(mbase.a._mask, [0, 1, 0, 0, 0])
|
||||
mbase.b[3:] = masked
|
||||
assert_equal(mbase.b, base['b'])
|
||||
assert_equal(mbase.b._mask, [0, 1, 0, 1, 1])
|
||||
# Set fields globally..........................
|
||||
ndtype = [('alpha', '|S1'), ('num', int)]
|
||||
data = ma.array([('a', 1), ('b', 2), ('c', 3)], dtype=ndtype)
|
||||
rdata = data.view(MaskedRecords)
|
||||
val = ma.array([10, 20, 30], mask=[1, 0, 0])
|
||||
|
||||
rdata['num'] = val
|
||||
assert_equal(rdata.num, val)
|
||||
assert_equal(rdata.num.mask, [1, 0, 0])
|
||||
|
||||
def test_set_fields_mask(self):
|
||||
# Tests setting the mask of a field.
|
||||
base = self.base.copy()
|
||||
# This one has already a mask....
|
||||
mbase = base.view(mrecarray)
|
||||
mbase['a'][-2] = masked
|
||||
assert_equal(mbase.a, [1, 2, 3, 4, 5])
|
||||
assert_equal(mbase.a._mask, [0, 1, 0, 1, 1])
|
||||
# This one has not yet
|
||||
mbase = fromarrays([np.arange(5), np.random.rand(5)],
|
||||
dtype=[('a', int), ('b', float)])
|
||||
mbase['a'][-2] = masked
|
||||
assert_equal(mbase.a, [0, 1, 2, 3, 4])
|
||||
assert_equal(mbase.a._mask, [0, 0, 0, 1, 0])
|
||||
|
||||
def test_set_mask(self):
|
||||
base = self.base.copy()
|
||||
mbase = base.view(mrecarray)
|
||||
# Set the mask to True .......................
|
||||
mbase.mask = masked
|
||||
assert_equal(ma.getmaskarray(mbase['b']), [1]*5)
|
||||
assert_equal(mbase['a']._mask, mbase['b']._mask)
|
||||
assert_equal(mbase['a']._mask, mbase['c']._mask)
|
||||
assert_equal(mbase._mask.tolist(),
|
||||
np.array([(1, 1, 1)]*5, dtype=bool))
|
||||
# Delete the mask ............................
|
||||
mbase.mask = nomask
|
||||
assert_equal(ma.getmaskarray(mbase['c']), [0]*5)
|
||||
assert_equal(mbase._mask.tolist(),
|
||||
np.array([(0, 0, 0)]*5, dtype=bool))
|
||||
|
||||
def test_set_mask_fromarray(self):
|
||||
base = self.base.copy()
|
||||
mbase = base.view(mrecarray)
|
||||
# Sets the mask w/ an array
|
||||
mbase.mask = [1, 0, 0, 0, 1]
|
||||
assert_equal(mbase.a.mask, [1, 0, 0, 0, 1])
|
||||
assert_equal(mbase.b.mask, [1, 0, 0, 0, 1])
|
||||
assert_equal(mbase.c.mask, [1, 0, 0, 0, 1])
|
||||
# Yay, once more !
|
||||
mbase.mask = [0, 0, 0, 0, 1]
|
||||
assert_equal(mbase.a.mask, [0, 0, 0, 0, 1])
|
||||
assert_equal(mbase.b.mask, [0, 0, 0, 0, 1])
|
||||
assert_equal(mbase.c.mask, [0, 0, 0, 0, 1])
|
||||
|
||||
def test_set_mask_fromfields(self):
|
||||
mbase = self.base.copy().view(mrecarray)
|
||||
|
||||
nmask = np.array(
|
||||
[(0, 1, 0), (0, 1, 0), (1, 0, 1), (1, 0, 1), (0, 0, 0)],
|
||||
dtype=[('a', bool), ('b', bool), ('c', bool)])
|
||||
mbase.mask = nmask
|
||||
assert_equal(mbase.a.mask, [0, 0, 1, 1, 0])
|
||||
assert_equal(mbase.b.mask, [1, 1, 0, 0, 0])
|
||||
assert_equal(mbase.c.mask, [0, 0, 1, 1, 0])
|
||||
# Reinitialize and redo
|
||||
mbase.mask = False
|
||||
mbase.fieldmask = nmask
|
||||
assert_equal(mbase.a.mask, [0, 0, 1, 1, 0])
|
||||
assert_equal(mbase.b.mask, [1, 1, 0, 0, 0])
|
||||
assert_equal(mbase.c.mask, [0, 0, 1, 1, 0])
|
||||
|
||||
def test_set_elements(self):
|
||||
base = self.base.copy()
|
||||
# Set an element to mask .....................
|
||||
mbase = base.view(mrecarray).copy()
|
||||
mbase[-2] = masked
|
||||
assert_equal(
|
||||
mbase._mask.tolist(),
|
||||
np.array([(0, 0, 0), (1, 1, 1), (0, 0, 0), (1, 1, 1), (1, 1, 1)],
|
||||
dtype=bool))
|
||||
# Used to be mask, now it's recordmask!
|
||||
assert_equal(mbase.recordmask, [0, 1, 0, 1, 1])
|
||||
# Set slices .................................
|
||||
mbase = base.view(mrecarray).copy()
|
||||
mbase[:2] = (5, 5, 5)
|
||||
assert_equal(mbase.a._data, [5, 5, 3, 4, 5])
|
||||
assert_equal(mbase.a._mask, [0, 0, 0, 0, 1])
|
||||
assert_equal(mbase.b._data, [5., 5., 3.3, 4.4, 5.5])
|
||||
assert_equal(mbase.b._mask, [0, 0, 0, 0, 1])
|
||||
assert_equal(mbase.c._data,
|
||||
[b'5', b'5', b'three', b'four', b'five'])
|
||||
assert_equal(mbase.b._mask, [0, 0, 0, 0, 1])
|
||||
|
||||
mbase = base.view(mrecarray).copy()
|
||||
mbase[:2] = masked
|
||||
assert_equal(mbase.a._data, [1, 2, 3, 4, 5])
|
||||
assert_equal(mbase.a._mask, [1, 1, 0, 0, 1])
|
||||
assert_equal(mbase.b._data, [1.1, 2.2, 3.3, 4.4, 5.5])
|
||||
assert_equal(mbase.b._mask, [1, 1, 0, 0, 1])
|
||||
assert_equal(mbase.c._data,
|
||||
[b'one', b'two', b'three', b'four', b'five'])
|
||||
assert_equal(mbase.b._mask, [1, 1, 0, 0, 1])
|
||||
|
||||
def test_setslices_hardmask(self):
|
||||
# Tests setting slices w/ hardmask.
|
||||
base = self.base.copy()
|
||||
mbase = base.view(mrecarray)
|
||||
mbase.harden_mask()
|
||||
try:
|
||||
mbase[-2:] = (5, 5, 5)
|
||||
assert_equal(mbase.a._data, [1, 2, 3, 5, 5])
|
||||
assert_equal(mbase.b._data, [1.1, 2.2, 3.3, 5, 5.5])
|
||||
assert_equal(mbase.c._data,
|
||||
[b'one', b'two', b'three', b'5', b'five'])
|
||||
assert_equal(mbase.a._mask, [0, 1, 0, 0, 1])
|
||||
assert_equal(mbase.b._mask, mbase.a._mask)
|
||||
assert_equal(mbase.b._mask, mbase.c._mask)
|
||||
except NotImplementedError:
|
||||
# OK, not implemented yet...
|
||||
pass
|
||||
except AssertionError:
|
||||
raise
|
||||
else:
|
||||
raise Exception("Flexible hard masks should be supported !")
|
||||
# Not using a tuple should crash
|
||||
try:
|
||||
mbase[-2:] = 3
|
||||
except (NotImplementedError, TypeError):
|
||||
pass
|
||||
else:
|
||||
raise TypeError("Should have expected a readable buffer object!")
|
||||
|
||||
def test_hardmask(self):
|
||||
# Test hardmask
|
||||
base = self.base.copy()
|
||||
mbase = base.view(mrecarray)
|
||||
mbase.harden_mask()
|
||||
assert_(mbase._hardmask)
|
||||
mbase.mask = nomask
|
||||
assert_equal_records(mbase._mask, base._mask)
|
||||
mbase.soften_mask()
|
||||
assert_(not mbase._hardmask)
|
||||
mbase.mask = nomask
|
||||
# So, the mask of a field is no longer set to nomask...
|
||||
assert_equal_records(mbase._mask,
|
||||
ma.make_mask_none(base.shape, base.dtype))
|
||||
assert_(ma.make_mask(mbase['b']._mask) is nomask)
|
||||
assert_equal(mbase['a']._mask, mbase['b']._mask)
|
||||
|
||||
def test_pickling(self):
|
||||
# Test pickling
|
||||
base = self.base.copy()
|
||||
mrec = base.view(mrecarray)
|
||||
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
|
||||
_ = pickle.dumps(mrec, protocol=proto)
|
||||
mrec_ = pickle.loads(_)
|
||||
assert_equal(mrec_.dtype, mrec.dtype)
|
||||
assert_equal_records(mrec_._data, mrec._data)
|
||||
assert_equal(mrec_._mask, mrec._mask)
|
||||
assert_equal_records(mrec_._mask, mrec._mask)
|
||||
|
||||
def test_filled(self):
|
||||
# Test filling the array
|
||||
_a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
|
||||
_b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
|
||||
_c = ma.array(['one', 'two', 'three'], mask=[0, 0, 1], dtype='|S8')
|
||||
ddtype = [('a', int), ('b', float), ('c', '|S8')]
|
||||
mrec = fromarrays([_a, _b, _c], dtype=ddtype,
|
||||
fill_value=(99999, 99999., 'N/A'))
|
||||
mrecfilled = mrec.filled()
|
||||
assert_equal(mrecfilled['a'], np.array((1, 2, 99999), dtype=int))
|
||||
assert_equal(mrecfilled['b'], np.array((1.1, 2.2, 99999.),
|
||||
dtype=float))
|
||||
assert_equal(mrecfilled['c'], np.array(('one', 'two', 'N/A'),
|
||||
dtype='|S8'))
|
||||
|
||||
def test_tolist(self):
|
||||
# Test tolist.
|
||||
_a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
|
||||
_b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
|
||||
_c = ma.array(['one', 'two', 'three'], mask=[1, 0, 0], dtype='|S8')
|
||||
ddtype = [('a', int), ('b', float), ('c', '|S8')]
|
||||
mrec = fromarrays([_a, _b, _c], dtype=ddtype,
|
||||
fill_value=(99999, 99999., 'N/A'))
|
||||
|
||||
assert_equal(mrec.tolist(),
|
||||
[(1, 1.1, None), (2, 2.2, b'two'),
|
||||
(None, None, b'three')])
|
||||
|
||||
def test_withnames(self):
|
||||
# Test the creation w/ format and names
|
||||
x = mrecarray(1, formats=float, names='base')
|
||||
x[0]['base'] = 10
|
||||
assert_equal(x['base'][0], 10)
|
||||
|
||||
def test_exotic_formats(self):
|
||||
# Test that 'exotic' formats are processed properly
|
||||
easy = mrecarray(1, dtype=[('i', int), ('s', '|S8'), ('f', float)])
|
||||
easy[0] = masked
|
||||
assert_equal(easy.filled(1).item(), (1, b'1', 1.))
|
||||
|
||||
solo = mrecarray(1, dtype=[('f0', '<f8', (2, 2))])
|
||||
solo[0] = masked
|
||||
assert_equal(solo.filled(1).item(),
|
||||
np.array((1,), dtype=solo.dtype).item())
|
||||
|
||||
mult = mrecarray(2, dtype="i4, (2,3)float, float")
|
||||
mult[0] = masked
|
||||
mult[1] = (1, 1, 1)
|
||||
mult.filled(0)
|
||||
assert_equal_records(mult.filled(0),
|
||||
np.array([(0, 0, 0), (1, 1, 1)],
|
||||
dtype=mult.dtype))
|
||||
|
||||
|
||||
class TestView:
|
||||
|
||||
def setup(self):
|
||||
(a, b) = (np.arange(10), np.random.rand(10))
|
||||
ndtype = [('a', float), ('b', float)]
|
||||
arr = np.array(list(zip(a, b)), dtype=ndtype)
|
||||
|
||||
mrec = fromarrays([a, b], dtype=ndtype, fill_value=(-9., -99.))
|
||||
mrec.mask[3] = (False, True)
|
||||
self.data = (mrec, a, b, arr)
|
||||
|
||||
def test_view_by_itself(self):
|
||||
(mrec, a, b, arr) = self.data
|
||||
test = mrec.view()
|
||||
assert_(isinstance(test, MaskedRecords))
|
||||
assert_equal_records(test, mrec)
|
||||
assert_equal_records(test._mask, mrec._mask)
|
||||
|
||||
def test_view_simple_dtype(self):
|
||||
(mrec, a, b, arr) = self.data
|
||||
ntype = (float, 2)
|
||||
test = mrec.view(ntype)
|
||||
assert_(isinstance(test, ma.MaskedArray))
|
||||
assert_equal(test, np.array(list(zip(a, b)), dtype=float))
|
||||
assert_(test[3, 1] is ma.masked)
|
||||
|
||||
def test_view_flexible_type(self):
|
||||
(mrec, a, b, arr) = self.data
|
||||
alttype = [('A', float), ('B', float)]
|
||||
test = mrec.view(alttype)
|
||||
assert_(isinstance(test, MaskedRecords))
|
||||
assert_equal_records(test, arr.view(alttype))
|
||||
assert_(test['B'][3] is masked)
|
||||
assert_equal(test.dtype, np.dtype(alttype))
|
||||
assert_(test._fill_value is None)
|
||||
|
||||
|
||||
##############################################################################
|
||||
class TestMRecordsImport:
|
||||
|
||||
_a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
|
||||
_b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
|
||||
_c = ma.array([b'one', b'two', b'three'],
|
||||
mask=[0, 0, 1], dtype='|S8')
|
||||
ddtype = [('a', int), ('b', float), ('c', '|S8')]
|
||||
mrec = fromarrays([_a, _b, _c], dtype=ddtype,
|
||||
fill_value=(b'99999', b'99999.',
|
||||
b'N/A'))
|
||||
nrec = recfromarrays((_a._data, _b._data, _c._data), dtype=ddtype)
|
||||
data = (mrec, nrec, ddtype)
|
||||
|
||||
def test_fromarrays(self):
|
||||
_a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
|
||||
_b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
|
||||
_c = ma.array(['one', 'two', 'three'], mask=[0, 0, 1], dtype='|S8')
|
||||
(mrec, nrec, _) = self.data
|
||||
for (f, l) in zip(('a', 'b', 'c'), (_a, _b, _c)):
|
||||
assert_equal(getattr(mrec, f)._mask, l._mask)
|
||||
# One record only
|
||||
_x = ma.array([1, 1.1, 'one'], mask=[1, 0, 0],)
|
||||
assert_equal_records(fromarrays(_x, dtype=mrec.dtype), mrec[0])
|
||||
|
||||
def test_fromrecords(self):
|
||||
# Test construction from records.
|
||||
(mrec, nrec, ddtype) = self.data
|
||||
#......
|
||||
palist = [(1, 'abc', 3.7000002861022949, 0),
|
||||
(2, 'xy', 6.6999998092651367, 1),
|
||||
(0, ' ', 0.40000000596046448, 0)]
|
||||
pa = recfromrecords(palist, names='c1, c2, c3, c4')
|
||||
mpa = fromrecords(palist, names='c1, c2, c3, c4')
|
||||
assert_equal_records(pa, mpa)
|
||||
#.....
|
||||
_mrec = fromrecords(nrec)
|
||||
assert_equal(_mrec.dtype, mrec.dtype)
|
||||
for field in _mrec.dtype.names:
|
||||
assert_equal(getattr(_mrec, field), getattr(mrec._data, field))
|
||||
|
||||
_mrec = fromrecords(nrec.tolist(), names='c1,c2,c3')
|
||||
assert_equal(_mrec.dtype, [('c1', int), ('c2', float), ('c3', '|S5')])
|
||||
for (f, n) in zip(('c1', 'c2', 'c3'), ('a', 'b', 'c')):
|
||||
assert_equal(getattr(_mrec, f), getattr(mrec._data, n))
|
||||
|
||||
_mrec = fromrecords(mrec)
|
||||
assert_equal(_mrec.dtype, mrec.dtype)
|
||||
assert_equal_records(_mrec._data, mrec.filled())
|
||||
assert_equal_records(_mrec._mask, mrec._mask)
|
||||
|
||||
def test_fromrecords_wmask(self):
|
||||
# Tests construction from records w/ mask.
|
||||
(mrec, nrec, ddtype) = self.data
|
||||
|
||||
_mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=[0, 1, 0,])
|
||||
assert_equal_records(_mrec._data, mrec._data)
|
||||
assert_equal(_mrec._mask.tolist(), [(0, 0, 0), (1, 1, 1), (0, 0, 0)])
|
||||
|
||||
_mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=True)
|
||||
assert_equal_records(_mrec._data, mrec._data)
|
||||
assert_equal(_mrec._mask.tolist(), [(1, 1, 1), (1, 1, 1), (1, 1, 1)])
|
||||
|
||||
_mrec = fromrecords(nrec.tolist(), dtype=ddtype, mask=mrec._mask)
|
||||
assert_equal_records(_mrec._data, mrec._data)
|
||||
assert_equal(_mrec._mask.tolist(), mrec._mask.tolist())
|
||||
|
||||
_mrec = fromrecords(nrec.tolist(), dtype=ddtype,
|
||||
mask=mrec._mask.tolist())
|
||||
assert_equal_records(_mrec._data, mrec._data)
|
||||
assert_equal(_mrec._mask.tolist(), mrec._mask.tolist())
|
||||
|
||||
def test_fromtextfile(self):
|
||||
# Tests reading from a text file.
|
||||
fcontent = (
|
||||
"""#
|
||||
'One (S)','Two (I)','Three (F)','Four (M)','Five (-)','Six (C)'
|
||||
'strings',1,1.0,'mixed column',,1
|
||||
'with embedded "double quotes"',2,2.0,1.0,,1
|
||||
'strings',3,3.0E5,3,,1
|
||||
'strings',4,-1e-10,,,1
|
||||
""")
|
||||
with temppath() as path:
|
||||
with open(path, 'w') as f:
|
||||
f.write(fcontent)
|
||||
mrectxt = fromtextfile(path, delimitor=',', varnames='ABCDEFG')
|
||||
assert_(isinstance(mrectxt, MaskedRecords))
|
||||
assert_equal(mrectxt.F, [1, 1, 1, 1])
|
||||
assert_equal(mrectxt.E._mask, [1, 1, 1, 1])
|
||||
assert_equal(mrectxt.C, [1, 2, 3.e+5, -1e-10])
|
||||
|
||||
def test_addfield(self):
|
||||
# Tests addfield
|
||||
(mrec, nrec, ddtype) = self.data
|
||||
(d, m) = ([100, 200, 300], [1, 0, 0])
|
||||
mrec = addfield(mrec, ma.array(d, mask=m))
|
||||
assert_equal(mrec.f3, d)
|
||||
assert_equal(mrec.f3._mask, m)
|
||||
|
||||
|
||||
def test_record_array_with_object_field():
|
||||
# Trac #1839
|
||||
y = ma.masked_array(
|
||||
[(1, '2'), (3, '4')],
|
||||
mask=[(0, 0), (0, 1)],
|
||||
dtype=[('a', int), ('b', object)])
|
||||
# getting an item used to fail
|
||||
y[1]
|
858
venv/Lib/site-packages/numpy/ma/tests/test_old_ma.py
Normal file
858
venv/Lib/site-packages/numpy/ma/tests/test_old_ma.py
Normal file
|
@ -0,0 +1,858 @@
|
|||
from functools import reduce
|
||||
|
||||
import numpy as np
|
||||
import numpy.core.umath as umath
|
||||
import numpy.core.fromnumeric as fromnumeric
|
||||
from numpy.testing import (
|
||||
assert_, assert_raises, assert_equal,
|
||||
)
|
||||
from numpy.ma import (
|
||||
MaskType, MaskedArray, absolute, add, all, allclose, allequal, alltrue,
|
||||
arange, arccos, arcsin, arctan, arctan2, array, average, choose,
|
||||
concatenate, conjugate, cos, cosh, count, divide, equal, exp, filled,
|
||||
getmask, greater, greater_equal, inner, isMaskedArray, less,
|
||||
less_equal, log, log10, make_mask, masked, masked_array, masked_equal,
|
||||
masked_greater, masked_greater_equal, masked_inside, masked_less,
|
||||
masked_less_equal, masked_not_equal, masked_outside,
|
||||
masked_print_option, masked_values, masked_where, maximum, minimum,
|
||||
multiply, nomask, nonzero, not_equal, ones, outer, product, put, ravel,
|
||||
repeat, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum,
|
||||
take, tan, tanh, transpose, where, zeros,
|
||||
)
|
||||
from numpy.compat import pickle
|
||||
|
||||
pi = np.pi
|
||||
|
||||
|
||||
def eq(v, w, msg=''):
|
||||
result = allclose(v, w)
|
||||
if not result:
|
||||
print("Not eq:%s\n%s\n----%s" % (msg, str(v), str(w)))
|
||||
return result
|
||||
|
||||
|
||||
class TestMa:
|
||||
|
||||
def setup(self):
|
||||
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
|
||||
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
|
||||
a10 = 10.
|
||||
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
|
||||
m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
|
||||
xm = array(x, mask=m1)
|
||||
ym = array(y, mask=m2)
|
||||
z = np.array([-.5, 0., .5, .8])
|
||||
zm = array(z, mask=[0, 1, 0, 0])
|
||||
xf = np.where(m1, 1e+20, x)
|
||||
s = x.shape
|
||||
xm.set_fill_value(1e+20)
|
||||
self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf, s)
|
||||
|
||||
def test_testBasic1d(self):
|
||||
# Test of basic array creation and properties in 1 dimension.
|
||||
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
|
||||
assert_(not isMaskedArray(x))
|
||||
assert_(isMaskedArray(xm))
|
||||
assert_equal(shape(xm), s)
|
||||
assert_equal(xm.shape, s)
|
||||
assert_equal(xm.dtype, x.dtype)
|
||||
assert_equal(xm.size, reduce(lambda x, y:x * y, s))
|
||||
assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
|
||||
assert_(eq(xm, xf))
|
||||
assert_(eq(filled(xm, 1.e20), xf))
|
||||
assert_(eq(x, xm))
|
||||
|
||||
def test_testBasic2d(self):
|
||||
# Test of basic array creation and properties in 2 dimensions.
|
||||
for s in [(4, 3), (6, 2)]:
|
||||
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
|
||||
x.shape = s
|
||||
y.shape = s
|
||||
xm.shape = s
|
||||
ym.shape = s
|
||||
xf.shape = s
|
||||
|
||||
assert_(not isMaskedArray(x))
|
||||
assert_(isMaskedArray(xm))
|
||||
assert_equal(shape(xm), s)
|
||||
assert_equal(xm.shape, s)
|
||||
assert_equal(xm.size, reduce(lambda x, y:x * y, s))
|
||||
assert_equal(count(xm),
|
||||
len(m1) - reduce(lambda x, y:x + y, m1))
|
||||
assert_(eq(xm, xf))
|
||||
assert_(eq(filled(xm, 1.e20), xf))
|
||||
assert_(eq(x, xm))
|
||||
self.setup()
|
||||
|
||||
def test_testArithmetic(self):
|
||||
# Test of basic arithmetic.
|
||||
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
|
||||
a2d = array([[1, 2], [0, 4]])
|
||||
a2dm = masked_array(a2d, [[0, 0], [1, 0]])
|
||||
assert_(eq(a2d * a2d, a2d * a2dm))
|
||||
assert_(eq(a2d + a2d, a2d + a2dm))
|
||||
assert_(eq(a2d - a2d, a2d - a2dm))
|
||||
for s in [(12,), (4, 3), (2, 6)]:
|
||||
x = x.reshape(s)
|
||||
y = y.reshape(s)
|
||||
xm = xm.reshape(s)
|
||||
ym = ym.reshape(s)
|
||||
xf = xf.reshape(s)
|
||||
assert_(eq(-x, -xm))
|
||||
assert_(eq(x + y, xm + ym))
|
||||
assert_(eq(x - y, xm - ym))
|
||||
assert_(eq(x * y, xm * ym))
|
||||
with np.errstate(divide='ignore', invalid='ignore'):
|
||||
assert_(eq(x / y, xm / ym))
|
||||
assert_(eq(a10 + y, a10 + ym))
|
||||
assert_(eq(a10 - y, a10 - ym))
|
||||
assert_(eq(a10 * y, a10 * ym))
|
||||
with np.errstate(divide='ignore', invalid='ignore'):
|
||||
assert_(eq(a10 / y, a10 / ym))
|
||||
assert_(eq(x + a10, xm + a10))
|
||||
assert_(eq(x - a10, xm - a10))
|
||||
assert_(eq(x * a10, xm * a10))
|
||||
assert_(eq(x / a10, xm / a10))
|
||||
assert_(eq(x ** 2, xm ** 2))
|
||||
assert_(eq(abs(x) ** 2.5, abs(xm) ** 2.5))
|
||||
assert_(eq(x ** y, xm ** ym))
|
||||
assert_(eq(np.add(x, y), add(xm, ym)))
|
||||
assert_(eq(np.subtract(x, y), subtract(xm, ym)))
|
||||
assert_(eq(np.multiply(x, y), multiply(xm, ym)))
|
||||
with np.errstate(divide='ignore', invalid='ignore'):
|
||||
assert_(eq(np.divide(x, y), divide(xm, ym)))
|
||||
|
||||
def test_testMixedArithmetic(self):
|
||||
na = np.array([1])
|
||||
ma = array([1])
|
||||
assert_(isinstance(na + ma, MaskedArray))
|
||||
assert_(isinstance(ma + na, MaskedArray))
|
||||
|
||||
def test_testUfuncs1(self):
|
||||
# Test various functions such as sin, cos.
|
||||
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
|
||||
assert_(eq(np.cos(x), cos(xm)))
|
||||
assert_(eq(np.cosh(x), cosh(xm)))
|
||||
assert_(eq(np.sin(x), sin(xm)))
|
||||
assert_(eq(np.sinh(x), sinh(xm)))
|
||||
assert_(eq(np.tan(x), tan(xm)))
|
||||
assert_(eq(np.tanh(x), tanh(xm)))
|
||||
with np.errstate(divide='ignore', invalid='ignore'):
|
||||
assert_(eq(np.sqrt(abs(x)), sqrt(xm)))
|
||||
assert_(eq(np.log(abs(x)), log(xm)))
|
||||
assert_(eq(np.log10(abs(x)), log10(xm)))
|
||||
assert_(eq(np.exp(x), exp(xm)))
|
||||
assert_(eq(np.arcsin(z), arcsin(zm)))
|
||||
assert_(eq(np.arccos(z), arccos(zm)))
|
||||
assert_(eq(np.arctan(z), arctan(zm)))
|
||||
assert_(eq(np.arctan2(x, y), arctan2(xm, ym)))
|
||||
assert_(eq(np.absolute(x), absolute(xm)))
|
||||
assert_(eq(np.equal(x, y), equal(xm, ym)))
|
||||
assert_(eq(np.not_equal(x, y), not_equal(xm, ym)))
|
||||
assert_(eq(np.less(x, y), less(xm, ym)))
|
||||
assert_(eq(np.greater(x, y), greater(xm, ym)))
|
||||
assert_(eq(np.less_equal(x, y), less_equal(xm, ym)))
|
||||
assert_(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
|
||||
assert_(eq(np.conjugate(x), conjugate(xm)))
|
||||
assert_(eq(np.concatenate((x, y)), concatenate((xm, ym))))
|
||||
assert_(eq(np.concatenate((x, y)), concatenate((x, y))))
|
||||
assert_(eq(np.concatenate((x, y)), concatenate((xm, y))))
|
||||
assert_(eq(np.concatenate((x, y, x)), concatenate((x, ym, x))))
|
||||
|
||||
def test_xtestCount(self):
|
||||
# Test count
|
||||
ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
|
||||
assert_(count(ott).dtype.type is np.intp)
|
||||
assert_equal(3, count(ott))
|
||||
assert_equal(1, count(1))
|
||||
assert_(eq(0, array(1, mask=[1])))
|
||||
ott = ott.reshape((2, 2))
|
||||
assert_(count(ott).dtype.type is np.intp)
|
||||
assert_(isinstance(count(ott, 0), np.ndarray))
|
||||
assert_(count(ott).dtype.type is np.intp)
|
||||
assert_(eq(3, count(ott)))
|
||||
assert_(getmask(count(ott, 0)) is nomask)
|
||||
assert_(eq([1, 2], count(ott, 0)))
|
||||
|
||||
def test_testMinMax(self):
|
||||
# Test minimum and maximum.
|
||||
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
|
||||
xr = np.ravel(x) # max doesn't work if shaped
|
||||
xmr = ravel(xm)
|
||||
|
||||
# true because of careful selection of data
|
||||
assert_(eq(max(xr), maximum.reduce(xmr)))
|
||||
assert_(eq(min(xr), minimum.reduce(xmr)))
|
||||
|
||||
def test_testAddSumProd(self):
|
||||
# Test add, sum, product.
|
||||
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
|
||||
assert_(eq(np.add.reduce(x), add.reduce(x)))
|
||||
assert_(eq(np.add.accumulate(x), add.accumulate(x)))
|
||||
assert_(eq(4, sum(array(4), axis=0)))
|
||||
assert_(eq(4, sum(array(4), axis=0)))
|
||||
assert_(eq(np.sum(x, axis=0), sum(x, axis=0)))
|
||||
assert_(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)))
|
||||
assert_(eq(np.sum(x, 0), sum(x, 0)))
|
||||
assert_(eq(np.product(x, axis=0), product(x, axis=0)))
|
||||
assert_(eq(np.product(x, 0), product(x, 0)))
|
||||
assert_(eq(np.product(filled(xm, 1), axis=0),
|
||||
product(xm, axis=0)))
|
||||
if len(s) > 1:
|
||||
assert_(eq(np.concatenate((x, y), 1),
|
||||
concatenate((xm, ym), 1)))
|
||||
assert_(eq(np.add.reduce(x, 1), add.reduce(x, 1)))
|
||||
assert_(eq(np.sum(x, 1), sum(x, 1)))
|
||||
assert_(eq(np.product(x, 1), product(x, 1)))
|
||||
|
||||
def test_testCI(self):
|
||||
# Test of conversions and indexing
|
||||
x1 = np.array([1, 2, 4, 3])
|
||||
x2 = array(x1, mask=[1, 0, 0, 0])
|
||||
x3 = array(x1, mask=[0, 1, 0, 1])
|
||||
x4 = array(x1)
|
||||
# test conversion to strings
|
||||
str(x2) # raises?
|
||||
repr(x2) # raises?
|
||||
assert_(eq(np.sort(x1), sort(x2, fill_value=0)))
|
||||
# tests of indexing
|
||||
assert_(type(x2[1]) is type(x1[1]))
|
||||
assert_(x1[1] == x2[1])
|
||||
assert_(x2[0] is masked)
|
||||
assert_(eq(x1[2], x2[2]))
|
||||
assert_(eq(x1[2:5], x2[2:5]))
|
||||
assert_(eq(x1[:], x2[:]))
|
||||
assert_(eq(x1[1:], x3[1:]))
|
||||
x1[2] = 9
|
||||
x2[2] = 9
|
||||
assert_(eq(x1, x2))
|
||||
x1[1:3] = 99
|
||||
x2[1:3] = 99
|
||||
assert_(eq(x1, x2))
|
||||
x2[1] = masked
|
||||
assert_(eq(x1, x2))
|
||||
x2[1:3] = masked
|
||||
assert_(eq(x1, x2))
|
||||
x2[:] = x1
|
||||
x2[1] = masked
|
||||
assert_(allequal(getmask(x2), array([0, 1, 0, 0])))
|
||||
x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
|
||||
assert_(allequal(getmask(x3), array([0, 1, 1, 0])))
|
||||
x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0])
|
||||
assert_(allequal(getmask(x4), array([0, 1, 1, 0])))
|
||||
assert_(allequal(x4, array([1, 2, 3, 4])))
|
||||
x1 = np.arange(5) * 1.0
|
||||
x2 = masked_values(x1, 3.0)
|
||||
assert_(eq(x1, x2))
|
||||
assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask))
|
||||
assert_(eq(3.0, x2.fill_value))
|
||||
x1 = array([1, 'hello', 2, 3], object)
|
||||
x2 = np.array([1, 'hello', 2, 3], object)
|
||||
s1 = x1[1]
|
||||
s2 = x2[1]
|
||||
assert_equal(type(s2), str)
|
||||
assert_equal(type(s1), str)
|
||||
assert_equal(s1, s2)
|
||||
assert_(x1[1:1].shape == (0,))
|
||||
|
||||
def test_testCopySize(self):
|
||||
# Tests of some subtle points of copying and sizing.
|
||||
n = [0, 0, 1, 0, 0]
|
||||
m = make_mask(n)
|
||||
m2 = make_mask(m)
|
||||
assert_(m is m2)
|
||||
m3 = make_mask(m, copy=True)
|
||||
assert_(m is not m3)
|
||||
|
||||
x1 = np.arange(5)
|
||||
y1 = array(x1, mask=m)
|
||||
assert_(y1._data is not x1)
|
||||
assert_(allequal(x1, y1._data))
|
||||
assert_(y1._mask is m)
|
||||
|
||||
y1a = array(y1, copy=0)
|
||||
# For copy=False, one might expect that the array would just
|
||||
# passed on, i.e., that it would be "is" instead of "==".
|
||||
# See gh-4043 for discussion.
|
||||
assert_(y1a._mask.__array_interface__ ==
|
||||
y1._mask.__array_interface__)
|
||||
|
||||
y2 = array(x1, mask=m3, copy=0)
|
||||
assert_(y2._mask is m3)
|
||||
assert_(y2[2] is masked)
|
||||
y2[2] = 9
|
||||
assert_(y2[2] is not masked)
|
||||
assert_(y2._mask is m3)
|
||||
assert_(allequal(y2.mask, 0))
|
||||
|
||||
y2a = array(x1, mask=m, copy=1)
|
||||
assert_(y2a._mask is not m)
|
||||
assert_(y2a[2] is masked)
|
||||
y2a[2] = 9
|
||||
assert_(y2a[2] is not masked)
|
||||
assert_(y2a._mask is not m)
|
||||
assert_(allequal(y2a.mask, 0))
|
||||
|
||||
y3 = array(x1 * 1.0, mask=m)
|
||||
assert_(filled(y3).dtype is (x1 * 1.0).dtype)
|
||||
|
||||
x4 = arange(4)
|
||||
x4[2] = masked
|
||||
y4 = resize(x4, (8,))
|
||||
assert_(eq(concatenate([x4, x4]), y4))
|
||||
assert_(eq(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]))
|
||||
y5 = repeat(x4, (2, 2, 2, 2), axis=0)
|
||||
assert_(eq(y5, [0, 0, 1, 1, 2, 2, 3, 3]))
|
||||
y6 = repeat(x4, 2, axis=0)
|
||||
assert_(eq(y5, y6))
|
||||
|
||||
def test_testPut(self):
|
||||
# Test of put
|
||||
d = arange(5)
|
||||
n = [0, 0, 0, 1, 1]
|
||||
m = make_mask(n)
|
||||
m2 = m.copy()
|
||||
x = array(d, mask=m)
|
||||
assert_(x[3] is masked)
|
||||
assert_(x[4] is masked)
|
||||
x[[1, 4]] = [10, 40]
|
||||
assert_(x._mask is m)
|
||||
assert_(x[3] is masked)
|
||||
assert_(x[4] is not masked)
|
||||
assert_(eq(x, [0, 10, 2, -1, 40]))
|
||||
|
||||
x = array(d, mask=m2, copy=True)
|
||||
x.put([0, 1, 2], [-1, 100, 200])
|
||||
assert_(x._mask is not m2)
|
||||
assert_(x[3] is masked)
|
||||
assert_(x[4] is masked)
|
||||
assert_(eq(x, [-1, 100, 200, 0, 0]))
|
||||
|
||||
def test_testPut2(self):
|
||||
# Test of put
|
||||
d = arange(5)
|
||||
x = array(d, mask=[0, 0, 0, 0, 0])
|
||||
z = array([10, 40], mask=[1, 0])
|
||||
assert_(x[2] is not masked)
|
||||
assert_(x[3] is not masked)
|
||||
x[2:4] = z
|
||||
assert_(x[2] is masked)
|
||||
assert_(x[3] is not masked)
|
||||
assert_(eq(x, [0, 1, 10, 40, 4]))
|
||||
|
||||
d = arange(5)
|
||||
x = array(d, mask=[0, 0, 0, 0, 0])
|
||||
y = x[2:4]
|
||||
z = array([10, 40], mask=[1, 0])
|
||||
assert_(x[2] is not masked)
|
||||
assert_(x[3] is not masked)
|
||||
y[:] = z
|
||||
assert_(y[0] is masked)
|
||||
assert_(y[1] is not masked)
|
||||
assert_(eq(y, [10, 40]))
|
||||
assert_(x[2] is masked)
|
||||
assert_(x[3] is not masked)
|
||||
assert_(eq(x, [0, 1, 10, 40, 4]))
|
||||
|
||||
def test_testMaPut(self):
|
||||
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
|
||||
m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]
|
||||
i = np.nonzero(m)[0]
|
||||
put(ym, i, zm)
|
||||
assert_(all(take(ym, i, axis=0) == zm))
|
||||
|
||||
def test_testOddFeatures(self):
|
||||
# Test of other odd features
|
||||
x = arange(20)
|
||||
x = x.reshape(4, 5)
|
||||
x.flat[5] = 12
|
||||
assert_(x[1, 0] == 12)
|
||||
z = x + 10j * x
|
||||
assert_(eq(z.real, x))
|
||||
assert_(eq(z.imag, 10 * x))
|
||||
assert_(eq((z * conjugate(z)).real, 101 * x * x))
|
||||
z.imag[...] = 0.0
|
||||
|
||||
x = arange(10)
|
||||
x[3] = masked
|
||||
assert_(str(x[3]) == str(masked))
|
||||
c = x >= 8
|
||||
assert_(count(where(c, masked, masked)) == 0)
|
||||
assert_(shape(where(c, masked, masked)) == c.shape)
|
||||
z = where(c, x, masked)
|
||||
assert_(z.dtype is x.dtype)
|
||||
assert_(z[3] is masked)
|
||||
assert_(z[4] is masked)
|
||||
assert_(z[7] is masked)
|
||||
assert_(z[8] is not masked)
|
||||
assert_(z[9] is not masked)
|
||||
assert_(eq(x, z))
|
||||
z = where(c, masked, x)
|
||||
assert_(z.dtype is x.dtype)
|
||||
assert_(z[3] is masked)
|
||||
assert_(z[4] is not masked)
|
||||
assert_(z[7] is not masked)
|
||||
assert_(z[8] is masked)
|
||||
assert_(z[9] is masked)
|
||||
z = masked_where(c, x)
|
||||
assert_(z.dtype is x.dtype)
|
||||
assert_(z[3] is masked)
|
||||
assert_(z[4] is not masked)
|
||||
assert_(z[7] is not masked)
|
||||
assert_(z[8] is masked)
|
||||
assert_(z[9] is masked)
|
||||
assert_(eq(x, z))
|
||||
x = array([1., 2., 3., 4., 5.])
|
||||
c = array([1, 1, 1, 0, 0])
|
||||
x[2] = masked
|
||||
z = where(c, x, -x)
|
||||
assert_(eq(z, [1., 2., 0., -4., -5]))
|
||||
c[0] = masked
|
||||
z = where(c, x, -x)
|
||||
assert_(eq(z, [1., 2., 0., -4., -5]))
|
||||
assert_(z[0] is masked)
|
||||
assert_(z[1] is not masked)
|
||||
assert_(z[2] is masked)
|
||||
assert_(eq(masked_where(greater(x, 2), x), masked_greater(x, 2)))
|
||||
assert_(eq(masked_where(greater_equal(x, 2), x),
|
||||
masked_greater_equal(x, 2)))
|
||||
assert_(eq(masked_where(less(x, 2), x), masked_less(x, 2)))
|
||||
assert_(eq(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2)))
|
||||
assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)))
|
||||
assert_(eq(masked_where(equal(x, 2), x), masked_equal(x, 2)))
|
||||
assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)))
|
||||
assert_(eq(masked_inside(list(range(5)), 1, 3), [0, 199, 199, 199, 4]))
|
||||
assert_(eq(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199]))
|
||||
assert_(eq(masked_inside(array(list(range(5)),
|
||||
mask=[1, 0, 0, 0, 0]), 1, 3).mask,
|
||||
[1, 1, 1, 1, 0]))
|
||||
assert_(eq(masked_outside(array(list(range(5)),
|
||||
mask=[0, 1, 0, 0, 0]), 1, 3).mask,
|
||||
[1, 1, 0, 0, 1]))
|
||||
assert_(eq(masked_equal(array(list(range(5)),
|
||||
mask=[1, 0, 0, 0, 0]), 2).mask,
|
||||
[1, 0, 1, 0, 0]))
|
||||
assert_(eq(masked_not_equal(array([2, 2, 1, 2, 1],
|
||||
mask=[1, 0, 0, 0, 0]), 2).mask,
|
||||
[1, 0, 1, 0, 1]))
|
||||
assert_(eq(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]),
|
||||
[99, 99, 3, 4, 5]))
|
||||
atest = ones((10, 10, 10), dtype=np.float32)
|
||||
btest = zeros(atest.shape, MaskType)
|
||||
ctest = masked_where(btest, atest)
|
||||
assert_(eq(atest, ctest))
|
||||
z = choose(c, (-x, x))
|
||||
assert_(eq(z, [1., 2., 0., -4., -5]))
|
||||
assert_(z[0] is masked)
|
||||
assert_(z[1] is not masked)
|
||||
assert_(z[2] is masked)
|
||||
x = arange(6)
|
||||
x[5] = masked
|
||||
y = arange(6) * 10
|
||||
y[2] = masked
|
||||
c = array([1, 1, 1, 0, 0, 0], mask=[1, 0, 0, 0, 0, 0])
|
||||
cm = c.filled(1)
|
||||
z = where(c, x, y)
|
||||
zm = where(cm, x, y)
|
||||
assert_(eq(z, zm))
|
||||
assert_(getmask(zm) is nomask)
|
||||
assert_(eq(zm, [0, 1, 2, 30, 40, 50]))
|
||||
z = where(c, masked, 1)
|
||||
assert_(eq(z, [99, 99, 99, 1, 1, 1]))
|
||||
z = where(c, 1, masked)
|
||||
assert_(eq(z, [99, 1, 1, 99, 99, 99]))
|
||||
|
||||
def test_testMinMax2(self):
|
||||
# Test of minimum, maximum.
|
||||
assert_(eq(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3]))
|
||||
assert_(eq(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9]))
|
||||
x = arange(5)
|
||||
y = arange(5) - 2
|
||||
x[3] = masked
|
||||
y[0] = masked
|
||||
assert_(eq(minimum(x, y), where(less(x, y), x, y)))
|
||||
assert_(eq(maximum(x, y), where(greater(x, y), x, y)))
|
||||
assert_(minimum.reduce(x) == 0)
|
||||
assert_(maximum.reduce(x) == 4)
|
||||
|
||||
def test_testTakeTransposeInnerOuter(self):
|
||||
# Test of take, transpose, inner, outer products
|
||||
x = arange(24)
|
||||
y = np.arange(24)
|
||||
x[5:6] = masked
|
||||
x = x.reshape(2, 3, 4)
|
||||
y = y.reshape(2, 3, 4)
|
||||
assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))))
|
||||
assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)))
|
||||
assert_(eq(np.inner(filled(x, 0), filled(y, 0)),
|
||||
inner(x, y)))
|
||||
assert_(eq(np.outer(filled(x, 0), filled(y, 0)),
|
||||
outer(x, y)))
|
||||
y = array(['abc', 1, 'def', 2, 3], object)
|
||||
y[2] = masked
|
||||
t = take(y, [0, 3, 4])
|
||||
assert_(t[0] == 'abc')
|
||||
assert_(t[1] == 2)
|
||||
assert_(t[2] == 3)
|
||||
|
||||
def test_testInplace(self):
|
||||
# Test of inplace operations and rich comparisons
|
||||
y = arange(10)
|
||||
|
||||
x = arange(10)
|
||||
xm = arange(10)
|
||||
xm[2] = masked
|
||||
x += 1
|
||||
assert_(eq(x, y + 1))
|
||||
xm += 1
|
||||
assert_(eq(x, y + 1))
|
||||
|
||||
x = arange(10)
|
||||
xm = arange(10)
|
||||
xm[2] = masked
|
||||
x -= 1
|
||||
assert_(eq(x, y - 1))
|
||||
xm -= 1
|
||||
assert_(eq(xm, y - 1))
|
||||
|
||||
x = arange(10) * 1.0
|
||||
xm = arange(10) * 1.0
|
||||
xm[2] = masked
|
||||
x *= 2.0
|
||||
assert_(eq(x, y * 2))
|
||||
xm *= 2.0
|
||||
assert_(eq(xm, y * 2))
|
||||
|
||||
x = arange(10) * 2
|
||||
xm = arange(10)
|
||||
xm[2] = masked
|
||||
x //= 2
|
||||
assert_(eq(x, y))
|
||||
xm //= 2
|
||||
assert_(eq(x, y))
|
||||
|
||||
x = arange(10) * 1.0
|
||||
xm = arange(10) * 1.0
|
||||
xm[2] = masked
|
||||
x /= 2.0
|
||||
assert_(eq(x, y / 2.0))
|
||||
xm /= arange(10)
|
||||
assert_(eq(xm, ones((10,))))
|
||||
|
||||
x = arange(10).astype(np.float32)
|
||||
xm = arange(10)
|
||||
xm[2] = masked
|
||||
x += 1.
|
||||
assert_(eq(x, y + 1.))
|
||||
|
||||
def test_testPickle(self):
|
||||
# Test of pickling
|
||||
x = arange(12)
|
||||
x[4:10:2] = masked
|
||||
x = x.reshape(4, 3)
|
||||
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
|
||||
s = pickle.dumps(x, protocol=proto)
|
||||
y = pickle.loads(s)
|
||||
assert_(eq(x, y))
|
||||
|
||||
def test_testMasked(self):
|
||||
# Test of masked element
|
||||
xx = arange(6)
|
||||
xx[1] = masked
|
||||
assert_(str(masked) == '--')
|
||||
assert_(xx[1] is masked)
|
||||
assert_equal(filled(xx[1], 0), 0)
|
||||
|
||||
def test_testAverage1(self):
|
||||
# Test of average.
|
||||
ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
|
||||
assert_(eq(2.0, average(ott, axis=0)))
|
||||
assert_(eq(2.0, average(ott, weights=[1., 1., 2., 1.])))
|
||||
result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True)
|
||||
assert_(eq(2.0, result))
|
||||
assert_(wts == 4.0)
|
||||
ott[:] = masked
|
||||
assert_(average(ott, axis=0) is masked)
|
||||
ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
|
||||
ott = ott.reshape(2, 2)
|
||||
ott[:, 1] = masked
|
||||
assert_(eq(average(ott, axis=0), [2.0, 0.0]))
|
||||
assert_(average(ott, axis=1)[0] is masked)
|
||||
assert_(eq([2., 0.], average(ott, axis=0)))
|
||||
result, wts = average(ott, axis=0, returned=True)
|
||||
assert_(eq(wts, [1., 0.]))
|
||||
|
||||
def test_testAverage2(self):
|
||||
# More tests of average.
|
||||
w1 = [0, 1, 1, 1, 1, 0]
|
||||
w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
|
||||
x = arange(6)
|
||||
assert_(allclose(average(x, axis=0), 2.5))
|
||||
assert_(allclose(average(x, axis=0, weights=w1), 2.5))
|
||||
y = array([arange(6), 2.0 * arange(6)])
|
||||
assert_(allclose(average(y, None),
|
||||
np.add.reduce(np.arange(6)) * 3. / 12.))
|
||||
assert_(allclose(average(y, axis=0), np.arange(6) * 3. / 2.))
|
||||
assert_(allclose(average(y, axis=1),
|
||||
[average(x, axis=0), average(x, axis=0)*2.0]))
|
||||
assert_(allclose(average(y, None, weights=w2), 20. / 6.))
|
||||
assert_(allclose(average(y, axis=0, weights=w2),
|
||||
[0., 1., 2., 3., 4., 10.]))
|
||||
assert_(allclose(average(y, axis=1),
|
||||
[average(x, axis=0), average(x, axis=0)*2.0]))
|
||||
m1 = zeros(6)
|
||||
m2 = [0, 0, 1, 1, 0, 0]
|
||||
m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
|
||||
m4 = ones(6)
|
||||
m5 = [0, 1, 1, 1, 1, 1]
|
||||
assert_(allclose(average(masked_array(x, m1), axis=0), 2.5))
|
||||
assert_(allclose(average(masked_array(x, m2), axis=0), 2.5))
|
||||
assert_(average(masked_array(x, m4), axis=0) is masked)
|
||||
assert_equal(average(masked_array(x, m5), axis=0), 0.0)
|
||||
assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
|
||||
z = masked_array(y, m3)
|
||||
assert_(allclose(average(z, None), 20. / 6.))
|
||||
assert_(allclose(average(z, axis=0),
|
||||
[0., 1., 99., 99., 4.0, 7.5]))
|
||||
assert_(allclose(average(z, axis=1), [2.5, 5.0]))
|
||||
assert_(allclose(average(z, axis=0, weights=w2),
|
||||
[0., 1., 99., 99., 4.0, 10.0]))
|
||||
|
||||
a = arange(6)
|
||||
b = arange(6) * 3
|
||||
r1, w1 = average([[a, b], [b, a]], axis=1, returned=True)
|
||||
assert_equal(shape(r1), shape(w1))
|
||||
assert_equal(r1.shape, w1.shape)
|
||||
r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True)
|
||||
assert_equal(shape(w2), shape(r2))
|
||||
r2, w2 = average(ones((2, 2, 3)), returned=True)
|
||||
assert_equal(shape(w2), shape(r2))
|
||||
r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True)
|
||||
assert_(shape(w2) == shape(r2))
|
||||
a2d = array([[1, 2], [0, 4]], float)
|
||||
a2dm = masked_array(a2d, [[0, 0], [1, 0]])
|
||||
a2da = average(a2d, axis=0)
|
||||
assert_(eq(a2da, [0.5, 3.0]))
|
||||
a2dma = average(a2dm, axis=0)
|
||||
assert_(eq(a2dma, [1.0, 3.0]))
|
||||
a2dma = average(a2dm, axis=None)
|
||||
assert_(eq(a2dma, 7. / 3.))
|
||||
a2dma = average(a2dm, axis=1)
|
||||
assert_(eq(a2dma, [1.5, 4.0]))
|
||||
|
||||
def test_testToPython(self):
|
||||
assert_equal(1, int(array(1)))
|
||||
assert_equal(1.0, float(array(1)))
|
||||
assert_equal(1, int(array([[[1]]])))
|
||||
assert_equal(1.0, float(array([[1]])))
|
||||
assert_raises(TypeError, float, array([1, 1]))
|
||||
assert_raises(ValueError, bool, array([0, 1]))
|
||||
assert_raises(ValueError, bool, array([0, 0], mask=[0, 1]))
|
||||
|
||||
def test_testScalarArithmetic(self):
|
||||
xm = array(0, mask=1)
|
||||
#TODO FIXME: Find out what the following raises a warning in r8247
|
||||
with np.errstate(divide='ignore'):
|
||||
assert_((1 / array(0)).mask)
|
||||
assert_((1 + xm).mask)
|
||||
assert_((-xm).mask)
|
||||
assert_((-xm).mask)
|
||||
assert_(maximum(xm, xm).mask)
|
||||
assert_(minimum(xm, xm).mask)
|
||||
assert_(xm.filled().dtype is xm._data.dtype)
|
||||
x = array(0, mask=0)
|
||||
assert_(x.filled() == x._data)
|
||||
assert_equal(str(xm), str(masked_print_option))
|
||||
|
||||
def test_testArrayMethods(self):
|
||||
a = array([1, 3, 2])
|
||||
assert_(eq(a.any(), a._data.any()))
|
||||
assert_(eq(a.all(), a._data.all()))
|
||||
assert_(eq(a.argmax(), a._data.argmax()))
|
||||
assert_(eq(a.argmin(), a._data.argmin()))
|
||||
assert_(eq(a.choose(0, 1, 2, 3, 4),
|
||||
a._data.choose(0, 1, 2, 3, 4)))
|
||||
assert_(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])))
|
||||
assert_(eq(a.conj(), a._data.conj()))
|
||||
assert_(eq(a.conjugate(), a._data.conjugate()))
|
||||
m = array([[1, 2], [3, 4]])
|
||||
assert_(eq(m.diagonal(), m._data.diagonal()))
|
||||
assert_(eq(a.sum(), a._data.sum()))
|
||||
assert_(eq(a.take([1, 2]), a._data.take([1, 2])))
|
||||
assert_(eq(m.transpose(), m._data.transpose()))
|
||||
|
||||
def test_testArrayAttributes(self):
|
||||
a = array([1, 3, 2])
|
||||
assert_equal(a.ndim, 1)
|
||||
|
||||
def test_testAPI(self):
|
||||
assert_(not [m for m in dir(np.ndarray)
|
||||
if m not in dir(MaskedArray) and
|
||||
not m.startswith('_')])
|
||||
|
||||
def test_testSingleElementSubscript(self):
|
||||
a = array([1, 3, 2])
|
||||
b = array([1, 3, 2], mask=[1, 0, 1])
|
||||
assert_equal(a[0].shape, ())
|
||||
assert_equal(b[0].shape, ())
|
||||
assert_equal(b[1].shape, ())
|
||||
|
||||
|
||||
class TestUfuncs:
|
||||
def setup(self):
|
||||
self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
|
||||
array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
|
||||
|
||||
def test_testUfuncRegression(self):
|
||||
f_invalid_ignore = [
|
||||
'sqrt', 'arctanh', 'arcsin', 'arccos',
|
||||
'arccosh', 'arctanh', 'log', 'log10', 'divide',
|
||||
'true_divide', 'floor_divide', 'remainder', 'fmod']
|
||||
for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
|
||||
'sin', 'cos', 'tan',
|
||||
'arcsin', 'arccos', 'arctan',
|
||||
'sinh', 'cosh', 'tanh',
|
||||
'arcsinh',
|
||||
'arccosh',
|
||||
'arctanh',
|
||||
'absolute', 'fabs', 'negative',
|
||||
'floor', 'ceil',
|
||||
'logical_not',
|
||||
'add', 'subtract', 'multiply',
|
||||
'divide', 'true_divide', 'floor_divide',
|
||||
'remainder', 'fmod', 'hypot', 'arctan2',
|
||||
'equal', 'not_equal', 'less_equal', 'greater_equal',
|
||||
'less', 'greater',
|
||||
'logical_and', 'logical_or', 'logical_xor']:
|
||||
try:
|
||||
uf = getattr(umath, f)
|
||||
except AttributeError:
|
||||
uf = getattr(fromnumeric, f)
|
||||
mf = getattr(np.ma, f)
|
||||
args = self.d[:uf.nin]
|
||||
with np.errstate():
|
||||
if f in f_invalid_ignore:
|
||||
np.seterr(invalid='ignore')
|
||||
if f in ['arctanh', 'log', 'log10']:
|
||||
np.seterr(divide='ignore')
|
||||
ur = uf(*args)
|
||||
mr = mf(*args)
|
||||
assert_(eq(ur.filled(0), mr.filled(0), f))
|
||||
assert_(eqmask(ur.mask, mr.mask))
|
||||
|
||||
def test_reduce(self):
|
||||
a = self.d[0]
|
||||
assert_(not alltrue(a, axis=0))
|
||||
assert_(sometrue(a, axis=0))
|
||||
assert_equal(sum(a[:3], axis=0), 0)
|
||||
assert_equal(product(a, axis=0), 0)
|
||||
|
||||
def test_minmax(self):
|
||||
a = arange(1, 13).reshape(3, 4)
|
||||
amask = masked_where(a < 5, a)
|
||||
assert_equal(amask.max(), a.max())
|
||||
assert_equal(amask.min(), 5)
|
||||
assert_((amask.max(0) == a.max(0)).all())
|
||||
assert_((amask.min(0) == [5, 6, 7, 8]).all())
|
||||
assert_(amask.max(1)[0].mask)
|
||||
assert_(amask.min(1)[0].mask)
|
||||
|
||||
def test_nonzero(self):
|
||||
for t in "?bhilqpBHILQPfdgFDGO":
|
||||
x = array([1, 0, 2, 0], mask=[0, 0, 1, 1])
|
||||
assert_(eq(nonzero(x), [0]))
|
||||
|
||||
|
||||
class TestArrayMethods:
|
||||
|
||||
def setup(self):
|
||||
x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
|
||||
8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
|
||||
3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
|
||||
6.04, 9.63, 7.712, 3.382, 4.489, 6.479,
|
||||
7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
|
||||
7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
|
||||
X = x.reshape(6, 6)
|
||||
XX = x.reshape(3, 2, 2, 3)
|
||||
|
||||
m = np.array([0, 1, 0, 1, 0, 0,
|
||||
1, 0, 1, 1, 0, 1,
|
||||
0, 0, 0, 1, 0, 1,
|
||||
0, 0, 0, 1, 1, 1,
|
||||
1, 0, 0, 1, 0, 0,
|
||||
0, 0, 1, 0, 1, 0])
|
||||
mx = array(data=x, mask=m)
|
||||
mX = array(data=X, mask=m.reshape(X.shape))
|
||||
mXX = array(data=XX, mask=m.reshape(XX.shape))
|
||||
|
||||
self.d = (x, X, XX, m, mx, mX, mXX)
|
||||
|
||||
def test_trace(self):
|
||||
(x, X, XX, m, mx, mX, mXX,) = self.d
|
||||
mXdiag = mX.diagonal()
|
||||
assert_equal(mX.trace(), mX.diagonal().compressed().sum())
|
||||
assert_(eq(mX.trace(),
|
||||
X.trace() - sum(mXdiag.mask * X.diagonal(),
|
||||
axis=0)))
|
||||
|
||||
def test_clip(self):
|
||||
(x, X, XX, m, mx, mX, mXX,) = self.d
|
||||
clipped = mx.clip(2, 8)
|
||||
assert_(eq(clipped.mask, mx.mask))
|
||||
assert_(eq(clipped._data, x.clip(2, 8)))
|
||||
assert_(eq(clipped._data, mx._data.clip(2, 8)))
|
||||
|
||||
def test_ptp(self):
|
||||
(x, X, XX, m, mx, mX, mXX,) = self.d
|
||||
(n, m) = X.shape
|
||||
assert_equal(mx.ptp(), mx.compressed().ptp())
|
||||
rows = np.zeros(n, np.float_)
|
||||
cols = np.zeros(m, np.float_)
|
||||
for k in range(m):
|
||||
cols[k] = mX[:, k].compressed().ptp()
|
||||
for k in range(n):
|
||||
rows[k] = mX[k].compressed().ptp()
|
||||
assert_(eq(mX.ptp(0), cols))
|
||||
assert_(eq(mX.ptp(1), rows))
|
||||
|
||||
def test_swapaxes(self):
|
||||
(x, X, XX, m, mx, mX, mXX,) = self.d
|
||||
mXswapped = mX.swapaxes(0, 1)
|
||||
assert_(eq(mXswapped[-1], mX[:, -1]))
|
||||
mXXswapped = mXX.swapaxes(0, 2)
|
||||
assert_equal(mXXswapped.shape, (2, 2, 3, 3))
|
||||
|
||||
def test_cumprod(self):
|
||||
(x, X, XX, m, mx, mX, mXX,) = self.d
|
||||
mXcp = mX.cumprod(0)
|
||||
assert_(eq(mXcp._data, mX.filled(1).cumprod(0)))
|
||||
mXcp = mX.cumprod(1)
|
||||
assert_(eq(mXcp._data, mX.filled(1).cumprod(1)))
|
||||
|
||||
def test_cumsum(self):
|
||||
(x, X, XX, m, mx, mX, mXX,) = self.d
|
||||
mXcp = mX.cumsum(0)
|
||||
assert_(eq(mXcp._data, mX.filled(0).cumsum(0)))
|
||||
mXcp = mX.cumsum(1)
|
||||
assert_(eq(mXcp._data, mX.filled(0).cumsum(1)))
|
||||
|
||||
def test_varstd(self):
|
||||
(x, X, XX, m, mx, mX, mXX,) = self.d
|
||||
assert_(eq(mX.var(axis=None), mX.compressed().var()))
|
||||
assert_(eq(mX.std(axis=None), mX.compressed().std()))
|
||||
assert_(eq(mXX.var(axis=3).shape, XX.var(axis=3).shape))
|
||||
assert_(eq(mX.var().shape, X.var().shape))
|
||||
(mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
|
||||
for k in range(6):
|
||||
assert_(eq(mXvar1[k], mX[k].compressed().var()))
|
||||
assert_(eq(mXvar0[k], mX[:, k].compressed().var()))
|
||||
assert_(eq(np.sqrt(mXvar0[k]),
|
||||
mX[:, k].compressed().std()))
|
||||
|
||||
|
||||
def eqmask(m1, m2):
|
||||
if m1 is nomask:
|
||||
return m2 is nomask
|
||||
if m2 is nomask:
|
||||
return m1 is nomask
|
||||
return (m1 == m2).all()
|
91
venv/Lib/site-packages/numpy/ma/tests/test_regression.py
Normal file
91
venv/Lib/site-packages/numpy/ma/tests/test_regression.py
Normal file
|
@ -0,0 +1,91 @@
|
|||
import numpy as np
|
||||
from numpy.testing import (
|
||||
assert_, assert_array_equal, assert_allclose, suppress_warnings
|
||||
)
|
||||
|
||||
|
||||
class TestRegression:
|
||||
def test_masked_array_create(self):
|
||||
# Ticket #17
|
||||
x = np.ma.masked_array([0, 1, 2, 3, 0, 4, 5, 6],
|
||||
mask=[0, 0, 0, 1, 1, 1, 0, 0])
|
||||
assert_array_equal(np.ma.nonzero(x), [[1, 2, 6, 7]])
|
||||
|
||||
def test_masked_array(self):
|
||||
# Ticket #61
|
||||
np.ma.array(1, mask=[1])
|
||||
|
||||
def test_mem_masked_where(self):
|
||||
# Ticket #62
|
||||
from numpy.ma import masked_where, MaskType
|
||||
a = np.zeros((1, 1))
|
||||
b = np.zeros(a.shape, MaskType)
|
||||
c = masked_where(b, a)
|
||||
a-c
|
||||
|
||||
def test_masked_array_multiply(self):
|
||||
# Ticket #254
|
||||
a = np.ma.zeros((4, 1))
|
||||
a[2, 0] = np.ma.masked
|
||||
b = np.zeros((4, 2))
|
||||
a*b
|
||||
b*a
|
||||
|
||||
def test_masked_array_repeat(self):
|
||||
# Ticket #271
|
||||
np.ma.array([1], mask=False).repeat(10)
|
||||
|
||||
def test_masked_array_repr_unicode(self):
|
||||
# Ticket #1256
|
||||
repr(np.ma.array(u"Unicode"))
|
||||
|
||||
def test_atleast_2d(self):
|
||||
# Ticket #1559
|
||||
a = np.ma.masked_array([0.0, 1.2, 3.5], mask=[False, True, False])
|
||||
b = np.atleast_2d(a)
|
||||
assert_(a.mask.ndim == 1)
|
||||
assert_(b.mask.ndim == 2)
|
||||
|
||||
def test_set_fill_value_unicode_py3(self):
|
||||
# Ticket #2733
|
||||
a = np.ma.masked_array(['a', 'b', 'c'], mask=[1, 0, 0])
|
||||
a.fill_value = 'X'
|
||||
assert_(a.fill_value == 'X')
|
||||
|
||||
def test_var_sets_maskedarray_scalar(self):
|
||||
# Issue gh-2757
|
||||
a = np.ma.array(np.arange(5), mask=True)
|
||||
mout = np.ma.array(-1, dtype=float)
|
||||
a.var(out=mout)
|
||||
assert_(mout._data == 0)
|
||||
|
||||
def test_ddof_corrcoef(self):
|
||||
# See gh-3336
|
||||
x = np.ma.masked_equal([1, 2, 3, 4, 5], 4)
|
||||
y = np.array([2, 2.5, 3.1, 3, 5])
|
||||
# this test can be removed after deprecation.
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(DeprecationWarning, "bias and ddof have no effect")
|
||||
r0 = np.ma.corrcoef(x, y, ddof=0)
|
||||
r1 = np.ma.corrcoef(x, y, ddof=1)
|
||||
# ddof should not have an effect (it gets cancelled out)
|
||||
assert_allclose(r0.data, r1.data)
|
||||
|
||||
def test_mask_not_backmangled(self):
|
||||
# See gh-10314. Test case taken from gh-3140.
|
||||
a = np.ma.MaskedArray([1., 2.], mask=[False, False])
|
||||
assert_(a.mask.shape == (2,))
|
||||
b = np.tile(a, (2, 1))
|
||||
# Check that the above no longer changes a.shape to (1, 2)
|
||||
assert_(a.mask.shape == (2,))
|
||||
assert_(b.shape == (2, 2))
|
||||
assert_(b.mask.shape == (2, 2))
|
||||
|
||||
def test_empty_list_on_structured(self):
|
||||
# See gh-12464. Indexing with empty list should give empty result.
|
||||
ma = np.ma.MaskedArray([(1, 1.), (2, 2.), (3, 3.)], dtype='i4,f4')
|
||||
assert_array_equal(ma[[]], ma[:0])
|
||||
|
||||
def test_masked_array_tobytes_fortran(self):
|
||||
ma = np.ma.arange(4).reshape((2,2))
|
||||
assert_array_equal(ma.tobytes(order='F'), ma.T.tobytes())
|
347
venv/Lib/site-packages/numpy/ma/tests/test_subclassing.py
Normal file
347
venv/Lib/site-packages/numpy/ma/tests/test_subclassing.py
Normal file
|
@ -0,0 +1,347 @@
|
|||
# pylint: disable-msg=W0611, W0612, W0511,R0201
|
||||
"""Tests suite for MaskedArray & subclassing.
|
||||
|
||||
:author: Pierre Gerard-Marchant
|
||||
:contact: pierregm_at_uga_dot_edu
|
||||
:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
from numpy.testing import assert_, assert_raises
|
||||
from numpy.ma.testutils import assert_equal
|
||||
from numpy.ma.core import (
|
||||
array, arange, masked, MaskedArray, masked_array, log, add, hypot,
|
||||
divide, asarray, asanyarray, nomask
|
||||
)
|
||||
# from numpy.ma.core import (
|
||||
|
||||
def assert_startswith(a, b):
|
||||
# produces a better error message than assert_(a.startswith(b))
|
||||
assert_equal(a[:len(b)], b)
|
||||
|
||||
class SubArray(np.ndarray):
|
||||
# Defines a generic np.ndarray subclass, that stores some metadata
|
||||
# in the dictionary `info`.
|
||||
def __new__(cls,arr,info={}):
|
||||
x = np.asanyarray(arr).view(cls)
|
||||
x.info = info.copy()
|
||||
return x
|
||||
|
||||
def __array_finalize__(self, obj):
|
||||
if callable(getattr(super(SubArray, self),
|
||||
'__array_finalize__', None)):
|
||||
super(SubArray, self).__array_finalize__(obj)
|
||||
self.info = getattr(obj, 'info', {}).copy()
|
||||
return
|
||||
|
||||
def __add__(self, other):
|
||||
result = super(SubArray, self).__add__(other)
|
||||
result.info['added'] = result.info.get('added', 0) + 1
|
||||
return result
|
||||
|
||||
def __iadd__(self, other):
|
||||
result = super(SubArray, self).__iadd__(other)
|
||||
result.info['iadded'] = result.info.get('iadded', 0) + 1
|
||||
return result
|
||||
|
||||
|
||||
subarray = SubArray
|
||||
|
||||
|
||||
class SubMaskedArray(MaskedArray):
|
||||
"""Pure subclass of MaskedArray, keeping some info on subclass."""
|
||||
def __new__(cls, info=None, **kwargs):
|
||||
obj = super(SubMaskedArray, cls).__new__(cls, **kwargs)
|
||||
obj._optinfo['info'] = info
|
||||
return obj
|
||||
|
||||
|
||||
class MSubArray(SubArray, MaskedArray):
|
||||
|
||||
def __new__(cls, data, info={}, mask=nomask):
|
||||
subarr = SubArray(data, info)
|
||||
_data = MaskedArray.__new__(cls, data=subarr, mask=mask)
|
||||
_data.info = subarr.info
|
||||
return _data
|
||||
|
||||
@property
|
||||
def _series(self):
|
||||
_view = self.view(MaskedArray)
|
||||
_view._sharedmask = False
|
||||
return _view
|
||||
|
||||
msubarray = MSubArray
|
||||
|
||||
|
||||
# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
|
||||
# setting to non-class values (and thus np.ma.core.masked_print_option)
|
||||
# and overrides __array_wrap__, updating the info dict, to check that this
|
||||
# doesn't get destroyed by MaskedArray._update_from. But this one also needs
|
||||
# its own iterator...
|
||||
class CSAIterator:
|
||||
"""
|
||||
Flat iterator object that uses its own setter/getter
|
||||
(works around ndarray.flat not propagating subclass setters/getters
|
||||
see https://github.com/numpy/numpy/issues/4564)
|
||||
roughly following MaskedIterator
|
||||
"""
|
||||
def __init__(self, a):
|
||||
self._original = a
|
||||
self._dataiter = a.view(np.ndarray).flat
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __getitem__(self, indx):
|
||||
out = self._dataiter.__getitem__(indx)
|
||||
if not isinstance(out, np.ndarray):
|
||||
out = out.__array__()
|
||||
out = out.view(type(self._original))
|
||||
return out
|
||||
|
||||
def __setitem__(self, index, value):
|
||||
self._dataiter[index] = self._original._validate_input(value)
|
||||
|
||||
def __next__(self):
|
||||
return next(self._dataiter).__array__().view(type(self._original))
|
||||
|
||||
|
||||
class ComplicatedSubArray(SubArray):
|
||||
|
||||
def __str__(self):
|
||||
return 'myprefix {0} mypostfix'.format(self.view(SubArray))
|
||||
|
||||
def __repr__(self):
|
||||
# Return a repr that does not start with 'name('
|
||||
return '<{0} {1}>'.format(self.__class__.__name__, self)
|
||||
|
||||
def _validate_input(self, value):
|
||||
if not isinstance(value, ComplicatedSubArray):
|
||||
raise ValueError("Can only set to MySubArray values")
|
||||
return value
|
||||
|
||||
def __setitem__(self, item, value):
|
||||
# validation ensures direct assignment with ndarray or
|
||||
# masked_print_option will fail
|
||||
super(ComplicatedSubArray, self).__setitem__(
|
||||
item, self._validate_input(value))
|
||||
|
||||
def __getitem__(self, item):
|
||||
# ensure getter returns our own class also for scalars
|
||||
value = super(ComplicatedSubArray, self).__getitem__(item)
|
||||
if not isinstance(value, np.ndarray): # scalar
|
||||
value = value.__array__().view(ComplicatedSubArray)
|
||||
return value
|
||||
|
||||
@property
|
||||
def flat(self):
|
||||
return CSAIterator(self)
|
||||
|
||||
@flat.setter
|
||||
def flat(self, value):
|
||||
y = self.ravel()
|
||||
y[:] = value
|
||||
|
||||
def __array_wrap__(self, obj, context=None):
|
||||
obj = super(ComplicatedSubArray, self).__array_wrap__(obj, context)
|
||||
if context is not None and context[0] is np.multiply:
|
||||
obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
|
||||
|
||||
return obj
|
||||
|
||||
|
||||
class TestSubclassing:
|
||||
# Test suite for masked subclasses of ndarray.
|
||||
|
||||
def setup(self):
|
||||
x = np.arange(5, dtype='float')
|
||||
mx = msubarray(x, mask=[0, 1, 0, 0, 0])
|
||||
self.data = (x, mx)
|
||||
|
||||
def test_data_subclassing(self):
|
||||
# Tests whether the subclass is kept.
|
||||
x = np.arange(5)
|
||||
m = [0, 0, 1, 0, 0]
|
||||
xsub = SubArray(x)
|
||||
xmsub = masked_array(xsub, mask=m)
|
||||
assert_(isinstance(xmsub, MaskedArray))
|
||||
assert_equal(xmsub._data, xsub)
|
||||
assert_(isinstance(xmsub._data, SubArray))
|
||||
|
||||
def test_maskedarray_subclassing(self):
|
||||
# Tests subclassing MaskedArray
|
||||
(x, mx) = self.data
|
||||
assert_(isinstance(mx._data, subarray))
|
||||
|
||||
def test_masked_unary_operations(self):
|
||||
# Tests masked_unary_operation
|
||||
(x, mx) = self.data
|
||||
with np.errstate(divide='ignore'):
|
||||
assert_(isinstance(log(mx), msubarray))
|
||||
assert_equal(log(x), np.log(x))
|
||||
|
||||
def test_masked_binary_operations(self):
|
||||
# Tests masked_binary_operation
|
||||
(x, mx) = self.data
|
||||
# Result should be a msubarray
|
||||
assert_(isinstance(add(mx, mx), msubarray))
|
||||
assert_(isinstance(add(mx, x), msubarray))
|
||||
# Result should work
|
||||
assert_equal(add(mx, x), mx+x)
|
||||
assert_(isinstance(add(mx, mx)._data, subarray))
|
||||
assert_(isinstance(add.outer(mx, mx), msubarray))
|
||||
assert_(isinstance(hypot(mx, mx), msubarray))
|
||||
assert_(isinstance(hypot(mx, x), msubarray))
|
||||
|
||||
def test_masked_binary_operations2(self):
|
||||
# Tests domained_masked_binary_operation
|
||||
(x, mx) = self.data
|
||||
xmx = masked_array(mx.data.__array__(), mask=mx.mask)
|
||||
assert_(isinstance(divide(mx, mx), msubarray))
|
||||
assert_(isinstance(divide(mx, x), msubarray))
|
||||
assert_equal(divide(mx, mx), divide(xmx, xmx))
|
||||
|
||||
def test_attributepropagation(self):
|
||||
x = array(arange(5), mask=[0]+[1]*4)
|
||||
my = masked_array(subarray(x))
|
||||
ym = msubarray(x)
|
||||
#
|
||||
z = (my+1)
|
||||
assert_(isinstance(z, MaskedArray))
|
||||
assert_(not isinstance(z, MSubArray))
|
||||
assert_(isinstance(z._data, SubArray))
|
||||
assert_equal(z._data.info, {})
|
||||
#
|
||||
z = (ym+1)
|
||||
assert_(isinstance(z, MaskedArray))
|
||||
assert_(isinstance(z, MSubArray))
|
||||
assert_(isinstance(z._data, SubArray))
|
||||
assert_(z._data.info['added'] > 0)
|
||||
# Test that inplace methods from data get used (gh-4617)
|
||||
ym += 1
|
||||
assert_(isinstance(ym, MaskedArray))
|
||||
assert_(isinstance(ym, MSubArray))
|
||||
assert_(isinstance(ym._data, SubArray))
|
||||
assert_(ym._data.info['iadded'] > 0)
|
||||
#
|
||||
ym._set_mask([1, 0, 0, 0, 1])
|
||||
assert_equal(ym._mask, [1, 0, 0, 0, 1])
|
||||
ym._series._set_mask([0, 0, 0, 0, 1])
|
||||
assert_equal(ym._mask, [0, 0, 0, 0, 1])
|
||||
#
|
||||
xsub = subarray(x, info={'name':'x'})
|
||||
mxsub = masked_array(xsub)
|
||||
assert_(hasattr(mxsub, 'info'))
|
||||
assert_equal(mxsub.info, xsub.info)
|
||||
|
||||
def test_subclasspreservation(self):
|
||||
# Checks that masked_array(...,subok=True) preserves the class.
|
||||
x = np.arange(5)
|
||||
m = [0, 0, 1, 0, 0]
|
||||
xinfo = [(i, j) for (i, j) in zip(x, m)]
|
||||
xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
|
||||
#
|
||||
mxsub = masked_array(xsub, subok=False)
|
||||
assert_(not isinstance(mxsub, MSubArray))
|
||||
assert_(isinstance(mxsub, MaskedArray))
|
||||
assert_equal(mxsub._mask, m)
|
||||
#
|
||||
mxsub = asarray(xsub)
|
||||
assert_(not isinstance(mxsub, MSubArray))
|
||||
assert_(isinstance(mxsub, MaskedArray))
|
||||
assert_equal(mxsub._mask, m)
|
||||
#
|
||||
mxsub = masked_array(xsub, subok=True)
|
||||
assert_(isinstance(mxsub, MSubArray))
|
||||
assert_equal(mxsub.info, xsub.info)
|
||||
assert_equal(mxsub._mask, xsub._mask)
|
||||
#
|
||||
mxsub = asanyarray(xsub)
|
||||
assert_(isinstance(mxsub, MSubArray))
|
||||
assert_equal(mxsub.info, xsub.info)
|
||||
assert_equal(mxsub._mask, m)
|
||||
|
||||
def test_subclass_items(self):
|
||||
"""test that getter and setter go via baseclass"""
|
||||
x = np.arange(5)
|
||||
xcsub = ComplicatedSubArray(x)
|
||||
mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
|
||||
# getter should return a ComplicatedSubArray, even for single item
|
||||
# first check we wrote ComplicatedSubArray correctly
|
||||
assert_(isinstance(xcsub[1], ComplicatedSubArray))
|
||||
assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
|
||||
assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
|
||||
|
||||
# now that it propagates inside the MaskedArray
|
||||
assert_(isinstance(mxcsub[1], ComplicatedSubArray))
|
||||
assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
|
||||
assert_(mxcsub[0] is masked)
|
||||
assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
|
||||
assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
|
||||
|
||||
# also for flattened version (which goes via MaskedIterator)
|
||||
assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
|
||||
assert_(mxcsub.flat[0] is masked)
|
||||
assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
|
||||
|
||||
# setter should only work with ComplicatedSubArray input
|
||||
# first check we wrote ComplicatedSubArray correctly
|
||||
assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
|
||||
# now that it propagates inside the MaskedArray
|
||||
assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
|
||||
assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
|
||||
mxcsub[1] = xcsub[4]
|
||||
mxcsub[1:4] = xcsub[1:4]
|
||||
# also for flattened version (which goes via MaskedIterator)
|
||||
assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
|
||||
assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
|
||||
mxcsub.flat[1] = xcsub[4]
|
||||
mxcsub.flat[1:4] = xcsub[1:4]
|
||||
|
||||
def test_subclass_nomask_items(self):
|
||||
x = np.arange(5)
|
||||
xcsub = ComplicatedSubArray(x)
|
||||
mxcsub_nomask = masked_array(xcsub)
|
||||
|
||||
assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
|
||||
assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
|
||||
|
||||
assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
|
||||
assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
|
||||
|
||||
def test_subclass_repr(self):
|
||||
"""test that repr uses the name of the subclass
|
||||
and 'array' for np.ndarray"""
|
||||
x = np.arange(5)
|
||||
mx = masked_array(x, mask=[True, False, True, False, False])
|
||||
assert_startswith(repr(mx), 'masked_array')
|
||||
xsub = SubArray(x)
|
||||
mxsub = masked_array(xsub, mask=[True, False, True, False, False])
|
||||
assert_startswith(repr(mxsub),
|
||||
'masked_{0}(data=[--, 1, --, 3, 4]'.format(SubArray.__name__))
|
||||
|
||||
def test_subclass_str(self):
|
||||
"""test str with subclass that has overridden str, setitem"""
|
||||
# first without override
|
||||
x = np.arange(5)
|
||||
xsub = SubArray(x)
|
||||
mxsub = masked_array(xsub, mask=[True, False, True, False, False])
|
||||
assert_equal(str(mxsub), '[-- 1 -- 3 4]')
|
||||
|
||||
xcsub = ComplicatedSubArray(x)
|
||||
assert_raises(ValueError, xcsub.__setitem__, 0,
|
||||
np.ma.core.masked_print_option)
|
||||
mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
|
||||
assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
|
||||
|
||||
def test_pure_subclass_info_preservation(self):
|
||||
# Test that ufuncs and methods conserve extra information consistently;
|
||||
# see gh-7122.
|
||||
arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
|
||||
arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
|
||||
diff1 = np.subtract(arr1, arr2)
|
||||
assert_('info' in diff1._optinfo)
|
||||
assert_(diff1._optinfo['info'] == 'test')
|
||||
diff2 = arr1 - arr2
|
||||
assert_('info' in diff2._optinfo)
|
||||
assert_(diff2._optinfo['info'] == 'test')
|
Loading…
Add table
Add a link
Reference in a new issue