Created starter files for the project.

This commit is contained in:
Batuhan Berk Başoğlu 2020-10-02 21:26:03 -04:00
commit 73f0c0db42
1992 changed files with 769897 additions and 0 deletions

View file

@ -0,0 +1,63 @@
"""
**Note:** almost all functions in the ``numpy.lib`` namespace
are also present in the main ``numpy`` namespace. Please use the
functions as ``np.<funcname>`` where possible.
``numpy.lib`` is mostly a space for implementing functions that don't
belong in core or in another NumPy submodule with a clear purpose
(e.g. ``random``, ``fft``, ``linalg``, ``ma``).
Most contains basic functions that are used by several submodules and are
useful to have in the main name-space.
"""
import math
from numpy.version import version as __version__
# Public submodules
# Note: recfunctions and (maybe) format are public too, but not imported
from . import mixins
from . import scimath as emath
# Private submodules
from .type_check import *
from .index_tricks import *
from .function_base import *
from .nanfunctions import *
from .shape_base import *
from .stride_tricks import *
from .twodim_base import *
from .ufunclike import *
from .histograms import *
from .polynomial import *
from .utils import *
from .arraysetops import *
from .npyio import *
from .financial import *
from .arrayterator import Arrayterator
from .arraypad import *
from ._version import *
from numpy.core._multiarray_umath import tracemalloc_domain
__all__ = ['emath', 'math', 'tracemalloc_domain', 'Arrayterator']
__all__ += type_check.__all__
__all__ += index_tricks.__all__
__all__ += function_base.__all__
__all__ += shape_base.__all__
__all__ += stride_tricks.__all__
__all__ += twodim_base.__all__
__all__ += ufunclike.__all__
__all__ += arraypad.__all__
__all__ += polynomial.__all__
__all__ += utils.__all__
__all__ += arraysetops.__all__
__all__ += npyio.__all__
__all__ += financial.__all__
__all__ += nanfunctions.__all__
__all__ += histograms.__all__
from numpy._pytesttester import PytestTester
test = PytestTester(__name__)
del PytestTester

View file

@ -0,0 +1,706 @@
"""A file interface for handling local and remote data files.
The goal of datasource is to abstract some of the file system operations
when dealing with data files so the researcher doesn't have to know all the
low-level details. Through datasource, a researcher can obtain and use a
file with one function call, regardless of location of the file.
DataSource is meant to augment standard python libraries, not replace them.
It should work seamlessly with standard file IO operations and the os
module.
DataSource files can originate locally or remotely:
- local files : '/home/guido/src/local/data.txt'
- URLs (http, ftp, ...) : 'http://www.scipy.org/not/real/data.txt'
DataSource files can also be compressed or uncompressed. Currently only
gzip, bz2 and xz are supported.
Example::
>>> # Create a DataSource, use os.curdir (default) for local storage.
>>> from numpy import DataSource
>>> ds = DataSource()
>>>
>>> # Open a remote file.
>>> # DataSource downloads the file, stores it locally in:
>>> # './www.google.com/index.html'
>>> # opens the file and returns a file object.
>>> fp = ds.open('http://www.google.com/') # doctest: +SKIP
>>>
>>> # Use the file as you normally would
>>> fp.read() # doctest: +SKIP
>>> fp.close() # doctest: +SKIP
"""
import os
import shutil
import io
from contextlib import closing
from numpy.core.overrides import set_module
_open = open
def _check_mode(mode, encoding, newline):
"""Check mode and that encoding and newline are compatible.
Parameters
----------
mode : str
File open mode.
encoding : str
File encoding.
newline : str
Newline for text files.
"""
if "t" in mode:
if "b" in mode:
raise ValueError("Invalid mode: %r" % (mode,))
else:
if encoding is not None:
raise ValueError("Argument 'encoding' not supported in binary mode")
if newline is not None:
raise ValueError("Argument 'newline' not supported in binary mode")
# Using a class instead of a module-level dictionary
# to reduce the initial 'import numpy' overhead by
# deferring the import of lzma, bz2 and gzip until needed
# TODO: .zip support, .tar support?
class _FileOpeners:
"""
Container for different methods to open (un-)compressed files.
`_FileOpeners` contains a dictionary that holds one method for each
supported file format. Attribute lookup is implemented in such a way
that an instance of `_FileOpeners` itself can be indexed with the keys
of that dictionary. Currently uncompressed files as well as files
compressed with ``gzip``, ``bz2`` or ``xz`` compression are supported.
Notes
-----
`_file_openers`, an instance of `_FileOpeners`, is made available for
use in the `_datasource` module.
Examples
--------
>>> import gzip
>>> np.lib._datasource._file_openers.keys()
[None, '.bz2', '.gz', '.xz', '.lzma']
>>> np.lib._datasource._file_openers['.gz'] is gzip.open
True
"""
def __init__(self):
self._loaded = False
self._file_openers = {None: io.open}
def _load(self):
if self._loaded:
return
try:
import bz2
self._file_openers[".bz2"] = bz2.open
except ImportError:
pass
try:
import gzip
self._file_openers[".gz"] = gzip.open
except ImportError:
pass
try:
import lzma
self._file_openers[".xz"] = lzma.open
self._file_openers[".lzma"] = lzma.open
except (ImportError, AttributeError):
# There are incompatible backports of lzma that do not have the
# lzma.open attribute, so catch that as well as ImportError.
pass
self._loaded = True
def keys(self):
"""
Return the keys of currently supported file openers.
Parameters
----------
None
Returns
-------
keys : list
The keys are None for uncompressed files and the file extension
strings (i.e. ``'.gz'``, ``'.xz'``) for supported compression
methods.
"""
self._load()
return list(self._file_openers.keys())
def __getitem__(self, key):
self._load()
return self._file_openers[key]
_file_openers = _FileOpeners()
def open(path, mode='r', destpath=os.curdir, encoding=None, newline=None):
"""
Open `path` with `mode` and return the file object.
If ``path`` is an URL, it will be downloaded, stored in the
`DataSource` `destpath` directory and opened from there.
Parameters
----------
path : str
Local file path or URL to open.
mode : str, optional
Mode to open `path`. Mode 'r' for reading, 'w' for writing, 'a' to
append. Available modes depend on the type of object specified by
path. Default is 'r'.
destpath : str, optional
Path to the directory where the source file gets downloaded to for
use. If `destpath` is None, a temporary directory will be created.
The default path is the current directory.
encoding : {None, str}, optional
Open text file with given encoding. The default encoding will be
what `io.open` uses.
newline : {None, str}, optional
Newline to use when reading text file.
Returns
-------
out : file object
The opened file.
Notes
-----
This is a convenience function that instantiates a `DataSource` and
returns the file object from ``DataSource.open(path)``.
"""
ds = DataSource(destpath)
return ds.open(path, mode, encoding=encoding, newline=newline)
@set_module('numpy')
class DataSource:
"""
DataSource(destpath='.')
A generic data source file (file, http, ftp, ...).
DataSources can be local files or remote files/URLs. The files may
also be compressed or uncompressed. DataSource hides some of the
low-level details of downloading the file, allowing you to simply pass
in a valid file path (or URL) and obtain a file object.
Parameters
----------
destpath : str or None, optional
Path to the directory where the source file gets downloaded to for
use. If `destpath` is None, a temporary directory will be created.
The default path is the current directory.
Notes
-----
URLs require a scheme string (``http://``) to be used, without it they
will fail::
>>> repos = np.DataSource()
>>> repos.exists('www.google.com/index.html')
False
>>> repos.exists('http://www.google.com/index.html')
True
Temporary directories are deleted when the DataSource is deleted.
Examples
--------
::
>>> ds = np.DataSource('/home/guido')
>>> urlname = 'http://www.google.com/'
>>> gfile = ds.open('http://www.google.com/')
>>> ds.abspath(urlname)
'/home/guido/www.google.com/index.html'
>>> ds = np.DataSource(None) # use with temporary file
>>> ds.open('/home/guido/foobar.txt')
<open file '/home/guido.foobar.txt', mode 'r' at 0x91d4430>
>>> ds.abspath('/home/guido/foobar.txt')
'/tmp/.../home/guido/foobar.txt'
"""
def __init__(self, destpath=os.curdir):
"""Create a DataSource with a local path at destpath."""
if destpath:
self._destpath = os.path.abspath(destpath)
self._istmpdest = False
else:
import tempfile # deferring import to improve startup time
self._destpath = tempfile.mkdtemp()
self._istmpdest = True
def __del__(self):
# Remove temp directories
if hasattr(self, '_istmpdest') and self._istmpdest:
shutil.rmtree(self._destpath)
def _iszip(self, filename):
"""Test if the filename is a zip file by looking at the file extension.
"""
fname, ext = os.path.splitext(filename)
return ext in _file_openers.keys()
def _iswritemode(self, mode):
"""Test if the given mode will open a file for writing."""
# Currently only used to test the bz2 files.
_writemodes = ("w", "+")
for c in mode:
if c in _writemodes:
return True
return False
def _splitzipext(self, filename):
"""Split zip extension from filename and return filename.
*Returns*:
base, zip_ext : {tuple}
"""
if self._iszip(filename):
return os.path.splitext(filename)
else:
return filename, None
def _possible_names(self, filename):
"""Return a tuple containing compressed filename variations."""
names = [filename]
if not self._iszip(filename):
for zipext in _file_openers.keys():
if zipext:
names.append(filename+zipext)
return names
def _isurl(self, path):
"""Test if path is a net location. Tests the scheme and netloc."""
# We do this here to reduce the 'import numpy' initial import time.
from urllib.parse import urlparse
# BUG : URLs require a scheme string ('http://') to be used.
# www.google.com will fail.
# Should we prepend the scheme for those that don't have it and
# test that also? Similar to the way we append .gz and test for
# for compressed versions of files.
scheme, netloc, upath, uparams, uquery, ufrag = urlparse(path)
return bool(scheme and netloc)
def _cache(self, path):
"""Cache the file specified by path.
Creates a copy of the file in the datasource cache.
"""
# We import these here because importing urllib is slow and
# a significant fraction of numpy's total import time.
from urllib.request import urlopen
from urllib.error import URLError
upath = self.abspath(path)
# ensure directory exists
if not os.path.exists(os.path.dirname(upath)):
os.makedirs(os.path.dirname(upath))
# TODO: Doesn't handle compressed files!
if self._isurl(path):
try:
with closing(urlopen(path)) as openedurl:
with _open(upath, 'wb') as f:
shutil.copyfileobj(openedurl, f)
except URLError:
raise URLError("URL not found: %s" % path)
else:
shutil.copyfile(path, upath)
return upath
def _findfile(self, path):
"""Searches for ``path`` and returns full path if found.
If path is an URL, _findfile will cache a local copy and return the
path to the cached file. If path is a local file, _findfile will
return a path to that local file.
The search will include possible compressed versions of the file
and return the first occurrence found.
"""
# Build list of possible local file paths
if not self._isurl(path):
# Valid local paths
filelist = self._possible_names(path)
# Paths in self._destpath
filelist += self._possible_names(self.abspath(path))
else:
# Cached URLs in self._destpath
filelist = self._possible_names(self.abspath(path))
# Remote URLs
filelist = filelist + self._possible_names(path)
for name in filelist:
if self.exists(name):
if self._isurl(name):
name = self._cache(name)
return name
return None
def abspath(self, path):
"""
Return absolute path of file in the DataSource directory.
If `path` is an URL, then `abspath` will return either the location
the file exists locally or the location it would exist when opened
using the `open` method.
Parameters
----------
path : str
Can be a local file or a remote URL.
Returns
-------
out : str
Complete path, including the `DataSource` destination directory.
Notes
-----
The functionality is based on `os.path.abspath`.
"""
# We do this here to reduce the 'import numpy' initial import time.
from urllib.parse import urlparse
# TODO: This should be more robust. Handles case where path includes
# the destpath, but not other sub-paths. Failing case:
# path = /home/guido/datafile.txt
# destpath = /home/alex/
# upath = self.abspath(path)
# upath == '/home/alex/home/guido/datafile.txt'
# handle case where path includes self._destpath
splitpath = path.split(self._destpath, 2)
if len(splitpath) > 1:
path = splitpath[1]
scheme, netloc, upath, uparams, uquery, ufrag = urlparse(path)
netloc = self._sanitize_relative_path(netloc)
upath = self._sanitize_relative_path(upath)
return os.path.join(self._destpath, netloc, upath)
def _sanitize_relative_path(self, path):
"""Return a sanitised relative path for which
os.path.abspath(os.path.join(base, path)).startswith(base)
"""
last = None
path = os.path.normpath(path)
while path != last:
last = path
# Note: os.path.join treats '/' as os.sep on Windows
path = path.lstrip(os.sep).lstrip('/')
path = path.lstrip(os.pardir).lstrip('..')
drive, path = os.path.splitdrive(path) # for Windows
return path
def exists(self, path):
"""
Test if path exists.
Test if `path` exists as (and in this order):
- a local file.
- a remote URL that has been downloaded and stored locally in the
`DataSource` directory.
- a remote URL that has not been downloaded, but is valid and
accessible.
Parameters
----------
path : str
Can be a local file or a remote URL.
Returns
-------
out : bool
True if `path` exists.
Notes
-----
When `path` is an URL, `exists` will return True if it's either
stored locally in the `DataSource` directory, or is a valid remote
URL. `DataSource` does not discriminate between the two, the file
is accessible if it exists in either location.
"""
# First test for local path
if os.path.exists(path):
return True
# We import this here because importing urllib is slow and
# a significant fraction of numpy's total import time.
from urllib.request import urlopen
from urllib.error import URLError
# Test cached url
upath = self.abspath(path)
if os.path.exists(upath):
return True
# Test remote url
if self._isurl(path):
try:
netfile = urlopen(path)
netfile.close()
del(netfile)
return True
except URLError:
return False
return False
def open(self, path, mode='r', encoding=None, newline=None):
"""
Open and return file-like object.
If `path` is an URL, it will be downloaded, stored in the
`DataSource` directory and opened from there.
Parameters
----------
path : str
Local file path or URL to open.
mode : {'r', 'w', 'a'}, optional
Mode to open `path`. Mode 'r' for reading, 'w' for writing,
'a' to append. Available modes depend on the type of object
specified by `path`. Default is 'r'.
encoding : {None, str}, optional
Open text file with given encoding. The default encoding will be
what `io.open` uses.
newline : {None, str}, optional
Newline to use when reading text file.
Returns
-------
out : file object
File object.
"""
# TODO: There is no support for opening a file for writing which
# doesn't exist yet (creating a file). Should there be?
# TODO: Add a ``subdir`` parameter for specifying the subdirectory
# used to store URLs in self._destpath.
if self._isurl(path) and self._iswritemode(mode):
raise ValueError("URLs are not writeable")
# NOTE: _findfile will fail on a new file opened for writing.
found = self._findfile(path)
if found:
_fname, ext = self._splitzipext(found)
if ext == 'bz2':
mode.replace("+", "")
return _file_openers[ext](found, mode=mode,
encoding=encoding, newline=newline)
else:
raise IOError("%s not found." % path)
class Repository (DataSource):
"""
Repository(baseurl, destpath='.')
A data repository where multiple DataSource's share a base
URL/directory.
`Repository` extends `DataSource` by prepending a base URL (or
directory) to all the files it handles. Use `Repository` when you will
be working with multiple files from one base URL. Initialize
`Repository` with the base URL, then refer to each file by its filename
only.
Parameters
----------
baseurl : str
Path to the local directory or remote location that contains the
data files.
destpath : str or None, optional
Path to the directory where the source file gets downloaded to for
use. If `destpath` is None, a temporary directory will be created.
The default path is the current directory.
Examples
--------
To analyze all files in the repository, do something like this
(note: this is not self-contained code)::
>>> repos = np.lib._datasource.Repository('/home/user/data/dir/')
>>> for filename in filelist:
... fp = repos.open(filename)
... fp.analyze()
... fp.close()
Similarly you could use a URL for a repository::
>>> repos = np.lib._datasource.Repository('http://www.xyz.edu/data')
"""
def __init__(self, baseurl, destpath=os.curdir):
"""Create a Repository with a shared url or directory of baseurl."""
DataSource.__init__(self, destpath=destpath)
self._baseurl = baseurl
def __del__(self):
DataSource.__del__(self)
def _fullpath(self, path):
"""Return complete path for path. Prepends baseurl if necessary."""
splitpath = path.split(self._baseurl, 2)
if len(splitpath) == 1:
result = os.path.join(self._baseurl, path)
else:
result = path # path contains baseurl already
return result
def _findfile(self, path):
"""Extend DataSource method to prepend baseurl to ``path``."""
return DataSource._findfile(self, self._fullpath(path))
def abspath(self, path):
"""
Return absolute path of file in the Repository directory.
If `path` is an URL, then `abspath` will return either the location
the file exists locally or the location it would exist when opened
using the `open` method.
Parameters
----------
path : str
Can be a local file or a remote URL. This may, but does not
have to, include the `baseurl` with which the `Repository` was
initialized.
Returns
-------
out : str
Complete path, including the `DataSource` destination directory.
"""
return DataSource.abspath(self, self._fullpath(path))
def exists(self, path):
"""
Test if path exists prepending Repository base URL to path.
Test if `path` exists as (and in this order):
- a local file.
- a remote URL that has been downloaded and stored locally in the
`DataSource` directory.
- a remote URL that has not been downloaded, but is valid and
accessible.
Parameters
----------
path : str
Can be a local file or a remote URL. This may, but does not
have to, include the `baseurl` with which the `Repository` was
initialized.
Returns
-------
out : bool
True if `path` exists.
Notes
-----
When `path` is an URL, `exists` will return True if it's either
stored locally in the `DataSource` directory, or is a valid remote
URL. `DataSource` does not discriminate between the two, the file
is accessible if it exists in either location.
"""
return DataSource.exists(self, self._fullpath(path))
def open(self, path, mode='r', encoding=None, newline=None):
"""
Open and return file-like object prepending Repository base URL.
If `path` is an URL, it will be downloaded, stored in the
DataSource directory and opened from there.
Parameters
----------
path : str
Local file path or URL to open. This may, but does not have to,
include the `baseurl` with which the `Repository` was
initialized.
mode : {'r', 'w', 'a'}, optional
Mode to open `path`. Mode 'r' for reading, 'w' for writing,
'a' to append. Available modes depend on the type of object
specified by `path`. Default is 'r'.
encoding : {None, str}, optional
Open text file with given encoding. The default encoding will be
what `io.open` uses.
newline : {None, str}, optional
Newline to use when reading text file.
Returns
-------
out : file object
File object.
"""
return DataSource.open(self, self._fullpath(path), mode,
encoding=encoding, newline=newline)
def listdir(self):
"""
List files in the source Repository.
Returns
-------
files : list of str
List of file names (not containing a directory part).
Notes
-----
Does not currently work for remote repositories.
"""
if self._isurl(self._baseurl):
raise NotImplementedError(
"Directory listing of URLs, not supported yet.")
else:
return os.listdir(self._baseurl)

View file

@ -0,0 +1,897 @@
"""A collection of functions designed to help I/O with ascii files.
"""
__docformat__ = "restructuredtext en"
import numpy as np
import numpy.core.numeric as nx
from numpy.compat import asbytes, asunicode, bytes
def _decode_line(line, encoding=None):
"""Decode bytes from binary input streams.
Defaults to decoding from 'latin1'. That differs from the behavior of
np.compat.asunicode that decodes from 'ascii'.
Parameters
----------
line : str or bytes
Line to be decoded.
Returns
-------
decoded_line : unicode
Unicode in Python 2, a str (unicode) in Python 3.
"""
if type(line) is bytes:
if encoding is None:
line = line.decode('latin1')
else:
line = line.decode(encoding)
return line
def _is_string_like(obj):
"""
Check whether obj behaves like a string.
"""
try:
obj + ''
except (TypeError, ValueError):
return False
return True
def _is_bytes_like(obj):
"""
Check whether obj behaves like a bytes object.
"""
try:
obj + b''
except (TypeError, ValueError):
return False
return True
def has_nested_fields(ndtype):
"""
Returns whether one or several fields of a dtype are nested.
Parameters
----------
ndtype : dtype
Data-type of a structured array.
Raises
------
AttributeError
If `ndtype` does not have a `names` attribute.
Examples
--------
>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)])
>>> np.lib._iotools.has_nested_fields(dt)
False
"""
for name in ndtype.names or ():
if ndtype[name].names is not None:
return True
return False
def flatten_dtype(ndtype, flatten_base=False):
"""
Unpack a structured data-type by collapsing nested fields and/or fields
with a shape.
Note that the field names are lost.
Parameters
----------
ndtype : dtype
The datatype to collapse
flatten_base : bool, optional
If True, transform a field with a shape into several fields. Default is
False.
Examples
--------
>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
... ('block', int, (2, 3))])
>>> np.lib._iotools.flatten_dtype(dt)
[dtype('S4'), dtype('float64'), dtype('float64'), dtype('int64')]
>>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
[dtype('S4'),
dtype('float64'),
dtype('float64'),
dtype('int64'),
dtype('int64'),
dtype('int64'),
dtype('int64'),
dtype('int64'),
dtype('int64')]
"""
names = ndtype.names
if names is None:
if flatten_base:
return [ndtype.base] * int(np.prod(ndtype.shape))
return [ndtype.base]
else:
types = []
for field in names:
info = ndtype.fields[field]
flat_dt = flatten_dtype(info[0], flatten_base)
types.extend(flat_dt)
return types
class LineSplitter:
"""
Object to split a string at a given delimiter or at given places.
Parameters
----------
delimiter : str, int, or sequence of ints, optional
If a string, character used to delimit consecutive fields.
If an integer or a sequence of integers, width(s) of each field.
comments : str, optional
Character used to mark the beginning of a comment. Default is '#'.
autostrip : bool, optional
Whether to strip each individual field. Default is True.
"""
def autostrip(self, method):
"""
Wrapper to strip each member of the output of `method`.
Parameters
----------
method : function
Function that takes a single argument and returns a sequence of
strings.
Returns
-------
wrapped : function
The result of wrapping `method`. `wrapped` takes a single input
argument and returns a list of strings that are stripped of
white-space.
"""
return lambda input: [_.strip() for _ in method(input)]
def __init__(self, delimiter=None, comments='#', autostrip=True,
encoding=None):
delimiter = _decode_line(delimiter)
comments = _decode_line(comments)
self.comments = comments
# Delimiter is a character
if (delimiter is None) or isinstance(delimiter, str):
delimiter = delimiter or None
_handyman = self._delimited_splitter
# Delimiter is a list of field widths
elif hasattr(delimiter, '__iter__'):
_handyman = self._variablewidth_splitter
idx = np.cumsum([0] + list(delimiter))
delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])]
# Delimiter is a single integer
elif int(delimiter):
(_handyman, delimiter) = (
self._fixedwidth_splitter, int(delimiter))
else:
(_handyman, delimiter) = (self._delimited_splitter, None)
self.delimiter = delimiter
if autostrip:
self._handyman = self.autostrip(_handyman)
else:
self._handyman = _handyman
self.encoding = encoding
def _delimited_splitter(self, line):
"""Chop off comments, strip, and split at delimiter. """
if self.comments is not None:
line = line.split(self.comments)[0]
line = line.strip(" \r\n")
if not line:
return []
return line.split(self.delimiter)
def _fixedwidth_splitter(self, line):
if self.comments is not None:
line = line.split(self.comments)[0]
line = line.strip("\r\n")
if not line:
return []
fixed = self.delimiter
slices = [slice(i, i + fixed) for i in range(0, len(line), fixed)]
return [line[s] for s in slices]
def _variablewidth_splitter(self, line):
if self.comments is not None:
line = line.split(self.comments)[0]
if not line:
return []
slices = self.delimiter
return [line[s] for s in slices]
def __call__(self, line):
return self._handyman(_decode_line(line, self.encoding))
class NameValidator:
"""
Object to validate a list of strings to use as field names.
The strings are stripped of any non alphanumeric character, and spaces
are replaced by '_'. During instantiation, the user can define a list
of names to exclude, as well as a list of invalid characters. Names in
the exclusion list are appended a '_' character.
Once an instance has been created, it can be called with a list of
names, and a list of valid names will be created. The `__call__`
method accepts an optional keyword "default" that sets the default name
in case of ambiguity. By default this is 'f', so that names will
default to `f0`, `f1`, etc.
Parameters
----------
excludelist : sequence, optional
A list of names to exclude. This list is appended to the default
list ['return', 'file', 'print']. Excluded names are appended an
underscore: for example, `file` becomes `file_` if supplied.
deletechars : str, optional
A string combining invalid characters that must be deleted from the
names.
case_sensitive : {True, False, 'upper', 'lower'}, optional
* If True, field names are case-sensitive.
* If False or 'upper', field names are converted to upper case.
* If 'lower', field names are converted to lower case.
The default value is True.
replace_space : '_', optional
Character(s) used in replacement of white spaces.
Notes
-----
Calling an instance of `NameValidator` is the same as calling its
method `validate`.
Examples
--------
>>> validator = np.lib._iotools.NameValidator()
>>> validator(['file', 'field2', 'with space', 'CaSe'])
('file_', 'field2', 'with_space', 'CaSe')
>>> validator = np.lib._iotools.NameValidator(excludelist=['excl'],
... deletechars='q',
... case_sensitive=False)
>>> validator(['excl', 'field2', 'no_q', 'with space', 'CaSe'])
('EXCL', 'FIELD2', 'NO_Q', 'WITH_SPACE', 'CASE')
"""
defaultexcludelist = ['return', 'file', 'print']
defaultdeletechars = set(r"""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""")
def __init__(self, excludelist=None, deletechars=None,
case_sensitive=None, replace_space='_'):
# Process the exclusion list ..
if excludelist is None:
excludelist = []
excludelist.extend(self.defaultexcludelist)
self.excludelist = excludelist
# Process the list of characters to delete
if deletechars is None:
delete = self.defaultdeletechars
else:
delete = set(deletechars)
delete.add('"')
self.deletechars = delete
# Process the case option .....
if (case_sensitive is None) or (case_sensitive is True):
self.case_converter = lambda x: x
elif (case_sensitive is False) or case_sensitive.startswith('u'):
self.case_converter = lambda x: x.upper()
elif case_sensitive.startswith('l'):
self.case_converter = lambda x: x.lower()
else:
msg = 'unrecognized case_sensitive value %s.' % case_sensitive
raise ValueError(msg)
self.replace_space = replace_space
def validate(self, names, defaultfmt="f%i", nbfields=None):
"""
Validate a list of strings as field names for a structured array.
Parameters
----------
names : sequence of str
Strings to be validated.
defaultfmt : str, optional
Default format string, used if validating a given string
reduces its length to zero.
nbfields : integer, optional
Final number of validated names, used to expand or shrink the
initial list of names.
Returns
-------
validatednames : list of str
The list of validated field names.
Notes
-----
A `NameValidator` instance can be called directly, which is the
same as calling `validate`. For examples, see `NameValidator`.
"""
# Initial checks ..............
if (names is None):
if (nbfields is None):
return None
names = []
if isinstance(names, str):
names = [names, ]
if nbfields is not None:
nbnames = len(names)
if (nbnames < nbfields):
names = list(names) + [''] * (nbfields - nbnames)
elif (nbnames > nbfields):
names = names[:nbfields]
# Set some shortcuts ...........
deletechars = self.deletechars
excludelist = self.excludelist
case_converter = self.case_converter
replace_space = self.replace_space
# Initializes some variables ...
validatednames = []
seen = dict()
nbempty = 0
for item in names:
item = case_converter(item).strip()
if replace_space:
item = item.replace(' ', replace_space)
item = ''.join([c for c in item if c not in deletechars])
if item == '':
item = defaultfmt % nbempty
while item in names:
nbempty += 1
item = defaultfmt % nbempty
nbempty += 1
elif item in excludelist:
item += '_'
cnt = seen.get(item, 0)
if cnt > 0:
validatednames.append(item + '_%d' % cnt)
else:
validatednames.append(item)
seen[item] = cnt + 1
return tuple(validatednames)
def __call__(self, names, defaultfmt="f%i", nbfields=None):
return self.validate(names, defaultfmt=defaultfmt, nbfields=nbfields)
def str2bool(value):
"""
Tries to transform a string supposed to represent a boolean to a boolean.
Parameters
----------
value : str
The string that is transformed to a boolean.
Returns
-------
boolval : bool
The boolean representation of `value`.
Raises
------
ValueError
If the string is not 'True' or 'False' (case independent)
Examples
--------
>>> np.lib._iotools.str2bool('TRUE')
True
>>> np.lib._iotools.str2bool('false')
False
"""
value = value.upper()
if value == 'TRUE':
return True
elif value == 'FALSE':
return False
else:
raise ValueError("Invalid boolean")
class ConverterError(Exception):
"""
Exception raised when an error occurs in a converter for string values.
"""
pass
class ConverterLockError(ConverterError):
"""
Exception raised when an attempt is made to upgrade a locked converter.
"""
pass
class ConversionWarning(UserWarning):
"""
Warning issued when a string converter has a problem.
Notes
-----
In `genfromtxt` a `ConversionWarning` is issued if raising exceptions
is explicitly suppressed with the "invalid_raise" keyword.
"""
pass
class StringConverter:
"""
Factory class for function transforming a string into another object
(int, float).
After initialization, an instance can be called to transform a string
into another object. If the string is recognized as representing a
missing value, a default value is returned.
Attributes
----------
func : function
Function used for the conversion.
default : any
Default value to return when the input corresponds to a missing
value.
type : type
Type of the output.
_status : int
Integer representing the order of the conversion.
_mapper : sequence of tuples
Sequence of tuples (dtype, function, default value) to evaluate in
order.
_locked : bool
Holds `locked` parameter.
Parameters
----------
dtype_or_func : {None, dtype, function}, optional
If a `dtype`, specifies the input data type, used to define a basic
function and a default value for missing data. For example, when
`dtype` is float, the `func` attribute is set to `float` and the
default value to `np.nan`. If a function, this function is used to
convert a string to another object. In this case, it is recommended
to give an associated default value as input.
default : any, optional
Value to return by default, that is, when the string to be
converted is flagged as missing. If not given, `StringConverter`
tries to supply a reasonable default value.
missing_values : {None, sequence of str}, optional
``None`` or sequence of strings indicating a missing value. If ``None``
then missing values are indicated by empty entries. The default is
``None``.
locked : bool, optional
Whether the StringConverter should be locked to prevent automatic
upgrade or not. Default is False.
"""
_mapper = [(nx.bool_, str2bool, False),
(nx.int_, int, -1),]
# On 32-bit systems, we need to make sure that we explicitly include
# nx.int64 since ns.int_ is nx.int32.
if nx.dtype(nx.int_).itemsize < nx.dtype(nx.int64).itemsize:
_mapper.append((nx.int64, int, -1))
_mapper.extend([(nx.float64, float, nx.nan),
(nx.complex128, complex, nx.nan + 0j),
(nx.longdouble, nx.longdouble, nx.nan),
# If a non-default dtype is passed, fall back to generic
# ones (should only be used for the converter)
(nx.integer, int, -1),
(nx.floating, float, nx.nan),
(nx.complexfloating, complex, nx.nan + 0j),
# Last, try with the string types (must be last, because
# `_mapper[-1]` is used as default in some cases)
(nx.unicode_, asunicode, '???'),
(nx.string_, asbytes, '???'),
])
@classmethod
def _getdtype(cls, val):
"""Returns the dtype of the input variable."""
return np.array(val).dtype
@classmethod
def _getsubdtype(cls, val):
"""Returns the type of the dtype of the input variable."""
return np.array(val).dtype.type
@classmethod
def _dtypeortype(cls, dtype):
"""Returns dtype for datetime64 and type of dtype otherwise."""
# This is a bit annoying. We want to return the "general" type in most
# cases (ie. "string" rather than "S10"), but we want to return the
# specific type for datetime64 (ie. "datetime64[us]" rather than
# "datetime64").
if dtype.type == np.datetime64:
return dtype
return dtype.type
@classmethod
def upgrade_mapper(cls, func, default=None):
"""
Upgrade the mapper of a StringConverter by adding a new function and
its corresponding default.
The input function (or sequence of functions) and its associated
default value (if any) is inserted in penultimate position of the
mapper. The corresponding type is estimated from the dtype of the
default value.
Parameters
----------
func : var
Function, or sequence of functions
Examples
--------
>>> import dateutil.parser
>>> import datetime
>>> dateparser = dateutil.parser.parse
>>> defaultdate = datetime.date(2000, 1, 1)
>>> StringConverter.upgrade_mapper(dateparser, default=defaultdate)
"""
# Func is a single functions
if hasattr(func, '__call__'):
cls._mapper.insert(-1, (cls._getsubdtype(default), func, default))
return
elif hasattr(func, '__iter__'):
if isinstance(func[0], (tuple, list)):
for _ in func:
cls._mapper.insert(-1, _)
return
if default is None:
default = [None] * len(func)
else:
default = list(default)
default.append([None] * (len(func) - len(default)))
for fct, dft in zip(func, default):
cls._mapper.insert(-1, (cls._getsubdtype(dft), fct, dft))
@classmethod
def _find_map_entry(cls, dtype):
# if a converter for the specific dtype is available use that
for i, (deftype, func, default_def) in enumerate(cls._mapper):
if dtype.type == deftype:
return i, (deftype, func, default_def)
# otherwise find an inexact match
for i, (deftype, func, default_def) in enumerate(cls._mapper):
if np.issubdtype(dtype.type, deftype):
return i, (deftype, func, default_def)
raise LookupError
def __init__(self, dtype_or_func=None, default=None, missing_values=None,
locked=False):
# Defines a lock for upgrade
self._locked = bool(locked)
# No input dtype: minimal initialization
if dtype_or_func is None:
self.func = str2bool
self._status = 0
self.default = default or False
dtype = np.dtype('bool')
else:
# Is the input a np.dtype ?
try:
self.func = None
dtype = np.dtype(dtype_or_func)
except TypeError:
# dtype_or_func must be a function, then
if not hasattr(dtype_or_func, '__call__'):
errmsg = ("The input argument `dtype` is neither a"
" function nor a dtype (got '%s' instead)")
raise TypeError(errmsg % type(dtype_or_func))
# Set the function
self.func = dtype_or_func
# If we don't have a default, try to guess it or set it to
# None
if default is None:
try:
default = self.func('0')
except ValueError:
default = None
dtype = self._getdtype(default)
# find the best match in our mapper
try:
self._status, (_, func, default_def) = self._find_map_entry(dtype)
except LookupError:
# no match
self.default = default
_, func, _ = self._mapper[-1]
self._status = 0
else:
# use the found default only if we did not already have one
if default is None:
self.default = default_def
else:
self.default = default
# If the input was a dtype, set the function to the last we saw
if self.func is None:
self.func = func
# If the status is 1 (int), change the function to
# something more robust.
if self.func == self._mapper[1][1]:
if issubclass(dtype.type, np.uint64):
self.func = np.uint64
elif issubclass(dtype.type, np.int64):
self.func = np.int64
else:
self.func = lambda x: int(float(x))
# Store the list of strings corresponding to missing values.
if missing_values is None:
self.missing_values = {''}
else:
if isinstance(missing_values, str):
missing_values = missing_values.split(",")
self.missing_values = set(list(missing_values) + [''])
self._callingfunction = self._strict_call
self.type = self._dtypeortype(dtype)
self._checked = False
self._initial_default = default
def _loose_call(self, value):
try:
return self.func(value)
except ValueError:
return self.default
def _strict_call(self, value):
try:
# We check if we can convert the value using the current function
new_value = self.func(value)
# In addition to having to check whether func can convert the
# value, we also have to make sure that we don't get overflow
# errors for integers.
if self.func is int:
try:
np.array(value, dtype=self.type)
except OverflowError:
raise ValueError
# We're still here so we can now return the new value
return new_value
except ValueError:
if value.strip() in self.missing_values:
if not self._status:
self._checked = False
return self.default
raise ValueError("Cannot convert string '%s'" % value)
def __call__(self, value):
return self._callingfunction(value)
def _do_upgrade(self):
# Raise an exception if we locked the converter...
if self._locked:
errmsg = "Converter is locked and cannot be upgraded"
raise ConverterLockError(errmsg)
_statusmax = len(self._mapper)
# Complains if we try to upgrade by the maximum
_status = self._status
if _status == _statusmax:
errmsg = "Could not find a valid conversion function"
raise ConverterError(errmsg)
elif _status < _statusmax - 1:
_status += 1
self.type, self.func, default = self._mapper[_status]
self._status = _status
if self._initial_default is not None:
self.default = self._initial_default
else:
self.default = default
def upgrade(self, value):
"""
Find the best converter for a given string, and return the result.
The supplied string `value` is converted by testing different
converters in order. First the `func` method of the
`StringConverter` instance is tried, if this fails other available
converters are tried. The order in which these other converters
are tried is determined by the `_status` attribute of the instance.
Parameters
----------
value : str
The string to convert.
Returns
-------
out : any
The result of converting `value` with the appropriate converter.
"""
self._checked = True
try:
return self._strict_call(value)
except ValueError:
self._do_upgrade()
return self.upgrade(value)
def iterupgrade(self, value):
self._checked = True
if not hasattr(value, '__iter__'):
value = (value,)
_strict_call = self._strict_call
try:
for _m in value:
_strict_call(_m)
except ValueError:
self._do_upgrade()
self.iterupgrade(value)
def update(self, func, default=None, testing_value=None,
missing_values='', locked=False):
"""
Set StringConverter attributes directly.
Parameters
----------
func : function
Conversion function.
default : any, optional
Value to return by default, that is, when the string to be
converted is flagged as missing. If not given,
`StringConverter` tries to supply a reasonable default value.
testing_value : str, optional
A string representing a standard input value of the converter.
This string is used to help defining a reasonable default
value.
missing_values : {sequence of str, None}, optional
Sequence of strings indicating a missing value. If ``None``, then
the existing `missing_values` are cleared. The default is `''`.
locked : bool, optional
Whether the StringConverter should be locked to prevent
automatic upgrade or not. Default is False.
Notes
-----
`update` takes the same parameters as the constructor of
`StringConverter`, except that `func` does not accept a `dtype`
whereas `dtype_or_func` in the constructor does.
"""
self.func = func
self._locked = locked
# Don't reset the default to None if we can avoid it
if default is not None:
self.default = default
self.type = self._dtypeortype(self._getdtype(default))
else:
try:
tester = func(testing_value or '1')
except (TypeError, ValueError):
tester = None
self.type = self._dtypeortype(self._getdtype(tester))
# Add the missing values to the existing set or clear it.
if missing_values is None:
# Clear all missing values even though the ctor initializes it to
# set(['']) when the argument is None.
self.missing_values = set()
else:
if not np.iterable(missing_values):
missing_values = [missing_values]
if not all(isinstance(v, str) for v in missing_values):
raise TypeError("missing_values must be strings or unicode")
self.missing_values.update(missing_values)
def easy_dtype(ndtype, names=None, defaultfmt="f%i", **validationargs):
"""
Convenience function to create a `np.dtype` object.
The function processes the input `dtype` and matches it with the given
names.
Parameters
----------
ndtype : var
Definition of the dtype. Can be any string or dictionary recognized
by the `np.dtype` function, or a sequence of types.
names : str or sequence, optional
Sequence of strings to use as field names for a structured dtype.
For convenience, `names` can be a string of a comma-separated list
of names.
defaultfmt : str, optional
Format string used to define missing names, such as ``"f%i"``
(default) or ``"fields_%02i"``.
validationargs : optional
A series of optional arguments used to initialize a
`NameValidator`.
Examples
--------
>>> np.lib._iotools.easy_dtype(float)
dtype('float64')
>>> np.lib._iotools.easy_dtype("i4, f8")
dtype([('f0', '<i4'), ('f1', '<f8')])
>>> np.lib._iotools.easy_dtype("i4, f8", defaultfmt="field_%03i")
dtype([('field_000', '<i4'), ('field_001', '<f8')])
>>> np.lib._iotools.easy_dtype((int, float, float), names="a,b,c")
dtype([('a', '<i8'), ('b', '<f8'), ('c', '<f8')])
>>> np.lib._iotools.easy_dtype(float, names="a,b,c")
dtype([('a', '<f8'), ('b', '<f8'), ('c', '<f8')])
"""
try:
ndtype = np.dtype(ndtype)
except TypeError:
validate = NameValidator(**validationargs)
nbfields = len(ndtype)
if names is None:
names = [''] * len(ndtype)
elif isinstance(names, str):
names = names.split(",")
names = validate(names, nbfields=nbfields, defaultfmt=defaultfmt)
ndtype = np.dtype(dict(formats=ndtype, names=names))
else:
# Explicit names
if names is not None:
validate = NameValidator(**validationargs)
if isinstance(names, str):
names = names.split(",")
# Simple dtype: repeat to match the nb of names
if ndtype.names is None:
formats = tuple([ndtype.type] * len(names))
names = validate(names, defaultfmt=defaultfmt)
ndtype = np.dtype(list(zip(names, formats)))
# Structured dtype: just validate the names as needed
else:
ndtype.names = validate(names, nbfields=len(ndtype.names),
defaultfmt=defaultfmt)
# No implicit names
elif ndtype.names is not None:
validate = NameValidator(**validationargs)
# Default initial names : should we change the format ?
numbered_names = tuple("f%i" % i for i in range(len(ndtype.names)))
if ((ndtype.names == numbered_names) and (defaultfmt != "f%i")):
ndtype.names = validate([''] * len(ndtype.names),
defaultfmt=defaultfmt)
# Explicit initial names : just validate
else:
ndtype.names = validate(ndtype.names, defaultfmt=defaultfmt)
return ndtype

View file

@ -0,0 +1,155 @@
"""Utility to compare (NumPy) version strings.
The NumpyVersion class allows properly comparing numpy version strings.
The LooseVersion and StrictVersion classes that distutils provides don't
work; they don't recognize anything like alpha/beta/rc/dev versions.
"""
import re
__all__ = ['NumpyVersion']
class NumpyVersion():
"""Parse and compare numpy version strings.
NumPy has the following versioning scheme (numbers given are examples; they
can be > 9) in principle):
- Released version: '1.8.0', '1.8.1', etc.
- Alpha: '1.8.0a1', '1.8.0a2', etc.
- Beta: '1.8.0b1', '1.8.0b2', etc.
- Release candidates: '1.8.0rc1', '1.8.0rc2', etc.
- Development versions: '1.8.0.dev-f1234afa' (git commit hash appended)
- Development versions after a1: '1.8.0a1.dev-f1234afa',
'1.8.0b2.dev-f1234afa',
'1.8.1rc1.dev-f1234afa', etc.
- Development versions (no git hash available): '1.8.0.dev-Unknown'
Comparing needs to be done against a valid version string or other
`NumpyVersion` instance. Note that all development versions of the same
(pre-)release compare equal.
.. versionadded:: 1.9.0
Parameters
----------
vstring : str
NumPy version string (``np.__version__``).
Examples
--------
>>> from numpy.lib import NumpyVersion
>>> if NumpyVersion(np.__version__) < '1.7.0':
... print('skip')
>>> # skip
>>> NumpyVersion('1.7') # raises ValueError, add ".0"
Traceback (most recent call last):
...
ValueError: Not a valid numpy version string
"""
def __init__(self, vstring):
self.vstring = vstring
ver_main = re.match(r'\d[.]\d+[.]\d+', vstring)
if not ver_main:
raise ValueError("Not a valid numpy version string")
self.version = ver_main.group()
self.major, self.minor, self.bugfix = [int(x) for x in
self.version.split('.')]
if len(vstring) == ver_main.end():
self.pre_release = 'final'
else:
alpha = re.match(r'a\d', vstring[ver_main.end():])
beta = re.match(r'b\d', vstring[ver_main.end():])
rc = re.match(r'rc\d', vstring[ver_main.end():])
pre_rel = [m for m in [alpha, beta, rc] if m is not None]
if pre_rel:
self.pre_release = pre_rel[0].group()
else:
self.pre_release = ''
self.is_devversion = bool(re.search(r'.dev', vstring))
def _compare_version(self, other):
"""Compare major.minor.bugfix"""
if self.major == other.major:
if self.minor == other.minor:
if self.bugfix == other.bugfix:
vercmp = 0
elif self.bugfix > other.bugfix:
vercmp = 1
else:
vercmp = -1
elif self.minor > other.minor:
vercmp = 1
else:
vercmp = -1
elif self.major > other.major:
vercmp = 1
else:
vercmp = -1
return vercmp
def _compare_pre_release(self, other):
"""Compare alpha/beta/rc/final."""
if self.pre_release == other.pre_release:
vercmp = 0
elif self.pre_release == 'final':
vercmp = 1
elif other.pre_release == 'final':
vercmp = -1
elif self.pre_release > other.pre_release:
vercmp = 1
else:
vercmp = -1
return vercmp
def _compare(self, other):
if not isinstance(other, (str, NumpyVersion)):
raise ValueError("Invalid object to compare with NumpyVersion.")
if isinstance(other, str):
other = NumpyVersion(other)
vercmp = self._compare_version(other)
if vercmp == 0:
# Same x.y.z version, check for alpha/beta/rc
vercmp = self._compare_pre_release(other)
if vercmp == 0:
# Same version and same pre-release, check if dev version
if self.is_devversion is other.is_devversion:
vercmp = 0
elif self.is_devversion:
vercmp = -1
else:
vercmp = 1
return vercmp
def __lt__(self, other):
return self._compare(other) < 0
def __le__(self, other):
return self._compare(other) <= 0
def __eq__(self, other):
return self._compare(other) == 0
def __ne__(self, other):
return self._compare(other) != 0
def __gt__(self, other):
return self._compare(other) > 0
def __ge__(self, other):
return self._compare(other) >= 0
def __repr(self):
return "NumpyVersion(%s)" % self.vstring

View file

@ -0,0 +1,879 @@
"""
The arraypad module contains a group of functions to pad values onto the edges
of an n-dimensional array.
"""
import numpy as np
from numpy.core.overrides import array_function_dispatch
from numpy.lib.index_tricks import ndindex
__all__ = ['pad']
###############################################################################
# Private utility functions.
def _round_if_needed(arr, dtype):
"""
Rounds arr inplace if destination dtype is integer.
Parameters
----------
arr : ndarray
Input array.
dtype : dtype
The dtype of the destination array.
"""
if np.issubdtype(dtype, np.integer):
arr.round(out=arr)
def _slice_at_axis(sl, axis):
"""
Construct tuple of slices to slice an array in the given dimension.
Parameters
----------
sl : slice
The slice for the given dimension.
axis : int
The axis to which `sl` is applied. All other dimensions are left
"unsliced".
Returns
-------
sl : tuple of slices
A tuple with slices matching `shape` in length.
Examples
--------
>>> _slice_at_axis(slice(None, 3, -1), 1)
(slice(None, None, None), slice(None, 3, -1), (...,))
"""
return (slice(None),) * axis + (sl,) + (...,)
def _view_roi(array, original_area_slice, axis):
"""
Get a view of the current region of interest during iterative padding.
When padding multiple dimensions iteratively corner values are
unnecessarily overwritten multiple times. This function reduces the
working area for the first dimensions so that corners are excluded.
Parameters
----------
array : ndarray
The array with the region of interest.
original_area_slice : tuple of slices
Denotes the area with original values of the unpadded array.
axis : int
The currently padded dimension assuming that `axis` is padded before
`axis` + 1.
Returns
-------
roi : ndarray
The region of interest of the original `array`.
"""
axis += 1
sl = (slice(None),) * axis + original_area_slice[axis:]
return array[sl]
def _pad_simple(array, pad_width, fill_value=None):
"""
Pad array on all sides with either a single value or undefined values.
Parameters
----------
array : ndarray
Array to grow.
pad_width : sequence of tuple[int, int]
Pad width on both sides for each dimension in `arr`.
fill_value : scalar, optional
If provided the padded area is filled with this value, otherwise
the pad area left undefined.
Returns
-------
padded : ndarray
The padded array with the same dtype as`array`. Its order will default
to C-style if `array` is not F-contiguous.
original_area_slice : tuple
A tuple of slices pointing to the area of the original array.
"""
# Allocate grown array
new_shape = tuple(
left + size + right
for size, (left, right) in zip(array.shape, pad_width)
)
order = 'F' if array.flags.fnc else 'C' # Fortran and not also C-order
padded = np.empty(new_shape, dtype=array.dtype, order=order)
if fill_value is not None:
padded.fill(fill_value)
# Copy old array into correct space
original_area_slice = tuple(
slice(left, left + size)
for size, (left, right) in zip(array.shape, pad_width)
)
padded[original_area_slice] = array
return padded, original_area_slice
def _set_pad_area(padded, axis, width_pair, value_pair):
"""
Set empty-padded area in given dimension.
Parameters
----------
padded : ndarray
Array with the pad area which is modified inplace.
axis : int
Dimension with the pad area to set.
width_pair : (int, int)
Pair of widths that mark the pad area on both sides in the given
dimension.
value_pair : tuple of scalars or ndarrays
Values inserted into the pad area on each side. It must match or be
broadcastable to the shape of `arr`.
"""
left_slice = _slice_at_axis(slice(None, width_pair[0]), axis)
padded[left_slice] = value_pair[0]
right_slice = _slice_at_axis(
slice(padded.shape[axis] - width_pair[1], None), axis)
padded[right_slice] = value_pair[1]
def _get_edges(padded, axis, width_pair):
"""
Retrieve edge values from empty-padded array in given dimension.
Parameters
----------
padded : ndarray
Empty-padded array.
axis : int
Dimension in which the edges are considered.
width_pair : (int, int)
Pair of widths that mark the pad area on both sides in the given
dimension.
Returns
-------
left_edge, right_edge : ndarray
Edge values of the valid area in `padded` in the given dimension. Its
shape will always match `padded` except for the dimension given by
`axis` which will have a length of 1.
"""
left_index = width_pair[0]
left_slice = _slice_at_axis(slice(left_index, left_index + 1), axis)
left_edge = padded[left_slice]
right_index = padded.shape[axis] - width_pair[1]
right_slice = _slice_at_axis(slice(right_index - 1, right_index), axis)
right_edge = padded[right_slice]
return left_edge, right_edge
def _get_linear_ramps(padded, axis, width_pair, end_value_pair):
"""
Construct linear ramps for empty-padded array in given dimension.
Parameters
----------
padded : ndarray
Empty-padded array.
axis : int
Dimension in which the ramps are constructed.
width_pair : (int, int)
Pair of widths that mark the pad area on both sides in the given
dimension.
end_value_pair : (scalar, scalar)
End values for the linear ramps which form the edge of the fully padded
array. These values are included in the linear ramps.
Returns
-------
left_ramp, right_ramp : ndarray
Linear ramps to set on both sides of `padded`.
"""
edge_pair = _get_edges(padded, axis, width_pair)
left_ramp = np.linspace(
start=end_value_pair[0],
stop=edge_pair[0].squeeze(axis), # Dimensions is replaced by linspace
num=width_pair[0],
endpoint=False,
dtype=padded.dtype,
axis=axis,
)
right_ramp = np.linspace(
start=end_value_pair[1],
stop=edge_pair[1].squeeze(axis), # Dimension is replaced by linspace
num=width_pair[1],
endpoint=False,
dtype=padded.dtype,
axis=axis,
)
# Reverse linear space in appropriate dimension
right_ramp = right_ramp[_slice_at_axis(slice(None, None, -1), axis)]
return left_ramp, right_ramp
def _get_stats(padded, axis, width_pair, length_pair, stat_func):
"""
Calculate statistic for the empty-padded array in given dimension.
Parameters
----------
padded : ndarray
Empty-padded array.
axis : int
Dimension in which the statistic is calculated.
width_pair : (int, int)
Pair of widths that mark the pad area on both sides in the given
dimension.
length_pair : 2-element sequence of None or int
Gives the number of values in valid area from each side that is
taken into account when calculating the statistic. If None the entire
valid area in `padded` is considered.
stat_func : function
Function to compute statistic. The expected signature is
``stat_func(x: ndarray, axis: int, keepdims: bool) -> ndarray``.
Returns
-------
left_stat, right_stat : ndarray
Calculated statistic for both sides of `padded`.
"""
# Calculate indices of the edges of the area with original values
left_index = width_pair[0]
right_index = padded.shape[axis] - width_pair[1]
# as well as its length
max_length = right_index - left_index
# Limit stat_lengths to max_length
left_length, right_length = length_pair
if left_length is None or max_length < left_length:
left_length = max_length
if right_length is None or max_length < right_length:
right_length = max_length
if (left_length == 0 or right_length == 0) \
and stat_func in {np.amax, np.amin}:
# amax and amin can't operate on an empty array,
# raise a more descriptive warning here instead of the default one
raise ValueError("stat_length of 0 yields no value for padding")
# Calculate statistic for the left side
left_slice = _slice_at_axis(
slice(left_index, left_index + left_length), axis)
left_chunk = padded[left_slice]
left_stat = stat_func(left_chunk, axis=axis, keepdims=True)
_round_if_needed(left_stat, padded.dtype)
if left_length == right_length == max_length:
# return early as right_stat must be identical to left_stat
return left_stat, left_stat
# Calculate statistic for the right side
right_slice = _slice_at_axis(
slice(right_index - right_length, right_index), axis)
right_chunk = padded[right_slice]
right_stat = stat_func(right_chunk, axis=axis, keepdims=True)
_round_if_needed(right_stat, padded.dtype)
return left_stat, right_stat
def _set_reflect_both(padded, axis, width_pair, method, include_edge=False):
"""
Pad `axis` of `arr` with reflection.
Parameters
----------
padded : ndarray
Input array of arbitrary shape.
axis : int
Axis along which to pad `arr`.
width_pair : (int, int)
Pair of widths that mark the pad area on both sides in the given
dimension.
method : str
Controls method of reflection; options are 'even' or 'odd'.
include_edge : bool
If true, edge value is included in reflection, otherwise the edge
value forms the symmetric axis to the reflection.
Returns
-------
pad_amt : tuple of ints, length 2
New index positions of padding to do along the `axis`. If these are
both 0, padding is done in this dimension.
"""
left_pad, right_pad = width_pair
old_length = padded.shape[axis] - right_pad - left_pad
if include_edge:
# Edge is included, we need to offset the pad amount by 1
edge_offset = 1
else:
edge_offset = 0 # Edge is not included, no need to offset pad amount
old_length -= 1 # but must be omitted from the chunk
if left_pad > 0:
# Pad with reflected values on left side:
# First limit chunk size which can't be larger than pad area
chunk_length = min(old_length, left_pad)
# Slice right to left, stop on or next to edge, start relative to stop
stop = left_pad - edge_offset
start = stop + chunk_length
left_slice = _slice_at_axis(slice(start, stop, -1), axis)
left_chunk = padded[left_slice]
if method == "odd":
# Negate chunk and align with edge
edge_slice = _slice_at_axis(slice(left_pad, left_pad + 1), axis)
left_chunk = 2 * padded[edge_slice] - left_chunk
# Insert chunk into padded area
start = left_pad - chunk_length
stop = left_pad
pad_area = _slice_at_axis(slice(start, stop), axis)
padded[pad_area] = left_chunk
# Adjust pointer to left edge for next iteration
left_pad -= chunk_length
if right_pad > 0:
# Pad with reflected values on right side:
# First limit chunk size which can't be larger than pad area
chunk_length = min(old_length, right_pad)
# Slice right to left, start on or next to edge, stop relative to start
start = -right_pad + edge_offset - 2
stop = start - chunk_length
right_slice = _slice_at_axis(slice(start, stop, -1), axis)
right_chunk = padded[right_slice]
if method == "odd":
# Negate chunk and align with edge
edge_slice = _slice_at_axis(
slice(-right_pad - 1, -right_pad), axis)
right_chunk = 2 * padded[edge_slice] - right_chunk
# Insert chunk into padded area
start = padded.shape[axis] - right_pad
stop = start + chunk_length
pad_area = _slice_at_axis(slice(start, stop), axis)
padded[pad_area] = right_chunk
# Adjust pointer to right edge for next iteration
right_pad -= chunk_length
return left_pad, right_pad
def _set_wrap_both(padded, axis, width_pair):
"""
Pad `axis` of `arr` with wrapped values.
Parameters
----------
padded : ndarray
Input array of arbitrary shape.
axis : int
Axis along which to pad `arr`.
width_pair : (int, int)
Pair of widths that mark the pad area on both sides in the given
dimension.
Returns
-------
pad_amt : tuple of ints, length 2
New index positions of padding to do along the `axis`. If these are
both 0, padding is done in this dimension.
"""
left_pad, right_pad = width_pair
period = padded.shape[axis] - right_pad - left_pad
# If the current dimension of `arr` doesn't contain enough valid values
# (not part of the undefined pad area) we need to pad multiple times.
# Each time the pad area shrinks on both sides which is communicated with
# these variables.
new_left_pad = 0
new_right_pad = 0
if left_pad > 0:
# Pad with wrapped values on left side
# First slice chunk from right side of the non-pad area.
# Use min(period, left_pad) to ensure that chunk is not larger than
# pad area
right_slice = _slice_at_axis(
slice(-right_pad - min(period, left_pad),
-right_pad if right_pad != 0 else None),
axis
)
right_chunk = padded[right_slice]
if left_pad > period:
# Chunk is smaller than pad area
pad_area = _slice_at_axis(slice(left_pad - period, left_pad), axis)
new_left_pad = left_pad - period
else:
# Chunk matches pad area
pad_area = _slice_at_axis(slice(None, left_pad), axis)
padded[pad_area] = right_chunk
if right_pad > 0:
# Pad with wrapped values on right side
# First slice chunk from left side of the non-pad area.
# Use min(period, right_pad) to ensure that chunk is not larger than
# pad area
left_slice = _slice_at_axis(
slice(left_pad, left_pad + min(period, right_pad),), axis)
left_chunk = padded[left_slice]
if right_pad > period:
# Chunk is smaller than pad area
pad_area = _slice_at_axis(
slice(-right_pad, -right_pad + period), axis)
new_right_pad = right_pad - period
else:
# Chunk matches pad area
pad_area = _slice_at_axis(slice(-right_pad, None), axis)
padded[pad_area] = left_chunk
return new_left_pad, new_right_pad
def _as_pairs(x, ndim, as_index=False):
"""
Broadcast `x` to an array with the shape (`ndim`, 2).
A helper function for `pad` that prepares and validates arguments like
`pad_width` for iteration in pairs.
Parameters
----------
x : {None, scalar, array-like}
The object to broadcast to the shape (`ndim`, 2).
ndim : int
Number of pairs the broadcasted `x` will have.
as_index : bool, optional
If `x` is not None, try to round each element of `x` to an integer
(dtype `np.intp`) and ensure every element is positive.
Returns
-------
pairs : nested iterables, shape (`ndim`, 2)
The broadcasted version of `x`.
Raises
------
ValueError
If `as_index` is True and `x` contains negative elements.
Or if `x` is not broadcastable to the shape (`ndim`, 2).
"""
if x is None:
# Pass through None as a special case, otherwise np.round(x) fails
# with an AttributeError
return ((None, None),) * ndim
x = np.array(x)
if as_index:
x = np.round(x).astype(np.intp, copy=False)
if x.ndim < 3:
# Optimization: Possibly use faster paths for cases where `x` has
# only 1 or 2 elements. `np.broadcast_to` could handle these as well
# but is currently slower
if x.size == 1:
# x was supplied as a single value
x = x.ravel() # Ensure x[0] works for x.ndim == 0, 1, 2
if as_index and x < 0:
raise ValueError("index can't contain negative values")
return ((x[0], x[0]),) * ndim
if x.size == 2 and x.shape != (2, 1):
# x was supplied with a single value for each side
# but except case when each dimension has a single value
# which should be broadcasted to a pair,
# e.g. [[1], [2]] -> [[1, 1], [2, 2]] not [[1, 2], [1, 2]]
x = x.ravel() # Ensure x[0], x[1] works
if as_index and (x[0] < 0 or x[1] < 0):
raise ValueError("index can't contain negative values")
return ((x[0], x[1]),) * ndim
if as_index and x.min() < 0:
raise ValueError("index can't contain negative values")
# Converting the array with `tolist` seems to improve performance
# when iterating and indexing the result (see usage in `pad`)
return np.broadcast_to(x, (ndim, 2)).tolist()
def _pad_dispatcher(array, pad_width, mode=None, **kwargs):
return (array,)
###############################################################################
# Public functions
@array_function_dispatch(_pad_dispatcher, module='numpy')
def pad(array, pad_width, mode='constant', **kwargs):
"""
Pad an array.
Parameters
----------
array : array_like of rank N
The array to pad.
pad_width : {sequence, array_like, int}
Number of values padded to the edges of each axis.
((before_1, after_1), ... (before_N, after_N)) unique pad widths
for each axis.
((before, after),) yields same before and after pad for each axis.
(pad,) or int is a shortcut for before = after = pad width for all
axes.
mode : str or function, optional
One of the following string values or a user supplied function.
'constant' (default)
Pads with a constant value.
'edge'
Pads with the edge values of array.
'linear_ramp'
Pads with the linear ramp between end_value and the
array edge value.
'maximum'
Pads with the maximum value of all or part of the
vector along each axis.
'mean'
Pads with the mean value of all or part of the
vector along each axis.
'median'
Pads with the median value of all or part of the
vector along each axis.
'minimum'
Pads with the minimum value of all or part of the
vector along each axis.
'reflect'
Pads with the reflection of the vector mirrored on
the first and last values of the vector along each
axis.
'symmetric'
Pads with the reflection of the vector mirrored
along the edge of the array.
'wrap'
Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the
end values are used to pad the beginning.
'empty'
Pads with undefined values.
.. versionadded:: 1.17
<function>
Padding function, see Notes.
stat_length : sequence or int, optional
Used in 'maximum', 'mean', 'median', and 'minimum'. Number of
values at edge of each axis used to calculate the statistic value.
((before_1, after_1), ... (before_N, after_N)) unique statistic
lengths for each axis.
((before, after),) yields same before and after statistic lengths
for each axis.
(stat_length,) or int is a shortcut for before = after = statistic
length for all axes.
Default is ``None``, to use the entire axis.
constant_values : sequence or scalar, optional
Used in 'constant'. The values to set the padded values for each
axis.
``((before_1, after_1), ... (before_N, after_N))`` unique pad constants
for each axis.
``((before, after),)`` yields same before and after constants for each
axis.
``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
all axes.
Default is 0.
end_values : sequence or scalar, optional
Used in 'linear_ramp'. The values used for the ending value of the
linear_ramp and that will form the edge of the padded array.
``((before_1, after_1), ... (before_N, after_N))`` unique end values
for each axis.
``((before, after),)`` yields same before and after end values for each
axis.
``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
all axes.
Default is 0.
reflect_type : {'even', 'odd'}, optional
Used in 'reflect', and 'symmetric'. The 'even' style is the
default with an unaltered reflection around the edge value. For
the 'odd' style, the extended part of the array is created by
subtracting the reflected values from two times the edge value.
Returns
-------
pad : ndarray
Padded array of rank equal to `array` with shape increased
according to `pad_width`.
Notes
-----
.. versionadded:: 1.7.0
For an array with rank greater than 1, some of the padding of later
axes is calculated from padding of previous axes. This is easiest to
think about with a rank 2 array where the corners of the padded array
are calculated by using padded values from the first axis.
The padding function, if used, should modify a rank 1 array in-place. It
has the following signature::
padding_func(vector, iaxis_pad_width, iaxis, kwargs)
where
vector : ndarray
A rank 1 array already padded with zeros. Padded values are
vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:].
iaxis_pad_width : tuple
A 2-tuple of ints, iaxis_pad_width[0] represents the number of
values padded at the beginning of vector where
iaxis_pad_width[1] represents the number of values padded at
the end of vector.
iaxis : int
The axis currently being calculated.
kwargs : dict
Any keyword arguments the function requires.
Examples
--------
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))
array([4, 4, 1, ..., 6, 6, 6])
>>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, ..., 5, 5, 5])
>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])
>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])
>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
>>> a = [[1, 2], [3, 4]]
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
>>> def pad_with(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 0, 1, 2, 10, 10],
[10, 10, 3, 4, 5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])
>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 0, 1, 2, 100, 100],
[100, 100, 3, 4, 5, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100]])
"""
array = np.asarray(array)
pad_width = np.asarray(pad_width)
if not pad_width.dtype.kind == 'i':
raise TypeError('`pad_width` must be of integral type.')
# Broadcast to shape (array.ndim, 2)
pad_width = _as_pairs(pad_width, array.ndim, as_index=True)
if callable(mode):
# Old behavior: Use user-supplied function with np.apply_along_axis
function = mode
# Create a new zero padded array
padded, _ = _pad_simple(array, pad_width, fill_value=0)
# And apply along each axis
for axis in range(padded.ndim):
# Iterate using ndindex as in apply_along_axis, but assuming that
# function operates inplace on the padded array.
# view with the iteration axis at the end
view = np.moveaxis(padded, axis, -1)
# compute indices for the iteration axes, and append a trailing
# ellipsis to prevent 0d arrays decaying to scalars (gh-8642)
inds = ndindex(view.shape[:-1])
inds = (ind + (Ellipsis,) for ind in inds)
for ind in inds:
function(view[ind], pad_width[axis], axis, kwargs)
return padded
# Make sure that no unsupported keywords were passed for the current mode
allowed_kwargs = {
'empty': [], 'edge': [], 'wrap': [],
'constant': ['constant_values'],
'linear_ramp': ['end_values'],
'maximum': ['stat_length'],
'mean': ['stat_length'],
'median': ['stat_length'],
'minimum': ['stat_length'],
'reflect': ['reflect_type'],
'symmetric': ['reflect_type'],
}
try:
unsupported_kwargs = set(kwargs) - set(allowed_kwargs[mode])
except KeyError:
raise ValueError("mode '{}' is not supported".format(mode))
if unsupported_kwargs:
raise ValueError("unsupported keyword arguments for mode '{}': {}"
.format(mode, unsupported_kwargs))
stat_functions = {"maximum": np.amax, "minimum": np.amin,
"mean": np.mean, "median": np.median}
# Create array with final shape and original values
# (padded area is undefined)
padded, original_area_slice = _pad_simple(array, pad_width)
# And prepare iteration over all dimensions
# (zipping may be more readable than using enumerate)
axes = range(padded.ndim)
if mode == "constant":
values = kwargs.get("constant_values", 0)
values = _as_pairs(values, padded.ndim)
for axis, width_pair, value_pair in zip(axes, pad_width, values):
roi = _view_roi(padded, original_area_slice, axis)
_set_pad_area(roi, axis, width_pair, value_pair)
elif mode == "empty":
pass # Do nothing as _pad_simple already returned the correct result
elif array.size == 0:
# Only modes "constant" and "empty" can extend empty axes, all other
# modes depend on `array` not being empty
# -> ensure every empty axis is only "padded with 0"
for axis, width_pair in zip(axes, pad_width):
if array.shape[axis] == 0 and any(width_pair):
raise ValueError(
"can't extend empty axis {} using modes other than "
"'constant' or 'empty'".format(axis)
)
# passed, don't need to do anything more as _pad_simple already
# returned the correct result
elif mode == "edge":
for axis, width_pair in zip(axes, pad_width):
roi = _view_roi(padded, original_area_slice, axis)
edge_pair = _get_edges(roi, axis, width_pair)
_set_pad_area(roi, axis, width_pair, edge_pair)
elif mode == "linear_ramp":
end_values = kwargs.get("end_values", 0)
end_values = _as_pairs(end_values, padded.ndim)
for axis, width_pair, value_pair in zip(axes, pad_width, end_values):
roi = _view_roi(padded, original_area_slice, axis)
ramp_pair = _get_linear_ramps(roi, axis, width_pair, value_pair)
_set_pad_area(roi, axis, width_pair, ramp_pair)
elif mode in stat_functions:
func = stat_functions[mode]
length = kwargs.get("stat_length", None)
length = _as_pairs(length, padded.ndim, as_index=True)
for axis, width_pair, length_pair in zip(axes, pad_width, length):
roi = _view_roi(padded, original_area_slice, axis)
stat_pair = _get_stats(roi, axis, width_pair, length_pair, func)
_set_pad_area(roi, axis, width_pair, stat_pair)
elif mode in {"reflect", "symmetric"}:
method = kwargs.get("reflect_type", "even")
include_edge = True if mode == "symmetric" else False
for axis, (left_index, right_index) in zip(axes, pad_width):
if array.shape[axis] == 1 and (left_index > 0 or right_index > 0):
# Extending singleton dimension for 'reflect' is legacy
# behavior; it really should raise an error.
edge_pair = _get_edges(padded, axis, (left_index, right_index))
_set_pad_area(
padded, axis, (left_index, right_index), edge_pair)
continue
roi = _view_roi(padded, original_area_slice, axis)
while left_index > 0 or right_index > 0:
# Iteratively pad until dimension is filled with reflected
# values. This is necessary if the pad area is larger than
# the length of the original values in the current dimension.
left_index, right_index = _set_reflect_both(
roi, axis, (left_index, right_index),
method, include_edge
)
elif mode == "wrap":
for axis, (left_index, right_index) in zip(axes, pad_width):
roi = _view_roi(padded, original_area_slice, axis)
while left_index > 0 or right_index > 0:
# Iteratively pad until dimension is filled with wrapped
# values. This is necessary if the pad area is larger than
# the length of the original values in the current dimension.
left_index, right_index = _set_wrap_both(
roi, axis, (left_index, right_index))
return padded

View file

@ -0,0 +1,798 @@
"""
Set operations for arrays based on sorting.
:Contains:
unique,
isin,
ediff1d,
intersect1d,
setxor1d,
in1d,
union1d,
setdiff1d
:Notes:
For floating point arrays, inaccurate results may appear due to usual round-off
and floating point comparison issues.
Speed could be gained in some operations by an implementation of
sort(), that can provide directly the permutation vectors, avoiding
thus calls to argsort().
To do: Optionally return indices analogously to unique for all functions.
:Author: Robert Cimrman
"""
import functools
import numpy as np
from numpy.core import overrides
array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
__all__ = [
'ediff1d', 'intersect1d', 'setxor1d', 'union1d', 'setdiff1d', 'unique',
'in1d', 'isin'
]
def _ediff1d_dispatcher(ary, to_end=None, to_begin=None):
return (ary, to_end, to_begin)
@array_function_dispatch(_ediff1d_dispatcher)
def ediff1d(ary, to_end=None, to_begin=None):
"""
The differences between consecutive elements of an array.
Parameters
----------
ary : array_like
If necessary, will be flattened before the differences are taken.
to_end : array_like, optional
Number(s) to append at the end of the returned differences.
to_begin : array_like, optional
Number(s) to prepend at the beginning of the returned differences.
Returns
-------
ediff1d : ndarray
The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``.
See Also
--------
diff, gradient
Notes
-----
When applied to masked arrays, this function drops the mask information
if the `to_begin` and/or `to_end` parameters are used.
Examples
--------
>>> x = np.array([1, 2, 4, 7, 0])
>>> np.ediff1d(x)
array([ 1, 2, 3, -7])
>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
array([-99, 1, 2, ..., -7, 88, 99])
The returned array is always 1D.
>>> y = [[1, 2, 4], [1, 6, 24]]
>>> np.ediff1d(y)
array([ 1, 2, -3, 5, 18])
"""
# force a 1d array
ary = np.asanyarray(ary).ravel()
# enforce that the dtype of `ary` is used for the output
dtype_req = ary.dtype
# fast track default case
if to_begin is None and to_end is None:
return ary[1:] - ary[:-1]
if to_begin is None:
l_begin = 0
else:
to_begin = np.asanyarray(to_begin)
if not np.can_cast(to_begin, dtype_req, casting="same_kind"):
raise TypeError("dtype of `to_end` must be compatible "
"with input `ary` under the `same_kind` rule.")
to_begin = to_begin.ravel()
l_begin = len(to_begin)
if to_end is None:
l_end = 0
else:
to_end = np.asanyarray(to_end)
if not np.can_cast(to_end, dtype_req, casting="same_kind"):
raise TypeError("dtype of `to_end` must be compatible "
"with input `ary` under the `same_kind` rule.")
to_end = to_end.ravel()
l_end = len(to_end)
# do the calculation in place and copy to_begin and to_end
l_diff = max(len(ary) - 1, 0)
result = np.empty(l_diff + l_begin + l_end, dtype=ary.dtype)
result = ary.__array_wrap__(result)
if l_begin > 0:
result[:l_begin] = to_begin
if l_end > 0:
result[l_begin + l_diff:] = to_end
np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff])
return result
def _unpack_tuple(x):
""" Unpacks one-element tuples for use as return values """
if len(x) == 1:
return x[0]
else:
return x
def _unique_dispatcher(ar, return_index=None, return_inverse=None,
return_counts=None, axis=None):
return (ar,)
@array_function_dispatch(_unique_dispatcher)
def unique(ar, return_index=False, return_inverse=False,
return_counts=False, axis=None):
"""
Find the unique elements of an array.
Returns the sorted unique elements of an array. There are three optional
outputs in addition to the unique elements:
* the indices of the input array that give the unique values
* the indices of the unique array that reconstruct the input array
* the number of times each unique value comes up in the input array
Parameters
----------
ar : array_like
Input array. Unless `axis` is specified, this will be flattened if it
is not already 1-D.
return_index : bool, optional
If True, also return the indices of `ar` (along the specified axis,
if provided, or in the flattened array) that result in the unique array.
return_inverse : bool, optional
If True, also return the indices of the unique array (for the specified
axis, if provided) that can be used to reconstruct `ar`.
return_counts : bool, optional
If True, also return the number of times each unique item appears
in `ar`.
.. versionadded:: 1.9.0
axis : int or None, optional
The axis to operate on. If None, `ar` will be flattened. If an integer,
the subarrays indexed by the given axis will be flattened and treated
as the elements of a 1-D array with the dimension of the given axis,
see the notes for more details. Object arrays or structured arrays
that contain objects are not supported if the `axis` kwarg is used. The
default is None.
.. versionadded:: 1.13.0
Returns
-------
unique : ndarray
The sorted unique values.
unique_indices : ndarray, optional
The indices of the first occurrences of the unique values in the
original array. Only provided if `return_index` is True.
unique_inverse : ndarray, optional
The indices to reconstruct the original array from the
unique array. Only provided if `return_inverse` is True.
unique_counts : ndarray, optional
The number of times each of the unique values comes up in the
original array. Only provided if `return_counts` is True.
.. versionadded:: 1.9.0
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Notes
-----
When an axis is specified the subarrays indexed by the axis are sorted.
This is done by making the specified axis the first dimension of the array
(move the axis to the first dimension to keep the order of the other axes)
and then flattening the subarrays in C order. The flattened subarrays are
then viewed as a structured type with each element given a label, with the
effect that we end up with a 1-D array of structured types that can be
treated in the same way as any other 1-D array. The result is that the
flattened subarrays are sorted in lexicographic order starting with the
first element.
Examples
--------
>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])
Return the unique rows of a 2D array
>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
>>> np.unique(a, axis=0)
array([[1, 0, 0], [2, 3, 4]])
Return the indices of the original array that give the unique values:
>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'], dtype='<U1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'], dtype='<U1')
Reconstruct the input array from the unique values:
>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, 3, 1, 2, 1])
>>> u[indices]
array([1, 2, 6, 4, 2, 3, 2])
"""
ar = np.asanyarray(ar)
if axis is None:
ret = _unique1d(ar, return_index, return_inverse, return_counts)
return _unpack_tuple(ret)
# axis was specified and not None
try:
ar = np.moveaxis(ar, axis, 0)
except np.AxisError:
# this removes the "axis1" or "axis2" prefix from the error message
raise np.AxisError(axis, ar.ndim)
# Must reshape to a contiguous 2D array for this to work...
orig_shape, orig_dtype = ar.shape, ar.dtype
ar = ar.reshape(orig_shape[0], np.prod(orig_shape[1:], dtype=np.intp))
ar = np.ascontiguousarray(ar)
dtype = [('f{i}'.format(i=i), ar.dtype) for i in range(ar.shape[1])]
# At this point, `ar` has shape `(n, m)`, and `dtype` is a structured
# data type with `m` fields where each field has the data type of `ar`.
# In the following, we create the array `consolidated`, which has
# shape `(n,)` with data type `dtype`.
try:
if ar.shape[1] > 0:
consolidated = ar.view(dtype)
else:
# If ar.shape[1] == 0, then dtype will be `np.dtype([])`, which is
# a data type with itemsize 0, and the call `ar.view(dtype)` will
# fail. Instead, we'll use `np.empty` to explicitly create the
# array with shape `(len(ar),)`. Because `dtype` in this case has
# itemsize 0, the total size of the result is still 0 bytes.
consolidated = np.empty(len(ar), dtype=dtype)
except TypeError:
# There's no good way to do this for object arrays, etc...
msg = 'The axis argument to unique is not supported for dtype {dt}'
raise TypeError(msg.format(dt=ar.dtype))
def reshape_uniq(uniq):
n = len(uniq)
uniq = uniq.view(orig_dtype)
uniq = uniq.reshape(n, *orig_shape[1:])
uniq = np.moveaxis(uniq, 0, axis)
return uniq
output = _unique1d(consolidated, return_index,
return_inverse, return_counts)
output = (reshape_uniq(output[0]),) + output[1:]
return _unpack_tuple(output)
def _unique1d(ar, return_index=False, return_inverse=False,
return_counts=False):
"""
Find the unique elements of an array, ignoring shape.
"""
ar = np.asanyarray(ar).flatten()
optional_indices = return_index or return_inverse
if optional_indices:
perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
aux = ar[perm]
else:
ar.sort()
aux = ar
mask = np.empty(aux.shape, dtype=np.bool_)
mask[:1] = True
mask[1:] = aux[1:] != aux[:-1]
ret = (aux[mask],)
if return_index:
ret += (perm[mask],)
if return_inverse:
imask = np.cumsum(mask) - 1
inv_idx = np.empty(mask.shape, dtype=np.intp)
inv_idx[perm] = imask
ret += (inv_idx,)
if return_counts:
idx = np.concatenate(np.nonzero(mask) + ([mask.size],))
ret += (np.diff(idx),)
return ret
def _intersect1d_dispatcher(
ar1, ar2, assume_unique=None, return_indices=None):
return (ar1, ar2)
@array_function_dispatch(_intersect1d_dispatcher)
def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
"""
Find the intersection of two arrays.
Return the sorted, unique values that are in both of the input arrays.
Parameters
----------
ar1, ar2 : array_like
Input arrays. Will be flattened if not already 1D.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
return_indices : bool
If True, the indices which correspond to the intersection of the two
arrays are returned. The first instance of a value is used if there are
multiple. Default is False.
.. versionadded:: 1.15.0
Returns
-------
intersect1d : ndarray
Sorted 1D array of common and unique elements.
comm1 : ndarray
The indices of the first occurrences of the common values in `ar1`.
Only provided if `return_indices` is True.
comm2 : ndarray
The indices of the first occurrences of the common values in `ar2`.
Only provided if `return_indices` is True.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Examples
--------
>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
array([1, 3])
To intersect more than two arrays, use functools.reduce:
>>> from functools import reduce
>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([3])
To return the indices of the values common to the input arrays
along with the intersected values:
>>> x = np.array([1, 1, 2, 3, 4])
>>> y = np.array([2, 1, 4, 6])
>>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
>>> x_ind, y_ind
(array([0, 2, 4]), array([1, 0, 2]))
>>> xy, x[x_ind], y[y_ind]
(array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))
"""
ar1 = np.asanyarray(ar1)
ar2 = np.asanyarray(ar2)
if not assume_unique:
if return_indices:
ar1, ind1 = unique(ar1, return_index=True)
ar2, ind2 = unique(ar2, return_index=True)
else:
ar1 = unique(ar1)
ar2 = unique(ar2)
else:
ar1 = ar1.ravel()
ar2 = ar2.ravel()
aux = np.concatenate((ar1, ar2))
if return_indices:
aux_sort_indices = np.argsort(aux, kind='mergesort')
aux = aux[aux_sort_indices]
else:
aux.sort()
mask = aux[1:] == aux[:-1]
int1d = aux[:-1][mask]
if return_indices:
ar1_indices = aux_sort_indices[:-1][mask]
ar2_indices = aux_sort_indices[1:][mask] - ar1.size
if not assume_unique:
ar1_indices = ind1[ar1_indices]
ar2_indices = ind2[ar2_indices]
return int1d, ar1_indices, ar2_indices
else:
return int1d
def _setxor1d_dispatcher(ar1, ar2, assume_unique=None):
return (ar1, ar2)
@array_function_dispatch(_setxor1d_dispatcher)
def setxor1d(ar1, ar2, assume_unique=False):
"""
Find the set exclusive-or of two arrays.
Return the sorted, unique values that are in only one (not both) of the
input arrays.
Parameters
----------
ar1, ar2 : array_like
Input arrays.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
Returns
-------
setxor1d : ndarray
Sorted 1D array of unique values that are in only one of the input
arrays.
Examples
--------
>>> a = np.array([1, 2, 3, 2, 4])
>>> b = np.array([2, 3, 5, 7, 5])
>>> np.setxor1d(a,b)
array([1, 4, 5, 7])
"""
if not assume_unique:
ar1 = unique(ar1)
ar2 = unique(ar2)
aux = np.concatenate((ar1, ar2))
if aux.size == 0:
return aux
aux.sort()
flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
return aux[flag[1:] & flag[:-1]]
def _in1d_dispatcher(ar1, ar2, assume_unique=None, invert=None):
return (ar1, ar2)
@array_function_dispatch(_in1d_dispatcher)
def in1d(ar1, ar2, assume_unique=False, invert=False):
"""
Test whether each element of a 1-D array is also present in a second array.
Returns a boolean array the same length as `ar1` that is True
where an element of `ar1` is in `ar2` and False otherwise.
We recommend using :func:`isin` instead of `in1d` for new code.
Parameters
----------
ar1 : (M,) array_like
Input array.
ar2 : array_like
The values against which to test each value of `ar1`.
assume_unique : bool, optional
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
invert : bool, optional
If True, the values in the returned array are inverted (that is,
False where an element of `ar1` is in `ar2` and True otherwise).
Default is False. ``np.in1d(a, b, invert=True)`` is equivalent
to (but is faster than) ``np.invert(in1d(a, b))``.
.. versionadded:: 1.8.0
Returns
-------
in1d : (M,) ndarray, bool
The values `ar1[in1d]` are in `ar2`.
See Also
--------
isin : Version of this function that preserves the
shape of ar1.
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Notes
-----
`in1d` can be considered as an element-wise function version of the
python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly
equivalent to ``np.array([item in b for item in a])``.
However, this idea fails if `ar2` is a set, or similar (non-sequence)
container: As ``ar2`` is converted to an array, in those cases
``asarray(ar2)`` is an object array rather than the expected array of
contained values.
.. versionadded:: 1.4.0
Examples
--------
>>> test = np.array([0, 1, 2, 5, 0])
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
array([ True, False, True, False, True])
>>> test[mask]
array([0, 2, 0])
>>> mask = np.in1d(test, states, invert=True)
>>> mask
array([False, True, False, True, False])
>>> test[mask]
array([1, 5])
"""
# Ravel both arrays, behavior for the first array could be different
ar1 = np.asarray(ar1).ravel()
ar2 = np.asarray(ar2).ravel()
# Check if one of the arrays may contain arbitrary objects
contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject
# This code is run when
# a) the first condition is true, making the code significantly faster
# b) the second condition is true (i.e. `ar1` or `ar2` may contain
# arbitrary objects), since then sorting is not guaranteed to work
if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object:
if invert:
mask = np.ones(len(ar1), dtype=bool)
for a in ar2:
mask &= (ar1 != a)
else:
mask = np.zeros(len(ar1), dtype=bool)
for a in ar2:
mask |= (ar1 == a)
return mask
# Otherwise use sorting
if not assume_unique:
ar1, rev_idx = np.unique(ar1, return_inverse=True)
ar2 = np.unique(ar2)
ar = np.concatenate((ar1, ar2))
# We need this to be a stable sort, so always use 'mergesort'
# here. The values from the first array should always come before
# the values from the second array.
order = ar.argsort(kind='mergesort')
sar = ar[order]
if invert:
bool_ar = (sar[1:] != sar[:-1])
else:
bool_ar = (sar[1:] == sar[:-1])
flag = np.concatenate((bool_ar, [invert]))
ret = np.empty(ar.shape, dtype=bool)
ret[order] = flag
if assume_unique:
return ret[:len(ar1)]
else:
return ret[rev_idx]
def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None):
return (element, test_elements)
@array_function_dispatch(_isin_dispatcher)
def isin(element, test_elements, assume_unique=False, invert=False):
"""
Calculates `element in test_elements`, broadcasting over `element` only.
Returns a boolean array of the same shape as `element` that is True
where an element of `element` is in `test_elements` and False otherwise.
Parameters
----------
element : array_like
Input array.
test_elements : array_like
The values against which to test each value of `element`.
This argument is flattened if it is an array or array_like.
See notes for behavior with non-array-like parameters.
assume_unique : bool, optional
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
invert : bool, optional
If True, the values in the returned array are inverted, as if
calculating `element not in test_elements`. Default is False.
``np.isin(a, b, invert=True)`` is equivalent to (but faster
than) ``np.invert(np.isin(a, b))``.
Returns
-------
isin : ndarray, bool
Has the same shape as `element`. The values `element[isin]`
are in `test_elements`.
See Also
--------
in1d : Flattened version of this function.
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Notes
-----
`isin` is an element-wise function version of the python keyword `in`.
``isin(a, b)`` is roughly equivalent to
``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences.
`element` and `test_elements` are converted to arrays if they are not
already. If `test_elements` is a set (or other non-sequence collection)
it will be converted to an object array with one element, rather than an
array of the values contained in `test_elements`. This is a consequence
of the `array` constructor's way of handling non-sequence collections.
Converting the set to a list usually gives the desired behavior.
.. versionadded:: 1.13.0
Examples
--------
>>> element = 2*np.arange(4).reshape((2, 2))
>>> element
array([[0, 2],
[4, 6]])
>>> test_elements = [1, 2, 4, 8]
>>> mask = np.isin(element, test_elements)
>>> mask
array([[False, True],
[ True, False]])
>>> element[mask]
array([2, 4])
The indices of the matched values can be obtained with `nonzero`:
>>> np.nonzero(mask)
(array([0, 1]), array([1, 0]))
The test can also be inverted:
>>> mask = np.isin(element, test_elements, invert=True)
>>> mask
array([[ True, False],
[False, True]])
>>> element[mask]
array([0, 6])
Because of how `array` handles sets, the following does not
work as expected:
>>> test_set = {1, 2, 4, 8}
>>> np.isin(element, test_set)
array([[False, False],
[False, False]])
Casting the set to a list gives the expected result:
>>> np.isin(element, list(test_set))
array([[False, True],
[ True, False]])
"""
element = np.asarray(element)
return in1d(element, test_elements, assume_unique=assume_unique,
invert=invert).reshape(element.shape)
def _union1d_dispatcher(ar1, ar2):
return (ar1, ar2)
@array_function_dispatch(_union1d_dispatcher)
def union1d(ar1, ar2):
"""
Find the union of two arrays.
Return the unique, sorted array of values that are in either of the two
input arrays.
Parameters
----------
ar1, ar2 : array_like
Input arrays. They are flattened if they are not already 1D.
Returns
-------
union1d : ndarray
Unique, sorted union of the input arrays.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Examples
--------
>>> np.union1d([-1, 0, 1], [-2, 0, 2])
array([-2, -1, 0, 1, 2])
To find the union of more than two arrays, use functools.reduce:
>>> from functools import reduce
>>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([1, 2, 3, 4, 6])
"""
return unique(np.concatenate((ar1, ar2), axis=None))
def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None):
return (ar1, ar2)
@array_function_dispatch(_setdiff1d_dispatcher)
def setdiff1d(ar1, ar2, assume_unique=False):
"""
Find the set difference of two arrays.
Return the unique values in `ar1` that are not in `ar2`.
Parameters
----------
ar1 : array_like
Input array.
ar2 : array_like
Input comparison array.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
Returns
-------
setdiff1d : ndarray
1D array of values in `ar1` that are not in `ar2`. The result
is sorted when `assume_unique=False`, but otherwise only sorted
if the input is sorted.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Examples
--------
>>> a = np.array([1, 2, 3, 2, 4, 1])
>>> b = np.array([3, 4, 5, 6])
>>> np.setdiff1d(a, b)
array([1, 2])
"""
if assume_unique:
ar1 = np.asarray(ar1).ravel()
else:
ar1 = unique(ar1)
ar2 = unique(ar2)
return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]

View file

@ -0,0 +1,219 @@
"""
A buffered iterator for big arrays.
This module solves the problem of iterating over a big file-based array
without having to read it into memory. The `Arrayterator` class wraps
an array object, and when iterated it will return sub-arrays with at most
a user-specified number of elements.
"""
from operator import mul
from functools import reduce
__all__ = ['Arrayterator']
class Arrayterator:
"""
Buffered iterator for big arrays.
`Arrayterator` creates a buffered iterator for reading big arrays in small
contiguous blocks. The class is useful for objects stored in the
file system. It allows iteration over the object *without* reading
everything in memory; instead, small blocks are read and iterated over.
`Arrayterator` can be used with any object that supports multidimensional
slices. This includes NumPy arrays, but also variables from
Scientific.IO.NetCDF or pynetcdf for example.
Parameters
----------
var : array_like
The object to iterate over.
buf_size : int, optional
The buffer size. If `buf_size` is supplied, the maximum amount of
data that will be read into memory is `buf_size` elements.
Default is None, which will read as many element as possible
into memory.
Attributes
----------
var
buf_size
start
stop
step
shape
flat
See Also
--------
ndenumerate : Multidimensional array iterator.
flatiter : Flat array iterator.
memmap : Create a memory-map to an array stored in a binary file on disk.
Notes
-----
The algorithm works by first finding a "running dimension", along which
the blocks will be extracted. Given an array of dimensions
``(d1, d2, ..., dn)``, e.g. if `buf_size` is smaller than ``d1``, the
first dimension will be used. If, on the other hand,
``d1 < buf_size < d1*d2`` the second dimension will be used, and so on.
Blocks are extracted along this dimension, and when the last block is
returned the process continues from the next dimension, until all
elements have been read.
Examples
--------
>>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6)
>>> a_itor = np.lib.Arrayterator(a, 2)
>>> a_itor.shape
(3, 4, 5, 6)
Now we can iterate over ``a_itor``, and it will return arrays of size
two. Since `buf_size` was smaller than any dimension, the first
dimension will be iterated over first:
>>> for subarr in a_itor:
... if not subarr.all():
... print(subarr, subarr.shape) # doctest: +SKIP
>>> # [[[[0 1]]]] (1, 1, 1, 2)
"""
def __init__(self, var, buf_size=None):
self.var = var
self.buf_size = buf_size
self.start = [0 for dim in var.shape]
self.stop = [dim for dim in var.shape]
self.step = [1 for dim in var.shape]
def __getattr__(self, attr):
return getattr(self.var, attr)
def __getitem__(self, index):
"""
Return a new arrayterator.
"""
# Fix index, handling ellipsis and incomplete slices.
if not isinstance(index, tuple):
index = (index,)
fixed = []
length, dims = len(index), self.ndim
for slice_ in index:
if slice_ is Ellipsis:
fixed.extend([slice(None)] * (dims-length+1))
length = len(fixed)
elif isinstance(slice_, int):
fixed.append(slice(slice_, slice_+1, 1))
else:
fixed.append(slice_)
index = tuple(fixed)
if len(index) < dims:
index += (slice(None),) * (dims-len(index))
# Return a new arrayterator object.
out = self.__class__(self.var, self.buf_size)
for i, (start, stop, step, slice_) in enumerate(
zip(self.start, self.stop, self.step, index)):
out.start[i] = start + (slice_.start or 0)
out.step[i] = step * (slice_.step or 1)
out.stop[i] = start + (slice_.stop or stop-start)
out.stop[i] = min(stop, out.stop[i])
return out
def __array__(self):
"""
Return corresponding data.
"""
slice_ = tuple(slice(*t) for t in zip(
self.start, self.stop, self.step))
return self.var[slice_]
@property
def flat(self):
"""
A 1-D flat iterator for Arrayterator objects.
This iterator returns elements of the array to be iterated over in
`Arrayterator` one by one. It is similar to `flatiter`.
See Also
--------
Arrayterator
flatiter
Examples
--------
>>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6)
>>> a_itor = np.lib.Arrayterator(a, 2)
>>> for subarr in a_itor.flat:
... if not subarr:
... print(subarr, type(subarr))
...
0 <class 'numpy.int64'>
"""
for block in self:
yield from block.flat
@property
def shape(self):
"""
The shape of the array to be iterated over.
For an example, see `Arrayterator`.
"""
return tuple(((stop-start-1)//step+1) for start, stop, step in
zip(self.start, self.stop, self.step))
def __iter__(self):
# Skip arrays with degenerate dimensions
if [dim for dim in self.shape if dim <= 0]:
return
start = self.start[:]
stop = self.stop[:]
step = self.step[:]
ndims = self.var.ndim
while True:
count = self.buf_size or reduce(mul, self.shape)
# iterate over each dimension, looking for the
# running dimension (ie, the dimension along which
# the blocks will be built from)
rundim = 0
for i in range(ndims-1, -1, -1):
# if count is zero we ran out of elements to read
# along higher dimensions, so we read only a single position
if count == 0:
stop[i] = start[i]+1
elif count <= self.shape[i]:
# limit along this dimension
stop[i] = start[i] + count*step[i]
rundim = i
else:
# read everything along this dimension
stop[i] = self.stop[i]
stop[i] = min(self.stop[i], stop[i])
count = count//self.shape[i]
# yield a block
slice_ = tuple(slice(*t) for t in zip(start, stop, step))
yield self.var[slice_]
# Update start position, taking care of overflow to
# other dimensions
start[rundim] = stop[rundim] # start where we stopped
for i in range(ndims-1, 0, -1):
if start[i] >= self.stop[i]:
start[i] = self.start[i]
start[i-1] += self.step[i-1]
if start[0] >= self.stop[0]:
return

View file

@ -0,0 +1,967 @@
"""Some simple financial calculations
patterned after spreadsheet computations.
There is some complexity in each function
so that the functions behave like ufuncs with
broadcasting and being able to be called with scalars
or arrays (or other sequences).
Functions support the :class:`decimal.Decimal` type unless
otherwise stated.
"""
import warnings
from decimal import Decimal
import functools
import numpy as np
from numpy.core import overrides
_depmsg = ("numpy.{name} is deprecated and will be removed from NumPy 1.20. "
"Use numpy_financial.{name} instead "
"(https://pypi.org/project/numpy-financial/).")
array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
__all__ = ['fv', 'pmt', 'nper', 'ipmt', 'ppmt', 'pv', 'rate',
'irr', 'npv', 'mirr']
_when_to_num = {'end':0, 'begin':1,
'e':0, 'b':1,
0:0, 1:1,
'beginning':1,
'start':1,
'finish':0}
def _convert_when(when):
#Test to see if when has already been converted to ndarray
#This will happen if one function calls another, for example ppmt
if isinstance(when, np.ndarray):
return when
try:
return _when_to_num[when]
except (KeyError, TypeError):
return [_when_to_num[x] for x in when]
def _fv_dispatcher(rate, nper, pmt, pv, when=None):
warnings.warn(_depmsg.format(name='fv'),
DeprecationWarning, stacklevel=3)
return (rate, nper, pmt, pv)
@array_function_dispatch(_fv_dispatcher)
def fv(rate, nper, pmt, pv, when='end'):
"""
Compute the future value.
.. deprecated:: 1.18
`fv` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Given:
* a present value, `pv`
* an interest `rate` compounded once per period, of which
there are
* `nper` total
* a (fixed) payment, `pmt`, paid either
* at the beginning (`when` = {'begin', 1}) or the end
(`when` = {'end', 0}) of each period
Return:
the value at the end of the `nper` periods
Parameters
----------
rate : scalar or array_like of shape(M, )
Rate of interest as decimal (not per cent) per period
nper : scalar or array_like of shape(M, )
Number of compounding periods
pmt : scalar or array_like of shape(M, )
Payment
pv : scalar or array_like of shape(M, )
Present value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0)).
Defaults to {'end', 0}.
Returns
-------
out : ndarray
Future values. If all input is scalar, returns a scalar float. If
any input is array_like, returns future values for each input element.
If multiple inputs are array_like, they all must have the same shape.
Notes
-----
The future value is computed by solving the equation::
fv +
pv*(1+rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0
or, when ``rate == 0``::
fv + pv + pmt * nper == 0
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
Examples
--------
What is the future value after 10 years of saving $100 now, with
an additional monthly savings of $100. Assume the interest rate is
5% (annually) compounded monthly?
>>> np.fv(0.05/12, 10*12, -100, -100)
15692.928894335748
By convention, the negative sign represents cash flow out (i.e. money not
available today). Thus, saving $100 a month at 5% annual interest leads
to $15,692.93 available to spend in 10 years.
If any input is array_like, returns an array of equal shape. Let's
compare different interest rates from the example above.
>>> a = np.array((0.05, 0.06, 0.07))/12
>>> np.fv(a, 10*12, -100, -100)
array([ 15692.92889434, 16569.87435405, 17509.44688102]) # may vary
"""
when = _convert_when(when)
(rate, nper, pmt, pv, when) = map(np.asarray, [rate, nper, pmt, pv, when])
temp = (1+rate)**nper
fact = np.where(rate == 0, nper,
(1 + rate*when)*(temp - 1)/rate)
return -(pv*temp + pmt*fact)
def _pmt_dispatcher(rate, nper, pv, fv=None, when=None):
warnings.warn(_depmsg.format(name='pmt'),
DeprecationWarning, stacklevel=3)
return (rate, nper, pv, fv)
@array_function_dispatch(_pmt_dispatcher)
def pmt(rate, nper, pv, fv=0, when='end'):
"""
Compute the payment against loan principal plus interest.
.. deprecated:: 1.18
`pmt` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Given:
* a present value, `pv` (e.g., an amount borrowed)
* a future value, `fv` (e.g., 0)
* an interest `rate` compounded once per period, of which
there are
* `nper` total
* and (optional) specification of whether payment is made
at the beginning (`when` = {'begin', 1}) or the end
(`when` = {'end', 0}) of each period
Return:
the (fixed) periodic payment.
Parameters
----------
rate : array_like
Rate of interest (per period)
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value (default = 0)
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
Returns
-------
out : ndarray
Payment against loan plus interest. If all input is scalar, returns a
scalar float. If any input is array_like, returns payment for each
input element. If multiple inputs are array_like, they all must have
the same shape.
Notes
-----
The payment is computed by solving the equation::
fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0
or, when ``rate == 0``::
fv + pv + pmt * nper == 0
for ``pmt``.
Note that computing a monthly mortgage payment is only
one use for this function. For example, pmt returns the
periodic deposit one must make to achieve a specified
future balance given an initial deposit, a fixed,
periodically compounded interest rate, and the total
number of periods.
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php
?wg_abbrev=office-formulaOpenDocument-formula-20090508.odt
Examples
--------
What is the monthly payment needed to pay off a $200,000 loan in 15
years at an annual interest rate of 7.5%?
>>> np.pmt(0.075/12, 12*15, 200000)
-1854.0247200054619
In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained
today, a monthly payment of $1,854.02 would be required. Note that this
example illustrates usage of `fv` having a default value of 0.
"""
when = _convert_when(when)
(rate, nper, pv, fv, when) = map(np.array, [rate, nper, pv, fv, when])
temp = (1 + rate)**nper
mask = (rate == 0)
masked_rate = np.where(mask, 1, rate)
fact = np.where(mask != 0, nper,
(1 + masked_rate*when)*(temp - 1)/masked_rate)
return -(fv + pv*temp) / fact
def _nper_dispatcher(rate, pmt, pv, fv=None, when=None):
warnings.warn(_depmsg.format(name='nper'),
DeprecationWarning, stacklevel=3)
return (rate, pmt, pv, fv)
@array_function_dispatch(_nper_dispatcher)
def nper(rate, pmt, pv, fv=0, when='end'):
"""
Compute the number of periodic payments.
.. deprecated:: 1.18
`nper` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
:class:`decimal.Decimal` type is not supported.
Parameters
----------
rate : array_like
Rate of interest (per period)
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
Notes
-----
The number of periods ``nper`` is computed by solving the equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0
but if ``rate = 0`` then::
fv + pv + pmt*nper = 0
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
Examples
--------
If you only had $150/month to pay towards the loan, how long would it take
to pay-off a loan of $8,000 at 7% annual interest?
>>> print(np.round(np.nper(0.07/12, -150, 8000), 5))
64.07335
So, over 64 months would be required to pay off the loan.
The same analysis could be done with several different interest rates
and/or payments and/or total amounts to produce an entire table.
>>> np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12,
... -150 : -99 : 50 ,
... 8000 : 9001 : 1000]))
array([[[ 64.07334877, 74.06368256],
[108.07548412, 127.99022654]],
[[ 66.12443902, 76.87897353],
[114.70165583, 137.90124779]]])
"""
when = _convert_when(when)
(rate, pmt, pv, fv, when) = map(np.asarray, [rate, pmt, pv, fv, when])
use_zero_rate = False
with np.errstate(divide="raise"):
try:
z = pmt*(1+rate*when)/rate
except FloatingPointError:
use_zero_rate = True
if use_zero_rate:
return (-fv + pv) / pmt
else:
A = -(fv + pv)/(pmt+0)
B = np.log((-fv+z) / (pv+z))/np.log(1+rate)
return np.where(rate == 0, A, B)
def _ipmt_dispatcher(rate, per, nper, pv, fv=None, when=None):
warnings.warn(_depmsg.format(name='ipmt'),
DeprecationWarning, stacklevel=3)
return (rate, per, nper, pv, fv)
@array_function_dispatch(_ipmt_dispatcher)
def ipmt(rate, per, nper, pv, fv=0, when='end'):
"""
Compute the interest portion of a payment.
.. deprecated:: 1.18
`ipmt` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Parameters
----------
rate : scalar or array_like of shape(M, )
Rate of interest as decimal (not per cent) per period
per : scalar or array_like of shape(M, )
Interest paid against the loan changes during the life or the loan.
The `per` is the payment period to calculate the interest amount.
nper : scalar or array_like of shape(M, )
Number of compounding periods
pv : scalar or array_like of shape(M, )
Present value
fv : scalar or array_like of shape(M, ), optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0)).
Defaults to {'end', 0}.
Returns
-------
out : ndarray
Interest portion of payment. If all input is scalar, returns a scalar
float. If any input is array_like, returns interest payment for each
input element. If multiple inputs are array_like, they all must have
the same shape.
See Also
--------
ppmt, pmt, pv
Notes
-----
The total payment is made up of payment against principal plus interest.
``pmt = ppmt + ipmt``
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
Examples
--------
What is the amortization schedule for a 1 year loan of $2500 at
8.24% interest per year compounded monthly?
>>> principal = 2500.00
The 'per' variable represents the periods of the loan. Remember that
financial equations start the period count at 1!
>>> per = np.arange(1*12) + 1
>>> ipmt = np.ipmt(0.0824/12, per, 1*12, principal)
>>> ppmt = np.ppmt(0.0824/12, per, 1*12, principal)
Each element of the sum of the 'ipmt' and 'ppmt' arrays should equal
'pmt'.
>>> pmt = np.pmt(0.0824/12, 1*12, principal)
>>> np.allclose(ipmt + ppmt, pmt)
True
>>> fmt = '{0:2d} {1:8.2f} {2:8.2f} {3:8.2f}'
>>> for payment in per:
... index = payment - 1
... principal = principal + ppmt[index]
... print(fmt.format(payment, ppmt[index], ipmt[index], principal))
1 -200.58 -17.17 2299.42
2 -201.96 -15.79 2097.46
3 -203.35 -14.40 1894.11
4 -204.74 -13.01 1689.37
5 -206.15 -11.60 1483.22
6 -207.56 -10.18 1275.66
7 -208.99 -8.76 1066.67
8 -210.42 -7.32 856.25
9 -211.87 -5.88 644.38
10 -213.32 -4.42 431.05
11 -214.79 -2.96 216.26
12 -216.26 -1.49 -0.00
>>> interestpd = np.sum(ipmt)
>>> np.round(interestpd, 2)
-112.98
"""
when = _convert_when(when)
rate, per, nper, pv, fv, when = np.broadcast_arrays(rate, per, nper,
pv, fv, when)
total_pmt = pmt(rate, nper, pv, fv, when)
ipmt = _rbl(rate, per, total_pmt, pv, when)*rate
try:
ipmt = np.where(when == 1, ipmt/(1 + rate), ipmt)
ipmt = np.where(np.logical_and(when == 1, per == 1), 0, ipmt)
except IndexError:
pass
return ipmt
def _rbl(rate, per, pmt, pv, when):
"""
This function is here to simply have a different name for the 'fv'
function to not interfere with the 'fv' keyword argument within the 'ipmt'
function. It is the 'remaining balance on loan' which might be useful as
its own function, but is easily calculated with the 'fv' function.
"""
return fv(rate, (per - 1), pmt, pv, when)
def _ppmt_dispatcher(rate, per, nper, pv, fv=None, when=None):
warnings.warn(_depmsg.format(name='ppmt'),
DeprecationWarning, stacklevel=3)
return (rate, per, nper, pv, fv)
@array_function_dispatch(_ppmt_dispatcher)
def ppmt(rate, per, nper, pv, fv=0, when='end'):
"""
Compute the payment against loan principal.
.. deprecated:: 1.18
`ppmt` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Parameters
----------
rate : array_like
Rate of interest (per period)
per : array_like, int
Amount paid against the loan changes. The `per` is the period of
interest.
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
See Also
--------
pmt, pv, ipmt
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
"""
total = pmt(rate, nper, pv, fv, when)
return total - ipmt(rate, per, nper, pv, fv, when)
def _pv_dispatcher(rate, nper, pmt, fv=None, when=None):
warnings.warn(_depmsg.format(name='pv'),
DeprecationWarning, stacklevel=3)
return (rate, nper, nper, pv, fv)
@array_function_dispatch(_pv_dispatcher)
def pv(rate, nper, pmt, fv=0, when='end'):
"""
Compute the present value.
.. deprecated:: 1.18
`pv` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Given:
* a future value, `fv`
* an interest `rate` compounded once per period, of which
there are
* `nper` total
* a (fixed) payment, `pmt`, paid either
* at the beginning (`when` = {'begin', 1}) or the end
(`when` = {'end', 0}) of each period
Return:
the value now
Parameters
----------
rate : array_like
Rate of interest (per period)
nper : array_like
Number of compounding periods
pmt : array_like
Payment
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
Returns
-------
out : ndarray, float
Present value of a series of payments or investments.
Notes
-----
The present value is computed by solving the equation::
fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0
or, when ``rate = 0``::
fv + pv + pmt * nper = 0
for `pv`, which is then returned.
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
Examples
--------
What is the present value (e.g., the initial investment)
of an investment that needs to total $15692.93
after 10 years of saving $100 every month? Assume the
interest rate is 5% (annually) compounded monthly.
>>> np.pv(0.05/12, 10*12, -100, 15692.93)
-100.00067131625819
By convention, the negative sign represents cash flow out
(i.e., money not available today). Thus, to end up with
$15,692.93 in 10 years saving $100 a month at 5% annual
interest, one's initial deposit should also be $100.
If any input is array_like, ``pv`` returns an array of equal shape.
Let's compare different interest rates in the example above:
>>> a = np.array((0.05, 0.04, 0.03))/12
>>> np.pv(a, 10*12, -100, 15692.93)
array([ -100.00067132, -649.26771385, -1273.78633713]) # may vary
So, to end up with the same $15692.93 under the same $100 per month
"savings plan," for annual interest rates of 4% and 3%, one would
need initial investments of $649.27 and $1273.79, respectively.
"""
when = _convert_when(when)
(rate, nper, pmt, fv, when) = map(np.asarray, [rate, nper, pmt, fv, when])
temp = (1+rate)**nper
fact = np.where(rate == 0, nper, (1+rate*when)*(temp-1)/rate)
return -(fv + pmt*fact)/temp
# Computed with Sage
# (y + (r + 1)^n*x + p*((r + 1)^n - 1)*(r*w + 1)/r)/(n*(r + 1)^(n - 1)*x -
# p*((r + 1)^n - 1)*(r*w + 1)/r^2 + n*p*(r + 1)^(n - 1)*(r*w + 1)/r +
# p*((r + 1)^n - 1)*w/r)
def _g_div_gp(r, n, p, x, y, w):
t1 = (r+1)**n
t2 = (r+1)**(n-1)
return ((y + t1*x + p*(t1 - 1)*(r*w + 1)/r) /
(n*t2*x - p*(t1 - 1)*(r*w + 1)/(r**2) + n*p*t2*(r*w + 1)/r +
p*(t1 - 1)*w/r))
def _rate_dispatcher(nper, pmt, pv, fv, when=None, guess=None, tol=None,
maxiter=None):
warnings.warn(_depmsg.format(name='rate'),
DeprecationWarning, stacklevel=3)
return (nper, pmt, pv, fv)
# Use Newton's iteration until the change is less than 1e-6
# for all values or a maximum of 100 iterations is reached.
# Newton's rule is
# r_{n+1} = r_{n} - g(r_n)/g'(r_n)
# where
# g(r) is the formula
# g'(r) is the derivative with respect to r.
@array_function_dispatch(_rate_dispatcher)
def rate(nper, pmt, pv, fv, when='end', guess=None, tol=None, maxiter=100):
"""
Compute the rate of interest per period.
.. deprecated:: 1.18
`rate` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Parameters
----------
nper : array_like
Number of compounding periods
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
guess : Number, optional
Starting guess for solving the rate of interest, default 0.1
tol : Number, optional
Required tolerance for the solution, default 1e-6
maxiter : int, optional
Maximum iterations in finding the solution
Notes
-----
The rate of interest is computed by iteratively solving the
(non-linear) equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0
for ``rate``.
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
"""
when = _convert_when(when)
default_type = Decimal if isinstance(pmt, Decimal) else float
# Handle casting defaults to Decimal if/when pmt is a Decimal and
# guess and/or tol are not given default values
if guess is None:
guess = default_type('0.1')
if tol is None:
tol = default_type('1e-6')
(nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
rn = guess
iterator = 0
close = False
while (iterator < maxiter) and not close:
rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
diff = abs(rnp1-rn)
close = np.all(diff < tol)
iterator += 1
rn = rnp1
if not close:
# Return nan's in array of the same shape as rn
return np.nan + rn
else:
return rn
def _irr_dispatcher(values):
warnings.warn(_depmsg.format(name='irr'),
DeprecationWarning, stacklevel=3)
return (values,)
@array_function_dispatch(_irr_dispatcher)
def irr(values):
"""
Return the Internal Rate of Return (IRR).
.. deprecated:: 1.18
`irr` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
This is the "average" periodically compounded rate of return
that gives a net present value of 0.0; for a more complete explanation,
see Notes below.
:class:`decimal.Decimal` type is not supported.
Parameters
----------
values : array_like, shape(N,)
Input cash flows per time period. By convention, net "deposits"
are negative and net "withdrawals" are positive. Thus, for
example, at least the first element of `values`, which represents
the initial investment, will typically be negative.
Returns
-------
out : float
Internal Rate of Return for periodic input values.
Notes
-----
The IRR is perhaps best understood through an example (illustrated
using np.irr in the Examples section below). Suppose one invests 100
units and then makes the following withdrawals at regular (fixed)
intervals: 39, 59, 55, 20. Assuming the ending value is 0, one's 100
unit investment yields 173 units; however, due to the combination of
compounding and the periodic withdrawals, the "average" rate of return
is neither simply 0.73/4 nor (1.73)^0.25-1. Rather, it is the solution
(for :math:`r`) of the equation:
.. math:: -100 + \\frac{39}{1+r} + \\frac{59}{(1+r)^2}
+ \\frac{55}{(1+r)^3} + \\frac{20}{(1+r)^4} = 0
In general, for `values` :math:`= [v_0, v_1, ... v_M]`,
irr is the solution of the equation: [2]_
.. math:: \\sum_{t=0}^M{\\frac{v_t}{(1+irr)^{t}}} = 0
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed.,
Addison-Wesley, 2003, pg. 348.
Examples
--------
>>> round(np.irr([-100, 39, 59, 55, 20]), 5)
0.28095
>>> round(np.irr([-100, 0, 0, 74]), 5)
-0.0955
>>> round(np.irr([-100, 100, 0, -7]), 5)
-0.0833
>>> round(np.irr([-100, 100, 0, 7]), 5)
0.06206
>>> round(np.irr([-5, 10.5, 1, -8, 1]), 5)
0.0886
"""
# `np.roots` call is why this function does not support Decimal type.
#
# Ultimately Decimal support needs to be added to np.roots, which has
# greater implications on the entire linear algebra module and how it does
# eigenvalue computations.
res = np.roots(values[::-1])
mask = (res.imag == 0) & (res.real > 0)
if not mask.any():
return np.nan
res = res[mask].real
# NPV(rate) = 0 can have more than one solution so we return
# only the solution closest to zero.
rate = 1/res - 1
rate = rate.item(np.argmin(np.abs(rate)))
return rate
def _npv_dispatcher(rate, values):
warnings.warn(_depmsg.format(name='npv'),
DeprecationWarning, stacklevel=3)
return (values,)
@array_function_dispatch(_npv_dispatcher)
def npv(rate, values):
"""
Returns the NPV (Net Present Value) of a cash flow series.
.. deprecated:: 1.18
`npv` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Parameters
----------
rate : scalar
The discount rate.
values : array_like, shape(M, )
The values of the time series of cash flows. The (fixed) time
interval between cash flow "events" must be the same as that for
which `rate` is given (i.e., if `rate` is per year, then precisely
a year is understood to elapse between each cash flow event). By
convention, investments or "deposits" are negative, income or
"withdrawals" are positive; `values` must begin with the initial
investment, thus `values[0]` will typically be negative.
Returns
-------
out : float
The NPV of the input cash flow series `values` at the discount
`rate`.
Warnings
--------
``npv`` considers a series of cashflows starting in the present (t = 0).
NPV can also be defined with a series of future cashflows, paid at the
end, rather than the start, of each period. If future cashflows are used,
the first cashflow `values[0]` must be zeroed and added to the net
present value of the future cashflows. This is demonstrated in the
examples.
Notes
-----
Returns the result of: [2]_
.. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}}
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed.,
Addison-Wesley, 2003, pg. 346.
Examples
--------
Consider a potential project with an initial investment of $40 000 and
projected cashflows of $5 000, $8 000, $12 000 and $30 000 at the end of
each period discounted at a rate of 8% per period. To find the project's
net present value:
>>> rate, cashflows = 0.08, [-40_000, 5_000, 8_000, 12_000, 30_000]
>>> np.npv(rate, cashflows).round(5)
3065.22267
It may be preferable to split the projected cashflow into an initial
investment and expected future cashflows. In this case, the value of
the initial cashflow is zero and the initial investment is later added
to the future cashflows net present value:
>>> initial_cashflow = cashflows[0]
>>> cashflows[0] = 0
>>> np.round(np.npv(rate, cashflows) + initial_cashflow, 5)
3065.22267
"""
values = np.asarray(values)
return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
def _mirr_dispatcher(values, finance_rate, reinvest_rate):
warnings.warn(_depmsg.format(name='mirr'),
DeprecationWarning, stacklevel=3)
return (values,)
@array_function_dispatch(_mirr_dispatcher)
def mirr(values, finance_rate, reinvest_rate):
"""
Modified internal rate of return.
.. deprecated:: 1.18
`mirr` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Parameters
----------
values : array_like
Cash flows (must contain at least one positive and one negative
value) or nan is returned. The first value is considered a sunk
cost at time zero.
finance_rate : scalar
Interest rate paid on the cash flows
reinvest_rate : scalar
Interest rate received on the cash flows upon reinvestment
Returns
-------
out : float
Modified internal rate of return
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
"""
values = np.asarray(values)
n = values.size
# Without this explicit cast the 1/(n - 1) computation below
# becomes a float, which causes TypeError when using Decimal
# values.
if isinstance(finance_rate, Decimal):
n = Decimal(n)
pos = values > 0
neg = values < 0
if not (pos.any() and neg.any()):
return np.nan
numer = np.abs(npv(reinvest_rate, values*pos))
denom = np.abs(npv(finance_rate, values*neg))
return (numer/denom)**(1/(n - 1))*(1 + reinvest_rate) - 1

View file

@ -0,0 +1,902 @@
"""
Binary serialization
NPY format
==========
A simple format for saving numpy arrays to disk with the full
information about them.
The ``.npy`` format is the standard binary file format in NumPy for
persisting a *single* arbitrary NumPy array on disk. The format stores all
of the shape and dtype information necessary to reconstruct the array
correctly even on another machine with a different architecture.
The format is designed to be as simple as possible while achieving
its limited goals.
The ``.npz`` format is the standard format for persisting *multiple* NumPy
arrays on disk. A ``.npz`` file is a zip file containing multiple ``.npy``
files, one for each array.
Capabilities
------------
- Can represent all NumPy arrays including nested record arrays and
object arrays.
- Represents the data in its native binary form.
- Supports Fortran-contiguous arrays directly.
- Stores all of the necessary information to reconstruct the array
including shape and dtype on a machine of a different
architecture. Both little-endian and big-endian arrays are
supported, and a file with little-endian numbers will yield
a little-endian array on any machine reading the file. The
types are described in terms of their actual sizes. For example,
if a machine with a 64-bit C "long int" writes out an array with
"long ints", a reading machine with 32-bit C "long ints" will yield
an array with 64-bit integers.
- Is straightforward to reverse engineer. Datasets often live longer than
the programs that created them. A competent developer should be
able to create a solution in their preferred programming language to
read most ``.npy`` files that he has been given without much
documentation.
- Allows memory-mapping of the data. See `open_memmep`.
- Can be read from a filelike stream object instead of an actual file.
- Stores object arrays, i.e. arrays containing elements that are arbitrary
Python objects. Files with object arrays are not to be mmapable, but
can be read and written to disk.
Limitations
-----------
- Arbitrary subclasses of numpy.ndarray are not completely preserved.
Subclasses will be accepted for writing, but only the array data will
be written out. A regular numpy.ndarray object will be created
upon reading the file.
.. warning::
Due to limitations in the interpretation of structured dtypes, dtypes
with fields with empty names will have the names replaced by 'f0', 'f1',
etc. Such arrays will not round-trip through the format entirely
accurately. The data is intact; only the field names will differ. We are
working on a fix for this. This fix will not require a change in the
file format. The arrays with such structures can still be saved and
restored, and the correct dtype may be restored by using the
``loadedarray.view(correct_dtype)`` method.
File extensions
---------------
We recommend using the ``.npy`` and ``.npz`` extensions for files saved
in this format. This is by no means a requirement; applications may wish
to use these file formats but use an extension specific to the
application. In the absence of an obvious alternative, however,
we suggest using ``.npy`` and ``.npz``.
Version numbering
-----------------
The version numbering of these formats is independent of NumPy version
numbering. If the format is upgraded, the code in `numpy.io` will still
be able to read and write Version 1.0 files.
Format Version 1.0
------------------
The first 6 bytes are a magic string: exactly ``\\x93NUMPY``.
The next 1 byte is an unsigned byte: the major version number of the file
format, e.g. ``\\x01``.
The next 1 byte is an unsigned byte: the minor version number of the file
format, e.g. ``\\x00``. Note: the version of the file format is not tied
to the version of the numpy package.
The next 2 bytes form a little-endian unsigned short int: the length of
the header data HEADER_LEN.
The next HEADER_LEN bytes form the header data describing the array's
format. It is an ASCII string which contains a Python literal expression
of a dictionary. It is terminated by a newline (``\\n``) and padded with
spaces (``\\x20``) to make the total of
``len(magic string) + 2 + len(length) + HEADER_LEN`` be evenly divisible
by 64 for alignment purposes.
The dictionary contains three keys:
"descr" : dtype.descr
An object that can be passed as an argument to the `numpy.dtype`
constructor to create the array's dtype.
"fortran_order" : bool
Whether the array data is Fortran-contiguous or not. Since
Fortran-contiguous arrays are a common form of non-C-contiguity,
we allow them to be written directly to disk for efficiency.
"shape" : tuple of int
The shape of the array.
For repeatability and readability, the dictionary keys are sorted in
alphabetic order. This is for convenience only. A writer SHOULD implement
this if possible. A reader MUST NOT depend on this.
Following the header comes the array data. If the dtype contains Python
objects (i.e. ``dtype.hasobject is True``), then the data is a Python
pickle of the array. Otherwise the data is the contiguous (either C-
or Fortran-, depending on ``fortran_order``) bytes of the array.
Consumers can figure out the number of bytes by multiplying the number
of elements given by the shape (noting that ``shape=()`` means there is
1 element) by ``dtype.itemsize``.
Format Version 2.0
------------------
The version 1.0 format only allowed the array header to have a total size of
65535 bytes. This can be exceeded by structured arrays with a large number of
columns. The version 2.0 format extends the header size to 4 GiB.
`numpy.save` will automatically save in 2.0 format if the data requires it,
else it will always use the more compatible 1.0 format.
The description of the fourth element of the header therefore has become:
"The next 4 bytes form a little-endian unsigned int: the length of the header
data HEADER_LEN."
Format Version 3.0
------------------
This version replaces the ASCII string (which in practice was latin1) with
a utf8-encoded string, so supports structured types with any unicode field
names.
Notes
-----
The ``.npy`` format, including motivation for creating it and a comparison of
alternatives, is described in the `"npy-format" NEP
<https://www.numpy.org/neps/nep-0001-npy-format.html>`_, however details have
evolved with time and this document is more current.
"""
import numpy
import io
import warnings
from numpy.lib.utils import safe_eval
from numpy.compat import (
isfileobj, os_fspath, pickle
)
__all__ = []
MAGIC_PREFIX = b'\x93NUMPY'
MAGIC_LEN = len(MAGIC_PREFIX) + 2
ARRAY_ALIGN = 64 # plausible values are powers of 2 between 16 and 4096
BUFFER_SIZE = 2**18 # size of buffer for reading npz files in bytes
# difference between version 1.0 and 2.0 is a 4 byte (I) header length
# instead of 2 bytes (H) allowing storage of large structured arrays
_header_size_info = {
(1, 0): ('<H', 'latin1'),
(2, 0): ('<I', 'latin1'),
(3, 0): ('<I', 'utf8'),
}
def _check_version(version):
if version not in [(1, 0), (2, 0), (3, 0), None]:
msg = "we only support format version (1,0), (2,0), and (3,0), not %s"
raise ValueError(msg % (version,))
def magic(major, minor):
""" Return the magic string for the given file format version.
Parameters
----------
major : int in [0, 255]
minor : int in [0, 255]
Returns
-------
magic : str
Raises
------
ValueError if the version cannot be formatted.
"""
if major < 0 or major > 255:
raise ValueError("major version must be 0 <= major < 256")
if minor < 0 or minor > 255:
raise ValueError("minor version must be 0 <= minor < 256")
return MAGIC_PREFIX + bytes([major, minor])
def read_magic(fp):
""" Read the magic string to get the version of the file format.
Parameters
----------
fp : filelike object
Returns
-------
major : int
minor : int
"""
magic_str = _read_bytes(fp, MAGIC_LEN, "magic string")
if magic_str[:-2] != MAGIC_PREFIX:
msg = "the magic string is not correct; expected %r, got %r"
raise ValueError(msg % (MAGIC_PREFIX, magic_str[:-2]))
major, minor = magic_str[-2:]
return major, minor
def _has_metadata(dt):
if dt.metadata is not None:
return True
elif dt.names is not None:
return any(_has_metadata(dt[k]) for k in dt.names)
elif dt.subdtype is not None:
return _has_metadata(dt.base)
else:
return False
def dtype_to_descr(dtype):
"""
Get a serializable descriptor from the dtype.
The .descr attribute of a dtype object cannot be round-tripped through
the dtype() constructor. Simple types, like dtype('float32'), have
a descr which looks like a record array with one field with '' as
a name. The dtype() constructor interprets this as a request to give
a default name. Instead, we construct descriptor that can be passed to
dtype().
Parameters
----------
dtype : dtype
The dtype of the array that will be written to disk.
Returns
-------
descr : object
An object that can be passed to `numpy.dtype()` in order to
replicate the input dtype.
"""
if _has_metadata(dtype):
warnings.warn("metadata on a dtype may be saved or ignored, but will "
"raise if saved when read. Use another form of storage.",
UserWarning, stacklevel=2)
if dtype.names is not None:
# This is a record array. The .descr is fine. XXX: parts of the
# record array with an empty name, like padding bytes, still get
# fiddled with. This needs to be fixed in the C implementation of
# dtype().
return dtype.descr
else:
return dtype.str
def descr_to_dtype(descr):
'''
descr may be stored as dtype.descr, which is a list of
(name, format, [shape]) tuples where format may be a str or a tuple.
Offsets are not explicitly saved, rather empty fields with
name, format == '', '|Vn' are added as padding.
This function reverses the process, eliminating the empty padding fields.
'''
if isinstance(descr, str):
# No padding removal needed
return numpy.dtype(descr)
elif isinstance(descr, tuple):
# subtype, will always have a shape descr[1]
dt = descr_to_dtype(descr[0])
return numpy.dtype((dt, descr[1]))
titles = []
names = []
formats = []
offsets = []
offset = 0
for field in descr:
if len(field) == 2:
name, descr_str = field
dt = descr_to_dtype(descr_str)
else:
name, descr_str, shape = field
dt = numpy.dtype((descr_to_dtype(descr_str), shape))
# Ignore padding bytes, which will be void bytes with '' as name
# Once support for blank names is removed, only "if name == ''" needed)
is_pad = (name == '' and dt.type is numpy.void and dt.names is None)
if not is_pad:
title, name = name if isinstance(name, tuple) else (None, name)
titles.append(title)
names.append(name)
formats.append(dt)
offsets.append(offset)
offset += dt.itemsize
return numpy.dtype({'names': names, 'formats': formats, 'titles': titles,
'offsets': offsets, 'itemsize': offset})
def header_data_from_array_1_0(array):
""" Get the dictionary of header metadata from a numpy.ndarray.
Parameters
----------
array : numpy.ndarray
Returns
-------
d : dict
This has the appropriate entries for writing its string representation
to the header of the file.
"""
d = {'shape': array.shape}
if array.flags.c_contiguous:
d['fortran_order'] = False
elif array.flags.f_contiguous:
d['fortran_order'] = True
else:
# Totally non-contiguous data. We will have to make it C-contiguous
# before writing. Note that we need to test for C_CONTIGUOUS first
# because a 1-D array is both C_CONTIGUOUS and F_CONTIGUOUS.
d['fortran_order'] = False
d['descr'] = dtype_to_descr(array.dtype)
return d
def _wrap_header(header, version):
"""
Takes a stringified header, and attaches the prefix and padding to it
"""
import struct
assert version is not None
fmt, encoding = _header_size_info[version]
if not isinstance(header, bytes): # always true on python 3
header = header.encode(encoding)
hlen = len(header) + 1
padlen = ARRAY_ALIGN - ((MAGIC_LEN + struct.calcsize(fmt) + hlen) % ARRAY_ALIGN)
try:
header_prefix = magic(*version) + struct.pack(fmt, hlen + padlen)
except struct.error:
msg = "Header length {} too big for version={}".format(hlen, version)
raise ValueError(msg)
# Pad the header with spaces and a final newline such that the magic
# string, the header-length short and the header are aligned on a
# ARRAY_ALIGN byte boundary. This supports memory mapping of dtypes
# aligned up to ARRAY_ALIGN on systems like Linux where mmap()
# offset must be page-aligned (i.e. the beginning of the file).
return header_prefix + header + b' '*padlen + b'\n'
def _wrap_header_guess_version(header):
"""
Like `_wrap_header`, but chooses an appropriate version given the contents
"""
try:
return _wrap_header(header, (1, 0))
except ValueError:
pass
try:
ret = _wrap_header(header, (2, 0))
except UnicodeEncodeError:
pass
else:
warnings.warn("Stored array in format 2.0. It can only be"
"read by NumPy >= 1.9", UserWarning, stacklevel=2)
return ret
header = _wrap_header(header, (3, 0))
warnings.warn("Stored array in format 3.0. It can only be "
"read by NumPy >= 1.17", UserWarning, stacklevel=2)
return header
def _write_array_header(fp, d, version=None):
""" Write the header for an array and returns the version used
Parameters
----------
fp : filelike object
d : dict
This has the appropriate entries for writing its string representation
to the header of the file.
version: tuple or None
None means use oldest that works
explicit version will raise a ValueError if the format does not
allow saving this data. Default: None
"""
header = ["{"]
for key, value in sorted(d.items()):
# Need to use repr here, since we eval these when reading
header.append("'%s': %s, " % (key, repr(value)))
header.append("}")
header = "".join(header)
header = _filter_header(header)
if version is None:
header = _wrap_header_guess_version(header)
else:
header = _wrap_header(header, version)
fp.write(header)
def write_array_header_1_0(fp, d):
""" Write the header for an array using the 1.0 format.
Parameters
----------
fp : filelike object
d : dict
This has the appropriate entries for writing its string
representation to the header of the file.
"""
_write_array_header(fp, d, (1, 0))
def write_array_header_2_0(fp, d):
""" Write the header for an array using the 2.0 format.
The 2.0 format allows storing very large structured arrays.
.. versionadded:: 1.9.0
Parameters
----------
fp : filelike object
d : dict
This has the appropriate entries for writing its string
representation to the header of the file.
"""
_write_array_header(fp, d, (2, 0))
def read_array_header_1_0(fp):
"""
Read an array header from a filelike object using the 1.0 file format
version.
This will leave the file object located just after the header.
Parameters
----------
fp : filelike object
A file object or something with a `.read()` method like a file.
Returns
-------
shape : tuple of int
The shape of the array.
fortran_order : bool
The array data will be written out directly if it is either
C-contiguous or Fortran-contiguous. Otherwise, it will be made
contiguous before writing it out.
dtype : dtype
The dtype of the file's data.
Raises
------
ValueError
If the data is invalid.
"""
return _read_array_header(fp, version=(1, 0))
def read_array_header_2_0(fp):
"""
Read an array header from a filelike object using the 2.0 file format
version.
This will leave the file object located just after the header.
.. versionadded:: 1.9.0
Parameters
----------
fp : filelike object
A file object or something with a `.read()` method like a file.
Returns
-------
shape : tuple of int
The shape of the array.
fortran_order : bool
The array data will be written out directly if it is either
C-contiguous or Fortran-contiguous. Otherwise, it will be made
contiguous before writing it out.
dtype : dtype
The dtype of the file's data.
Raises
------
ValueError
If the data is invalid.
"""
return _read_array_header(fp, version=(2, 0))
def _filter_header(s):
"""Clean up 'L' in npz header ints.
Cleans up the 'L' in strings representing integers. Needed to allow npz
headers produced in Python2 to be read in Python3.
Parameters
----------
s : string
Npy file header.
Returns
-------
header : str
Cleaned up header.
"""
import tokenize
from io import StringIO
tokens = []
last_token_was_number = False
for token in tokenize.generate_tokens(StringIO(s).readline):
token_type = token[0]
token_string = token[1]
if (last_token_was_number and
token_type == tokenize.NAME and
token_string == "L"):
continue
else:
tokens.append(token)
last_token_was_number = (token_type == tokenize.NUMBER)
return tokenize.untokenize(tokens)
def _read_array_header(fp, version):
"""
see read_array_header_1_0
"""
# Read an unsigned, little-endian short int which has the length of the
# header.
import struct
hinfo = _header_size_info.get(version)
if hinfo is None:
raise ValueError("Invalid version {!r}".format(version))
hlength_type, encoding = hinfo
hlength_str = _read_bytes(fp, struct.calcsize(hlength_type), "array header length")
header_length = struct.unpack(hlength_type, hlength_str)[0]
header = _read_bytes(fp, header_length, "array header")
header = header.decode(encoding)
# The header is a pretty-printed string representation of a literal
# Python dictionary with trailing newlines padded to a ARRAY_ALIGN byte
# boundary. The keys are strings.
# "shape" : tuple of int
# "fortran_order" : bool
# "descr" : dtype.descr
header = _filter_header(header)
try:
d = safe_eval(header)
except SyntaxError as e:
msg = "Cannot parse header: {!r}\nException: {!r}"
raise ValueError(msg.format(header, e))
if not isinstance(d, dict):
msg = "Header is not a dictionary: {!r}"
raise ValueError(msg.format(d))
keys = sorted(d.keys())
if keys != ['descr', 'fortran_order', 'shape']:
msg = "Header does not contain the correct keys: {!r}"
raise ValueError(msg.format(keys))
# Sanity-check the values.
if (not isinstance(d['shape'], tuple) or
not numpy.all([isinstance(x, int) for x in d['shape']])):
msg = "shape is not valid: {!r}"
raise ValueError(msg.format(d['shape']))
if not isinstance(d['fortran_order'], bool):
msg = "fortran_order is not a valid bool: {!r}"
raise ValueError(msg.format(d['fortran_order']))
try:
dtype = descr_to_dtype(d['descr'])
except TypeError:
msg = "descr is not a valid dtype descriptor: {!r}"
raise ValueError(msg.format(d['descr']))
return d['shape'], d['fortran_order'], dtype
def write_array(fp, array, version=None, allow_pickle=True, pickle_kwargs=None):
"""
Write an array to an NPY file, including a header.
If the array is neither C-contiguous nor Fortran-contiguous AND the
file_like object is not a real file object, this function will have to
copy data in memory.
Parameters
----------
fp : file_like object
An open, writable file object, or similar object with a
``.write()`` method.
array : ndarray
The array to write to disk.
version : (int, int) or None, optional
The version number of the format. None means use the oldest
supported version that is able to store the data. Default: None
allow_pickle : bool, optional
Whether to allow writing pickled data. Default: True
pickle_kwargs : dict, optional
Additional keyword arguments to pass to pickle.dump, excluding
'protocol'. These are only useful when pickling objects in object
arrays on Python 3 to Python 2 compatible format.
Raises
------
ValueError
If the array cannot be persisted. This includes the case of
allow_pickle=False and array being an object array.
Various other errors
If the array contains Python objects as part of its dtype, the
process of pickling them may raise various errors if the objects
are not picklable.
"""
_check_version(version)
_write_array_header(fp, header_data_from_array_1_0(array), version)
if array.itemsize == 0:
buffersize = 0
else:
# Set buffer size to 16 MiB to hide the Python loop overhead.
buffersize = max(16 * 1024 ** 2 // array.itemsize, 1)
if array.dtype.hasobject:
# We contain Python objects so we cannot write out the data
# directly. Instead, we will pickle it out
if not allow_pickle:
raise ValueError("Object arrays cannot be saved when "
"allow_pickle=False")
if pickle_kwargs is None:
pickle_kwargs = {}
pickle.dump(array, fp, protocol=3, **pickle_kwargs)
elif array.flags.f_contiguous and not array.flags.c_contiguous:
if isfileobj(fp):
array.T.tofile(fp)
else:
for chunk in numpy.nditer(
array, flags=['external_loop', 'buffered', 'zerosize_ok'],
buffersize=buffersize, order='F'):
fp.write(chunk.tobytes('C'))
else:
if isfileobj(fp):
array.tofile(fp)
else:
for chunk in numpy.nditer(
array, flags=['external_loop', 'buffered', 'zerosize_ok'],
buffersize=buffersize, order='C'):
fp.write(chunk.tobytes('C'))
def read_array(fp, allow_pickle=False, pickle_kwargs=None):
"""
Read an array from an NPY file.
Parameters
----------
fp : file_like object
If this is not a real file object, then this may take extra memory
and time.
allow_pickle : bool, optional
Whether to allow writing pickled data. Default: False
.. versionchanged:: 1.16.3
Made default False in response to CVE-2019-6446.
pickle_kwargs : dict
Additional keyword arguments to pass to pickle.load. These are only
useful when loading object arrays saved on Python 2 when using
Python 3.
Returns
-------
array : ndarray
The array from the data on disk.
Raises
------
ValueError
If the data is invalid, or allow_pickle=False and the file contains
an object array.
"""
version = read_magic(fp)
_check_version(version)
shape, fortran_order, dtype = _read_array_header(fp, version)
if len(shape) == 0:
count = 1
else:
count = numpy.multiply.reduce(shape, dtype=numpy.int64)
# Now read the actual data.
if dtype.hasobject:
# The array contained Python objects. We need to unpickle the data.
if not allow_pickle:
raise ValueError("Object arrays cannot be loaded when "
"allow_pickle=False")
if pickle_kwargs is None:
pickle_kwargs = {}
try:
array = pickle.load(fp, **pickle_kwargs)
except UnicodeError as err:
# Friendlier error message
raise UnicodeError("Unpickling a python object failed: %r\n"
"You may need to pass the encoding= option "
"to numpy.load" % (err,))
else:
if isfileobj(fp):
# We can use the fast fromfile() function.
array = numpy.fromfile(fp, dtype=dtype, count=count)
else:
# This is not a real file. We have to read it the
# memory-intensive way.
# crc32 module fails on reads greater than 2 ** 32 bytes,
# breaking large reads from gzip streams. Chunk reads to
# BUFFER_SIZE bytes to avoid issue and reduce memory overhead
# of the read. In non-chunked case count < max_read_count, so
# only one read is performed.
# Use np.ndarray instead of np.empty since the latter does
# not correctly instantiate zero-width string dtypes; see
# https://github.com/numpy/numpy/pull/6430
array = numpy.ndarray(count, dtype=dtype)
if dtype.itemsize > 0:
# If dtype.itemsize == 0 then there's nothing more to read
max_read_count = BUFFER_SIZE // min(BUFFER_SIZE, dtype.itemsize)
for i in range(0, count, max_read_count):
read_count = min(max_read_count, count - i)
read_size = int(read_count * dtype.itemsize)
data = _read_bytes(fp, read_size, "array data")
array[i:i+read_count] = numpy.frombuffer(data, dtype=dtype,
count=read_count)
if fortran_order:
array.shape = shape[::-1]
array = array.transpose()
else:
array.shape = shape
return array
def open_memmap(filename, mode='r+', dtype=None, shape=None,
fortran_order=False, version=None):
"""
Open a .npy file as a memory-mapped array.
This may be used to read an existing file or create a new one.
Parameters
----------
filename : str or path-like
The name of the file on disk. This may *not* be a file-like
object.
mode : str, optional
The mode in which to open the file; the default is 'r+'. In
addition to the standard file modes, 'c' is also accepted to mean
"copy on write." See `memmap` for the available mode strings.
dtype : data-type, optional
The data type of the array if we are creating a new file in "write"
mode, if not, `dtype` is ignored. The default value is None, which
results in a data-type of `float64`.
shape : tuple of int
The shape of the array if we are creating a new file in "write"
mode, in which case this parameter is required. Otherwise, this
parameter is ignored and is thus optional.
fortran_order : bool, optional
Whether the array should be Fortran-contiguous (True) or
C-contiguous (False, the default) if we are creating a new file in
"write" mode.
version : tuple of int (major, minor) or None
If the mode is a "write" mode, then this is the version of the file
format used to create the file. None means use the oldest
supported version that is able to store the data. Default: None
Returns
-------
marray : memmap
The memory-mapped array.
Raises
------
ValueError
If the data or the mode is invalid.
IOError
If the file is not found or cannot be opened correctly.
See Also
--------
memmap
"""
if isfileobj(filename):
raise ValueError("Filename must be a string or a path-like object."
" Memmap cannot use existing file handles.")
if 'w' in mode:
# We are creating the file, not reading it.
# Check if we ought to create the file.
_check_version(version)
# Ensure that the given dtype is an authentic dtype object rather
# than just something that can be interpreted as a dtype object.
dtype = numpy.dtype(dtype)
if dtype.hasobject:
msg = "Array can't be memory-mapped: Python objects in dtype."
raise ValueError(msg)
d = dict(
descr=dtype_to_descr(dtype),
fortran_order=fortran_order,
shape=shape,
)
# If we got here, then it should be safe to create the file.
with open(os_fspath(filename), mode+'b') as fp:
_write_array_header(fp, d, version)
offset = fp.tell()
else:
# Read the header of the file first.
with open(os_fspath(filename), 'rb') as fp:
version = read_magic(fp)
_check_version(version)
shape, fortran_order, dtype = _read_array_header(fp, version)
if dtype.hasobject:
msg = "Array can't be memory-mapped: Python objects in dtype."
raise ValueError(msg)
offset = fp.tell()
if fortran_order:
order = 'F'
else:
order = 'C'
# We need to change a write-only mode to a read-write mode since we've
# already written data to the file.
if mode == 'w+':
mode = 'r+'
marray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order,
mode=mode, offset=offset)
return marray
def _read_bytes(fp, size, error_template="ran out of data"):
"""
Read from file-like object until size bytes are read.
Raises ValueError if not EOF is encountered before size bytes are read.
Non-blocking objects only supported if they derive from io objects.
Required as e.g. ZipExtFile in python 2.6 can return less data than
requested.
"""
data = bytes()
while True:
# io files (default in python3) return None or raise on
# would-block, python2 file will truncate, probably nothing can be
# done about that. note that regular files can't be non-blocking
try:
r = fp.read(size - len(data))
data += r
if len(r) == 0 or len(data) == size:
break
except io.BlockingIOError:
pass
if len(data) != size:
msg = "EOF: reading %s, expected %d bytes got %d"
raise ValueError(msg % (error_template, size, len(data)))
else:
return data

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,980 @@
import functools
import sys
import math
import numpy.core.numeric as _nx
from numpy.core.numeric import (
asarray, ScalarType, array, alltrue, cumprod, arange, ndim
)
from numpy.core.numerictypes import find_common_type, issubdtype
import numpy.matrixlib as matrixlib
from .function_base import diff
from numpy.core.multiarray import ravel_multi_index, unravel_index
from numpy.core.overrides import set_module
from numpy.core import overrides, linspace
from numpy.lib.stride_tricks import as_strided
array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
__all__ = [
'ravel_multi_index', 'unravel_index', 'mgrid', 'ogrid', 'r_', 'c_',
's_', 'index_exp', 'ix_', 'ndenumerate', 'ndindex', 'fill_diagonal',
'diag_indices', 'diag_indices_from'
]
def _ix__dispatcher(*args):
return args
@array_function_dispatch(_ix__dispatcher)
def ix_(*args):
"""
Construct an open mesh from multiple sequences.
This function takes N 1-D sequences and returns N outputs with N
dimensions each, such that the shape is 1 in all but one dimension
and the dimension with the non-unit shape value cycles through all
N dimensions.
Using `ix_` one can quickly construct index arrays that will index
the cross product. ``a[np.ix_([1,3],[2,5])]`` returns the array
``[[a[1,2] a[1,5]], [a[3,2] a[3,5]]]``.
Parameters
----------
args : 1-D sequences
Each sequence should be of integer or boolean type.
Boolean sequences will be interpreted as boolean masks for the
corresponding dimension (equivalent to passing in
``np.nonzero(boolean_sequence)``).
Returns
-------
out : tuple of ndarrays
N arrays with N dimensions each, with N the number of input
sequences. Together these arrays form an open mesh.
See Also
--------
ogrid, mgrid, meshgrid
Examples
--------
>>> a = np.arange(10).reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
>>> ixgrid = np.ix_([0, 1], [2, 4])
>>> ixgrid
(array([[0],
[1]]), array([[2, 4]]))
>>> ixgrid[0].shape, ixgrid[1].shape
((2, 1), (1, 2))
>>> a[ixgrid]
array([[2, 4],
[7, 9]])
>>> ixgrid = np.ix_([True, True], [2, 4])
>>> a[ixgrid]
array([[2, 4],
[7, 9]])
>>> ixgrid = np.ix_([True, True], [False, False, True, False, True])
>>> a[ixgrid]
array([[2, 4],
[7, 9]])
"""
out = []
nd = len(args)
for k, new in enumerate(args):
if not isinstance(new, _nx.ndarray):
new = asarray(new)
if new.size == 0:
# Explicitly type empty arrays to avoid float default
new = new.astype(_nx.intp)
if new.ndim != 1:
raise ValueError("Cross index must be 1 dimensional")
if issubdtype(new.dtype, _nx.bool_):
new, = new.nonzero()
new = new.reshape((1,)*k + (new.size,) + (1,)*(nd-k-1))
out.append(new)
return tuple(out)
class nd_grid:
"""
Construct a multi-dimensional "meshgrid".
``grid = nd_grid()`` creates an instance which will return a mesh-grid
when indexed. The dimension and number of the output arrays are equal
to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.
However, if the step length is a **complex number** (e.g. 5j), then the
integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value **is inclusive**.
If instantiated with an argument of ``sparse=True``, the mesh-grid is
open (or not fleshed out) so that only one-dimension of each returned
argument is greater than 1.
Parameters
----------
sparse : bool, optional
Whether the grid is sparse or not. Default is False.
Notes
-----
Two instances of `nd_grid` are made available in the NumPy namespace,
`mgrid` and `ogrid`, approximately defined as::
mgrid = nd_grid(sparse=False)
ogrid = nd_grid(sparse=True)
Users should use these pre-defined instances instead of using `nd_grid`
directly.
"""
def __init__(self, sparse=False):
self.sparse = sparse
def __getitem__(self, key):
try:
size = []
typ = int
for k in range(len(key)):
step = key[k].step
start = key[k].start
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
size.append(int(abs(step)))
typ = float
else:
size.append(
int(math.ceil((key[k].stop - start)/(step*1.0))))
if (isinstance(step, float) or
isinstance(start, float) or
isinstance(key[k].stop, float)):
typ = float
if self.sparse:
nn = [_nx.arange(_x, dtype=_t)
for _x, _t in zip(size, (typ,)*len(size))]
else:
nn = _nx.indices(size, typ)
for k in range(len(size)):
step = key[k].step
start = key[k].start
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
step = int(abs(step))
if step != 1:
step = (key[k].stop - start)/float(step-1)
nn[k] = (nn[k]*step+start)
if self.sparse:
slobj = [_nx.newaxis]*len(size)
for k in range(len(size)):
slobj[k] = slice(None, None)
nn[k] = nn[k][tuple(slobj)]
slobj[k] = _nx.newaxis
return nn
except (IndexError, TypeError):
step = key.step
stop = key.stop
start = key.start
if start is None:
start = 0
if isinstance(step, complex):
step = abs(step)
length = int(step)
if step != 1:
step = (key.stop-start)/float(step-1)
stop = key.stop + step
return _nx.arange(0, length, 1, float)*step + start
else:
return _nx.arange(start, stop, step)
class MGridClass(nd_grid):
"""
`nd_grid` instance which returns a dense multi-dimensional "meshgrid".
An instance of `numpy.lib.index_tricks.nd_grid` which returns an dense
(or fleshed out) mesh-grid when indexed, so that each returned argument
has the same shape. The dimensions and number of the output arrays are
equal to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.
However, if the step length is a **complex number** (e.g. 5j), then
the integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value **is inclusive**.
Returns
----------
mesh-grid `ndarrays` all of the same dimensions
See Also
--------
numpy.lib.index_tricks.nd_grid : class of `ogrid` and `mgrid` objects
ogrid : like mgrid but returns open (not fleshed out) mesh grids
r_ : array concatenator
Examples
--------
>>> np.mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],
[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])
>>> np.mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])
"""
def __init__(self):
super(MGridClass, self).__init__(sparse=False)
mgrid = MGridClass()
class OGridClass(nd_grid):
"""
`nd_grid` instance which returns an open multi-dimensional "meshgrid".
An instance of `numpy.lib.index_tricks.nd_grid` which returns an open
(i.e. not fleshed out) mesh-grid when indexed, so that only one dimension
of each returned array is greater than 1. The dimension and number of the
output arrays are equal to the number of indexing dimensions. If the step
length is not a complex number, then the stop is not inclusive.
However, if the step length is a **complex number** (e.g. 5j), then
the integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value **is inclusive**.
Returns
-------
mesh-grid
`ndarrays` with only one dimension not equal to 1
See Also
--------
np.lib.index_tricks.nd_grid : class of `ogrid` and `mgrid` objects
mgrid : like `ogrid` but returns dense (or fleshed out) mesh grids
r_ : array concatenator
Examples
--------
>>> from numpy import ogrid
>>> ogrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])
>>> ogrid[0:5,0:5]
[array([[0],
[1],
[2],
[3],
[4]]), array([[0, 1, 2, 3, 4]])]
"""
def __init__(self):
super(OGridClass, self).__init__(sparse=True)
ogrid = OGridClass()
class AxisConcatenator:
"""
Translates slice objects to concatenation along an axis.
For detailed documentation on usage, see `r_`.
"""
# allow ma.mr_ to override this
concatenate = staticmethod(_nx.concatenate)
makemat = staticmethod(matrixlib.matrix)
def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1):
self.axis = axis
self.matrix = matrix
self.trans1d = trans1d
self.ndmin = ndmin
def __getitem__(self, key):
# handle matrix builder syntax
if isinstance(key, str):
frame = sys._getframe().f_back
mymat = matrixlib.bmat(key, frame.f_globals, frame.f_locals)
return mymat
if not isinstance(key, tuple):
key = (key,)
# copy attributes, since they can be overridden in the first argument
trans1d = self.trans1d
ndmin = self.ndmin
matrix = self.matrix
axis = self.axis
objs = []
scalars = []
arraytypes = []
scalartypes = []
for k, item in enumerate(key):
scalar = False
if isinstance(item, slice):
step = item.step
start = item.start
stop = item.stop
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
size = int(abs(step))
newobj = linspace(start, stop, num=size)
else:
newobj = _nx.arange(start, stop, step)
if ndmin > 1:
newobj = array(newobj, copy=False, ndmin=ndmin)
if trans1d != -1:
newobj = newobj.swapaxes(-1, trans1d)
elif isinstance(item, str):
if k != 0:
raise ValueError("special directives must be the "
"first entry.")
if item in ('r', 'c'):
matrix = True
col = (item == 'c')
continue
if ',' in item:
vec = item.split(',')
try:
axis, ndmin = [int(x) for x in vec[:2]]
if len(vec) == 3:
trans1d = int(vec[2])
continue
except Exception as e:
raise ValueError(
"unknown special directive {!r}".format(item)
) from e
try:
axis = int(item)
continue
except (ValueError, TypeError):
raise ValueError("unknown special directive")
elif type(item) in ScalarType:
newobj = array(item, ndmin=ndmin)
scalars.append(len(objs))
scalar = True
scalartypes.append(newobj.dtype)
else:
item_ndim = ndim(item)
newobj = array(item, copy=False, subok=True, ndmin=ndmin)
if trans1d != -1 and item_ndim < ndmin:
k2 = ndmin - item_ndim
k1 = trans1d
if k1 < 0:
k1 += k2 + 1
defaxes = list(range(ndmin))
axes = defaxes[:k1] + defaxes[k2:] + defaxes[k1:k2]
newobj = newobj.transpose(axes)
objs.append(newobj)
if not scalar and isinstance(newobj, _nx.ndarray):
arraytypes.append(newobj.dtype)
# Ensure that scalars won't up-cast unless warranted
final_dtype = find_common_type(arraytypes, scalartypes)
if final_dtype is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtype)
res = self.concatenate(tuple(objs), axis=axis)
if matrix:
oldndim = res.ndim
res = self.makemat(res)
if oldndim == 1 and col:
res = res.T
return res
def __len__(self):
return 0
# separate classes are used here instead of just making r_ = concatentor(0),
# etc. because otherwise we couldn't get the doc string to come out right
# in help(r_)
class RClass(AxisConcatenator):
"""
Translates slice objects to concatenation along the first axis.
This is a simple way to build up arrays quickly. There are two use cases.
1. If the index expression contains comma separated arrays, then stack
them along their first axis.
2. If the index expression contains slice notation or scalars then create
a 1-D array with a range indicated by the slice notation.
If slice notation is used, the syntax ``start:stop:step`` is equivalent
to ``np.arange(start, stop, step)`` inside of the brackets. However, if
``step`` is an imaginary number (i.e. 100j) then its integer portion is
interpreted as a number-of-points desired and the start and stop are
inclusive. In other words ``start:stop:stepj`` is interpreted as
``np.linspace(start, stop, step, endpoint=1)`` inside of the brackets.
After expansion of slice notation, all comma separated sequences are
concatenated together.
Optional character strings placed as the first element of the index
expression can be used to change the output. The strings 'r' or 'c' result
in matrix output. If the result is 1-D and 'r' is specified a 1 x N (row)
matrix is produced. If the result is 1-D and 'c' is specified, then a N x 1
(column) matrix is produced. If the result is 2-D then both provide the
same matrix result.
A string integer specifies which axis to stack multiple comma separated
arrays along. A string of two comma-separated integers allows indication
of the minimum number of dimensions to force each entry into as the
second integer (the axis to concatenate along is still the first integer).
A string with three comma-separated integers allows specification of the
axis to concatenate along, the minimum number of dimensions to force the
entries to, and which axis should contain the start of the arrays which
are less than the specified number of dimensions. In other words the third
integer allows you to specify where the 1's should be placed in the shape
of the arrays that have their shapes upgraded. By default, they are placed
in the front of the shape tuple. The third argument allows you to specify
where the start of the array should be instead. Thus, a third argument of
'0' would place the 1's at the end of the array shape. Negative integers
specify where in the new shape tuple the last dimension of upgraded arrays
should be placed, so the default is '-1'.
Parameters
----------
Not a function, so takes no parameters
Returns
-------
A concatenated ndarray or matrix.
See Also
--------
concatenate : Join a sequence of arrays along an existing axis.
c_ : Translates slice objects to concatenation along the second axis.
Examples
--------
>>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
array([1, 2, 3, ..., 4, 5, 6])
>>> np.r_[-1:1:6j, [0]*3, 5, 6]
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ])
String integers specify the axis to concatenate along or the minimum
number of dimensions to force entries into.
>>> a = np.array([[0, 1, 2], [3, 4, 5]])
>>> np.r_['-1', a, a] # concatenate along last axis
array([[0, 1, 2, 0, 1, 2],
[3, 4, 5, 3, 4, 5]])
>>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2
array([[1, 2, 3],
[4, 5, 6]])
>>> np.r_['0,2,0', [1,2,3], [4,5,6]]
array([[1],
[2],
[3],
[4],
[5],
[6]])
>>> np.r_['1,2,0', [1,2,3], [4,5,6]]
array([[1, 4],
[2, 5],
[3, 6]])
Using 'r' or 'c' as a first string argument creates a matrix.
>>> np.r_['r',[1,2,3], [4,5,6]]
matrix([[1, 2, 3, 4, 5, 6]])
"""
def __init__(self):
AxisConcatenator.__init__(self, 0)
r_ = RClass()
class CClass(AxisConcatenator):
"""
Translates slice objects to concatenation along the second axis.
This is short-hand for ``np.r_['-1,2,0', index expression]``, which is
useful because of its common occurrence. In particular, arrays will be
stacked along their last axis after being upgraded to at least 2-D with
1's post-pended to the shape (column vectors made out of 1-D arrays).
See Also
--------
column_stack : Stack 1-D arrays as columns into a 2-D array.
r_ : For more detailed documentation.
Examples
--------
>>> np.c_[np.array([1,2,3]), np.array([4,5,6])]
array([[1, 4],
[2, 5],
[3, 6]])
>>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
array([[1, 2, 3, ..., 4, 5, 6]])
"""
def __init__(self):
AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0)
c_ = CClass()
@set_module('numpy')
class ndenumerate:
"""
Multidimensional index iterator.
Return an iterator yielding pairs of array coordinates and values.
Parameters
----------
arr : ndarray
Input array.
See Also
--------
ndindex, flatiter
Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> for index, x in np.ndenumerate(a):
... print(index, x)
(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4
"""
def __init__(self, arr):
self.iter = asarray(arr).flat
def __next__(self):
"""
Standard iterator method, returns the index tuple and array value.
Returns
-------
coords : tuple of ints
The indices of the current iteration.
val : scalar
The array element of the current iteration.
"""
return self.iter.coords, next(self.iter)
def __iter__(self):
return self
@set_module('numpy')
class ndindex:
"""
An N-dimensional iterator object to index arrays.
Given the shape of an array, an `ndindex` instance iterates over
the N-dimensional index of the array. At each iteration a tuple
of indices is returned, the last dimension is iterated over first.
Parameters
----------
`*args` : ints
The size of each dimension of the array.
See Also
--------
ndenumerate, flatiter
Examples
--------
>>> for index in np.ndindex(3, 2, 1):
... print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)
"""
def __init__(self, *shape):
if len(shape) == 1 and isinstance(shape[0], tuple):
shape = shape[0]
x = as_strided(_nx.zeros(1), shape=shape,
strides=_nx.zeros_like(shape))
self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'],
order='C')
def __iter__(self):
return self
def ndincr(self):
"""
Increment the multi-dimensional index by one.
This method is for backward compatibility only: do not use.
"""
next(self)
def __next__(self):
"""
Standard iterator method, updates the index and returns the index
tuple.
Returns
-------
val : tuple of ints
Returns a tuple containing the indices of the current
iteration.
"""
next(self._it)
return self._it.multi_index
# You can do all this with slice() plus a few special objects,
# but there's a lot to remember. This version is simpler because
# it uses the standard array indexing syntax.
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 1999-7-23
#
# Cosmetic changes by T. Oliphant 2001
#
#
class IndexExpression:
"""
A nicer way to build up index tuples for arrays.
.. note::
Use one of the two predefined instances `index_exp` or `s_`
rather than directly using `IndexExpression`.
For any index combination, including slicing and axis insertion,
``a[indices]`` is the same as ``a[np.index_exp[indices]]`` for any
array `a`. However, ``np.index_exp[indices]`` can be used anywhere
in Python code and returns a tuple of slice objects that can be
used in the construction of complex index expressions.
Parameters
----------
maketuple : bool
If True, always returns a tuple.
See Also
--------
index_exp : Predefined instance that always returns a tuple:
`index_exp = IndexExpression(maketuple=True)`.
s_ : Predefined instance without tuple conversion:
`s_ = IndexExpression(maketuple=False)`.
Notes
-----
You can do all this with `slice()` plus a few special objects,
but there's a lot to remember and this version is simpler because
it uses the standard array indexing syntax.
Examples
--------
>>> np.s_[2::2]
slice(2, None, 2)
>>> np.index_exp[2::2]
(slice(2, None, 2),)
>>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
array([2, 4])
"""
def __init__(self, maketuple):
self.maketuple = maketuple
def __getitem__(self, item):
if self.maketuple and not isinstance(item, tuple):
return (item,)
else:
return item
index_exp = IndexExpression(maketuple=True)
s_ = IndexExpression(maketuple=False)
# End contribution from Konrad.
# The following functions complement those in twodim_base, but are
# applicable to N-dimensions.
def _fill_diagonal_dispatcher(a, val, wrap=None):
return (a,)
@array_function_dispatch(_fill_diagonal_dispatcher)
def fill_diagonal(a, val, wrap=False):
"""Fill the main diagonal of the given array of any dimensionality.
For an array `a` with ``a.ndim >= 2``, the diagonal is the list of
locations with indices ``a[i, ..., i]`` all identical. This function
modifies the input array in-place, it does not return a value.
Parameters
----------
a : array, at least 2-D.
Array whose diagonal is to be filled, it gets modified in-place.
val : scalar
Value to be written on the diagonal, its type must be compatible with
that of the array a.
wrap : bool
For tall matrices in NumPy version up to 1.6.2, the
diagonal "wrapped" after N columns. You can have this behavior
with this option. This affects only tall matrices.
See also
--------
diag_indices, diag_indices_from
Notes
-----
.. versionadded:: 1.4.0
This functionality can be obtained via `diag_indices`, but internally
this version uses a much faster implementation that never constructs the
indices and uses simple slicing.
Examples
--------
>>> a = np.zeros((3, 3), int)
>>> np.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],
[0, 5, 0],
[0, 0, 5]])
The same function can operate on a 4-D array:
>>> a = np.zeros((3, 3, 3, 3), int)
>>> np.fill_diagonal(a, 4)
We only show a few blocks for clarity:
>>> a[0, 0]
array([[4, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> a[1, 1]
array([[0, 0, 0],
[0, 4, 0],
[0, 0, 0]])
>>> a[2, 2]
array([[0, 0, 0],
[0, 0, 0],
[0, 0, 4]])
The wrap option affects only tall matrices:
>>> # tall matrices no wrap
>>> a = np.zeros((5, 3), int)
>>> np.fill_diagonal(a, 4)
>>> a
array([[4, 0, 0],
[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[0, 0, 0]])
>>> # tall matrices wrap
>>> a = np.zeros((5, 3), int)
>>> np.fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0],
[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[4, 0, 0]])
>>> # wide matrices
>>> a = np.zeros((3, 5), int)
>>> np.fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0, 0, 0],
[0, 4, 0, 0, 0],
[0, 0, 4, 0, 0]])
The anti-diagonal can be filled by reversing the order of elements
using either `numpy.flipud` or `numpy.fliplr`.
>>> a = np.zeros((3, 3), int);
>>> np.fill_diagonal(np.fliplr(a), [1,2,3]) # Horizontal flip
>>> a
array([[0, 0, 1],
[0, 2, 0],
[3, 0, 0]])
>>> np.fill_diagonal(np.flipud(a), [1,2,3]) # Vertical flip
>>> a
array([[0, 0, 3],
[0, 2, 0],
[1, 0, 0]])
Note that the order in which the diagonal is filled varies depending
on the flip function.
"""
if a.ndim < 2:
raise ValueError("array must be at least 2-d")
end = None
if a.ndim == 2:
# Explicit, fast formula for the common case. For 2-d arrays, we
# accept rectangular ones.
step = a.shape[1] + 1
#This is needed to don't have tall matrix have the diagonal wrap.
if not wrap:
end = a.shape[1] * a.shape[1]
else:
# For more than d=2, the strided formula is only valid for arrays with
# all dimensions equal, so we check first.
if not alltrue(diff(a.shape) == 0):
raise ValueError("All dimensions of input must be of equal length")
step = 1 + (cumprod(a.shape[:-1])).sum()
# Write the value out into the diagonal.
a.flat[:end:step] = val
@set_module('numpy')
def diag_indices(n, ndim=2):
"""
Return the indices to access the main diagonal of an array.
This returns a tuple of indices that can be used to access the main
diagonal of an array `a` with ``a.ndim >= 2`` dimensions and shape
(n, n, ..., n). For ``a.ndim = 2`` this is the usual diagonal, for
``a.ndim > 2`` this is the set of indices to access ``a[i, i, ..., i]``
for ``i = [0..n-1]``.
Parameters
----------
n : int
The size, along each dimension, of the arrays for which the returned
indices can be used.
ndim : int, optional
The number of dimensions.
See also
--------
diag_indices_from
Notes
-----
.. versionadded:: 1.4.0
Examples
--------
Create a set of indices to access the diagonal of a (4, 4) array:
>>> di = np.diag_indices(4)
>>> di
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
>>> a[di] = 100
>>> a
array([[100, 1, 2, 3],
[ 4, 100, 6, 7],
[ 8, 9, 100, 11],
[ 12, 13, 14, 100]])
Now, we create indices to manipulate a 3-D array:
>>> d3 = np.diag_indices(2, 3)
>>> d3
(array([0, 1]), array([0, 1]), array([0, 1]))
And use it to set the diagonal of an array of zeros to 1:
>>> a = np.zeros((2, 2, 2), dtype=int)
>>> a[d3] = 1
>>> a
array([[[1, 0],
[0, 0]],
[[0, 0],
[0, 1]]])
"""
idx = arange(n)
return (idx,) * ndim
def _diag_indices_from(arr):
return (arr,)
@array_function_dispatch(_diag_indices_from)
def diag_indices_from(arr):
"""
Return the indices to access the main diagonal of an n-dimensional array.
See `diag_indices` for full details.
Parameters
----------
arr : array, at least 2-D
See Also
--------
diag_indices
Notes
-----
.. versionadded:: 1.4.0
"""
if not arr.ndim >= 2:
raise ValueError("input array must be at least 2-d")
# For more than d=2, the strided formula is only valid for arrays with
# all dimensions equal, so we check first.
if not alltrue(diff(arr.shape) == 0):
raise ValueError("All dimensions of input must be of equal length")
return diag_indices(arr.shape[0], arr.ndim)

View file

@ -0,0 +1,176 @@
"""Mixin classes for custom array types that don't inherit from ndarray."""
from numpy.core import umath as um
__all__ = ['NDArrayOperatorsMixin']
def _disables_array_ufunc(obj):
"""True when __array_ufunc__ is set to None."""
try:
return obj.__array_ufunc__ is None
except AttributeError:
return False
def _binary_method(ufunc, name):
"""Implement a forward binary method with a ufunc, e.g., __add__."""
def func(self, other):
if _disables_array_ufunc(other):
return NotImplemented
return ufunc(self, other)
func.__name__ = '__{}__'.format(name)
return func
def _reflected_binary_method(ufunc, name):
"""Implement a reflected binary method with a ufunc, e.g., __radd__."""
def func(self, other):
if _disables_array_ufunc(other):
return NotImplemented
return ufunc(other, self)
func.__name__ = '__r{}__'.format(name)
return func
def _inplace_binary_method(ufunc, name):
"""Implement an in-place binary method with a ufunc, e.g., __iadd__."""
def func(self, other):
return ufunc(self, other, out=(self,))
func.__name__ = '__i{}__'.format(name)
return func
def _numeric_methods(ufunc, name):
"""Implement forward, reflected and inplace binary methods with a ufunc."""
return (_binary_method(ufunc, name),
_reflected_binary_method(ufunc, name),
_inplace_binary_method(ufunc, name))
def _unary_method(ufunc, name):
"""Implement a unary special method with a ufunc."""
def func(self):
return ufunc(self)
func.__name__ = '__{}__'.format(name)
return func
class NDArrayOperatorsMixin:
"""Mixin defining all operator special methods using __array_ufunc__.
This class implements the special methods for almost all of Python's
builtin operators defined in the `operator` module, including comparisons
(``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by
deferring to the ``__array_ufunc__`` method, which subclasses must
implement.
It is useful for writing classes that do not inherit from `numpy.ndarray`,
but that should support arithmetic and numpy universal functions like
arrays as described in `A Mechanism for Overriding Ufuncs
<../../neps/nep-0013-ufunc-overrides.html>`_.
As an trivial example, consider this implementation of an ``ArrayLike``
class that simply wraps a NumPy array and ensures that the result of any
arithmetic operation is also an ``ArrayLike`` object::
class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
def __init__(self, value):
self.value = np.asarray(value)
# One might also consider adding the built-in list type to this
# list, to support operations like np.add(array_like, list)
_HANDLED_TYPES = (np.ndarray, numbers.Number)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
out = kwargs.get('out', ())
for x in inputs + out:
# Only support operations with instances of _HANDLED_TYPES.
# Use ArrayLike instead of type(self) for isinstance to
# allow subclasses that don't override __array_ufunc__ to
# handle ArrayLike objects.
if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):
return NotImplemented
# Defer to the implementation of the ufunc on unwrapped values.
inputs = tuple(x.value if isinstance(x, ArrayLike) else x
for x in inputs)
if out:
kwargs['out'] = tuple(
x.value if isinstance(x, ArrayLike) else x
for x in out)
result = getattr(ufunc, method)(*inputs, **kwargs)
if type(result) is tuple:
# multiple return values
return tuple(type(self)(x) for x in result)
elif method == 'at':
# no return value
return None
else:
# one return value
return type(self)(result)
def __repr__(self):
return '%s(%r)' % (type(self).__name__, self.value)
In interactions between ``ArrayLike`` objects and numbers or numpy arrays,
the result is always another ``ArrayLike``:
>>> x = ArrayLike([1, 2, 3])
>>> x - 1
ArrayLike(array([0, 1, 2]))
>>> 1 - x
ArrayLike(array([ 0, -1, -2]))
>>> np.arange(3) - x
ArrayLike(array([-1, -1, -1]))
>>> x - np.arange(3)
ArrayLike(array([1, 1, 1]))
Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations
with arbitrary, unrecognized types. This ensures that interactions with
ArrayLike preserve a well-defined casting hierarchy.
.. versionadded:: 1.13
"""
# Like np.ndarray, this mixin class implements "Option 1" from the ufunc
# overrides NEP.
# comparisons don't have reflected and in-place versions
__lt__ = _binary_method(um.less, 'lt')
__le__ = _binary_method(um.less_equal, 'le')
__eq__ = _binary_method(um.equal, 'eq')
__ne__ = _binary_method(um.not_equal, 'ne')
__gt__ = _binary_method(um.greater, 'gt')
__ge__ = _binary_method(um.greater_equal, 'ge')
# numeric methods
__add__, __radd__, __iadd__ = _numeric_methods(um.add, 'add')
__sub__, __rsub__, __isub__ = _numeric_methods(um.subtract, 'sub')
__mul__, __rmul__, __imul__ = _numeric_methods(um.multiply, 'mul')
__matmul__, __rmatmul__, __imatmul__ = _numeric_methods(
um.matmul, 'matmul')
# Python 3 does not use __div__, __rdiv__, or __idiv__
__truediv__, __rtruediv__, __itruediv__ = _numeric_methods(
um.true_divide, 'truediv')
__floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods(
um.floor_divide, 'floordiv')
__mod__, __rmod__, __imod__ = _numeric_methods(um.remainder, 'mod')
__divmod__ = _binary_method(um.divmod, 'divmod')
__rdivmod__ = _reflected_binary_method(um.divmod, 'divmod')
# __idivmod__ does not exist
# TODO: handle the optional third argument for __pow__?
__pow__, __rpow__, __ipow__ = _numeric_methods(um.power, 'pow')
__lshift__, __rlshift__, __ilshift__ = _numeric_methods(
um.left_shift, 'lshift')
__rshift__, __rrshift__, __irshift__ = _numeric_methods(
um.right_shift, 'rshift')
__and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and, 'and')
__xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor, 'xor')
__or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or, 'or')
# unary methods
__neg__ = _unary_method(um.negative, 'neg')
__pos__ = _unary_method(um.positive, 'pos')
__abs__ = _unary_method(um.absolute, 'abs')
__invert__ = _unary_method(um.invert, 'invert')

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,601 @@
"""
Wrapper functions to more user-friendly calling of certain math functions
whose output data-type is different than the input data-type in certain
domains of the input.
For example, for functions like `log` with branch cuts, the versions in this
module provide the mathematically valid answers in the complex plane::
>>> import math
>>> from numpy.lib import scimath
>>> scimath.log(-math.exp(1)) == (1+1j*math.pi)
True
Similarly, `sqrt`, other base logarithms, `power` and trig functions are
correctly handled. See their respective docstrings for specific examples.
"""
import numpy.core.numeric as nx
import numpy.core.numerictypes as nt
from numpy.core.numeric import asarray, any
from numpy.core.overrides import array_function_dispatch
from numpy.lib.type_check import isreal
__all__ = [
'sqrt', 'log', 'log2', 'logn', 'log10', 'power', 'arccos', 'arcsin',
'arctanh'
]
_ln2 = nx.log(2.0)
def _tocomplex(arr):
"""Convert its input `arr` to a complex array.
The input is returned as a complex array of the smallest type that will fit
the original data: types like single, byte, short, etc. become csingle,
while others become cdouble.
A copy of the input is always made.
Parameters
----------
arr : array
Returns
-------
array
An array with the same input data as the input but in complex form.
Examples
--------
First, consider an input of type short:
>>> a = np.array([1,2,3],np.short)
>>> ac = np.lib.scimath._tocomplex(a); ac
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
>>> ac.dtype
dtype('complex64')
If the input is of type double, the output is correspondingly of the
complex double type as well:
>>> b = np.array([1,2,3],np.double)
>>> bc = np.lib.scimath._tocomplex(b); bc
array([1.+0.j, 2.+0.j, 3.+0.j])
>>> bc.dtype
dtype('complex128')
Note that even if the input was complex to begin with, a copy is still
made, since the astype() method always copies:
>>> c = np.array([1,2,3],np.csingle)
>>> cc = np.lib.scimath._tocomplex(c); cc
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
>>> c *= 2; c
array([2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64)
>>> cc
array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
"""
if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte,
nt.ushort, nt.csingle)):
return arr.astype(nt.csingle)
else:
return arr.astype(nt.cdouble)
def _fix_real_lt_zero(x):
"""Convert `x` to complex if it has real, negative components.
Otherwise, output is just the array version of the input (via asarray).
Parameters
----------
x : array_like
Returns
-------
array
Examples
--------
>>> np.lib.scimath._fix_real_lt_zero([1,2])
array([1, 2])
>>> np.lib.scimath._fix_real_lt_zero([-1,2])
array([-1.+0.j, 2.+0.j])
"""
x = asarray(x)
if any(isreal(x) & (x < 0)):
x = _tocomplex(x)
return x
def _fix_int_lt_zero(x):
"""Convert `x` to double if it has real, negative components.
Otherwise, output is just the array version of the input (via asarray).
Parameters
----------
x : array_like
Returns
-------
array
Examples
--------
>>> np.lib.scimath._fix_int_lt_zero([1,2])
array([1, 2])
>>> np.lib.scimath._fix_int_lt_zero([-1,2])
array([-1., 2.])
"""
x = asarray(x)
if any(isreal(x) & (x < 0)):
x = x * 1.0
return x
def _fix_real_abs_gt_1(x):
"""Convert `x` to complex if it has real components x_i with abs(x_i)>1.
Otherwise, output is just the array version of the input (via asarray).
Parameters
----------
x : array_like
Returns
-------
array
Examples
--------
>>> np.lib.scimath._fix_real_abs_gt_1([0,1])
array([0, 1])
>>> np.lib.scimath._fix_real_abs_gt_1([0,2])
array([0.+0.j, 2.+0.j])
"""
x = asarray(x)
if any(isreal(x) & (abs(x) > 1)):
x = _tocomplex(x)
return x
def _unary_dispatcher(x):
return (x,)
@array_function_dispatch(_unary_dispatcher)
def sqrt(x):
"""
Compute the square root of x.
For negative input elements, a complex value is returned
(unlike `numpy.sqrt` which returns NaN).
Parameters
----------
x : array_like
The input value(s).
Returns
-------
out : ndarray or scalar
The square root of `x`. If `x` was a scalar, so is `out`,
otherwise an array is returned.
See Also
--------
numpy.sqrt
Examples
--------
For real, non-negative inputs this works just like `numpy.sqrt`:
>>> np.lib.scimath.sqrt(1)
1.0
>>> np.lib.scimath.sqrt([1, 4])
array([1., 2.])
But it automatically handles negative inputs:
>>> np.lib.scimath.sqrt(-1)
1j
>>> np.lib.scimath.sqrt([-1,4])
array([0.+1.j, 2.+0.j])
"""
x = _fix_real_lt_zero(x)
return nx.sqrt(x)
@array_function_dispatch(_unary_dispatcher)
def log(x):
"""
Compute the natural logarithm of `x`.
Return the "principal value" (for a description of this, see `numpy.log`)
of :math:`log_e(x)`. For real `x > 0`, this is a real number (``log(0)``
returns ``-inf`` and ``log(np.inf)`` returns ``inf``). Otherwise, the
complex principle value is returned.
Parameters
----------
x : array_like
The value(s) whose log is (are) required.
Returns
-------
out : ndarray or scalar
The log of the `x` value(s). If `x` was a scalar, so is `out`,
otherwise an array is returned.
See Also
--------
numpy.log
Notes
-----
For a log() that returns ``NAN`` when real `x < 0`, use `numpy.log`
(note, however, that otherwise `numpy.log` and this `log` are identical,
i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, and,
notably, the complex principle value if ``x.imag != 0``).
Examples
--------
>>> np.emath.log(np.exp(1))
1.0
Negative arguments are handled "correctly" (recall that
``exp(log(x)) == x`` does *not* hold for real ``x < 0``):
>>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j)
True
"""
x = _fix_real_lt_zero(x)
return nx.log(x)
@array_function_dispatch(_unary_dispatcher)
def log10(x):
"""
Compute the logarithm base 10 of `x`.
Return the "principal value" (for a description of this, see
`numpy.log10`) of :math:`log_{10}(x)`. For real `x > 0`, this
is a real number (``log10(0)`` returns ``-inf`` and ``log10(np.inf)``
returns ``inf``). Otherwise, the complex principle value is returned.
Parameters
----------
x : array_like or scalar
The value(s) whose log base 10 is (are) required.
Returns
-------
out : ndarray or scalar
The log base 10 of the `x` value(s). If `x` was a scalar, so is `out`,
otherwise an array object is returned.
See Also
--------
numpy.log10
Notes
-----
For a log10() that returns ``NAN`` when real `x < 0`, use `numpy.log10`
(note, however, that otherwise `numpy.log10` and this `log10` are
identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`,
and, notably, the complex principle value if ``x.imag != 0``).
Examples
--------
(We set the printing precision so the example can be auto-tested)
>>> np.set_printoptions(precision=4)
>>> np.emath.log10(10**1)
1.0
>>> np.emath.log10([-10**1, -10**2, 10**2])
array([1.+1.3644j, 2.+1.3644j, 2.+0.j ])
"""
x = _fix_real_lt_zero(x)
return nx.log10(x)
def _logn_dispatcher(n, x):
return (n, x,)
@array_function_dispatch(_logn_dispatcher)
def logn(n, x):
"""
Take log base n of x.
If `x` contains negative inputs, the answer is computed and returned in the
complex domain.
Parameters
----------
n : array_like
The integer base(s) in which the log is taken.
x : array_like
The value(s) whose log base `n` is (are) required.
Returns
-------
out : ndarray or scalar
The log base `n` of the `x` value(s). If `x` was a scalar, so is
`out`, otherwise an array is returned.
Examples
--------
>>> np.set_printoptions(precision=4)
>>> np.lib.scimath.logn(2, [4, 8])
array([2., 3.])
>>> np.lib.scimath.logn(2, [-4, -8, 8])
array([2.+4.5324j, 3.+4.5324j, 3.+0.j ])
"""
x = _fix_real_lt_zero(x)
n = _fix_real_lt_zero(n)
return nx.log(x)/nx.log(n)
@array_function_dispatch(_unary_dispatcher)
def log2(x):
"""
Compute the logarithm base 2 of `x`.
Return the "principal value" (for a description of this, see
`numpy.log2`) of :math:`log_2(x)`. For real `x > 0`, this is
a real number (``log2(0)`` returns ``-inf`` and ``log2(np.inf)`` returns
``inf``). Otherwise, the complex principle value is returned.
Parameters
----------
x : array_like
The value(s) whose log base 2 is (are) required.
Returns
-------
out : ndarray or scalar
The log base 2 of the `x` value(s). If `x` was a scalar, so is `out`,
otherwise an array is returned.
See Also
--------
numpy.log2
Notes
-----
For a log2() that returns ``NAN`` when real `x < 0`, use `numpy.log2`
(note, however, that otherwise `numpy.log2` and this `log2` are
identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`,
and, notably, the complex principle value if ``x.imag != 0``).
Examples
--------
We set the printing precision so the example can be auto-tested:
>>> np.set_printoptions(precision=4)
>>> np.emath.log2(8)
3.0
>>> np.emath.log2([-4, -8, 8])
array([2.+4.5324j, 3.+4.5324j, 3.+0.j ])
"""
x = _fix_real_lt_zero(x)
return nx.log2(x)
def _power_dispatcher(x, p):
return (x, p)
@array_function_dispatch(_power_dispatcher)
def power(x, p):
"""
Return x to the power p, (x**p).
If `x` contains negative values, the output is converted to the
complex domain.
Parameters
----------
x : array_like
The input value(s).
p : array_like of ints
The power(s) to which `x` is raised. If `x` contains multiple values,
`p` has to either be a scalar, or contain the same number of values
as `x`. In the latter case, the result is
``x[0]**p[0], x[1]**p[1], ...``.
Returns
-------
out : ndarray or scalar
The result of ``x**p``. If `x` and `p` are scalars, so is `out`,
otherwise an array is returned.
See Also
--------
numpy.power
Examples
--------
>>> np.set_printoptions(precision=4)
>>> np.lib.scimath.power([2, 4], 2)
array([ 4, 16])
>>> np.lib.scimath.power([2, 4], -2)
array([0.25 , 0.0625])
>>> np.lib.scimath.power([-2, 4], 2)
array([ 4.-0.j, 16.+0.j])
"""
x = _fix_real_lt_zero(x)
p = _fix_int_lt_zero(p)
return nx.power(x, p)
@array_function_dispatch(_unary_dispatcher)
def arccos(x):
"""
Compute the inverse cosine of x.
Return the "principal value" (for a description of this, see
`numpy.arccos`) of the inverse cosine of `x`. For real `x` such that
`abs(x) <= 1`, this is a real number in the closed interval
:math:`[0, \\pi]`. Otherwise, the complex principle value is returned.
Parameters
----------
x : array_like or scalar
The value(s) whose arccos is (are) required.
Returns
-------
out : ndarray or scalar
The inverse cosine(s) of the `x` value(s). If `x` was a scalar, so
is `out`, otherwise an array object is returned.
See Also
--------
numpy.arccos
Notes
-----
For an arccos() that returns ``NAN`` when real `x` is not in the
interval ``[-1,1]``, use `numpy.arccos`.
Examples
--------
>>> np.set_printoptions(precision=4)
>>> np.emath.arccos(1) # a scalar is returned
0.0
>>> np.emath.arccos([1,2])
array([0.-0.j , 0.-1.317j])
"""
x = _fix_real_abs_gt_1(x)
return nx.arccos(x)
@array_function_dispatch(_unary_dispatcher)
def arcsin(x):
"""
Compute the inverse sine of x.
Return the "principal value" (for a description of this, see
`numpy.arcsin`) of the inverse sine of `x`. For real `x` such that
`abs(x) <= 1`, this is a real number in the closed interval
:math:`[-\\pi/2, \\pi/2]`. Otherwise, the complex principle value is
returned.
Parameters
----------
x : array_like or scalar
The value(s) whose arcsin is (are) required.
Returns
-------
out : ndarray or scalar
The inverse sine(s) of the `x` value(s). If `x` was a scalar, so
is `out`, otherwise an array object is returned.
See Also
--------
numpy.arcsin
Notes
-----
For an arcsin() that returns ``NAN`` when real `x` is not in the
interval ``[-1,1]``, use `numpy.arcsin`.
Examples
--------
>>> np.set_printoptions(precision=4)
>>> np.emath.arcsin(0)
0.0
>>> np.emath.arcsin([0,1])
array([0. , 1.5708])
"""
x = _fix_real_abs_gt_1(x)
return nx.arcsin(x)
@array_function_dispatch(_unary_dispatcher)
def arctanh(x):
"""
Compute the inverse hyperbolic tangent of `x`.
Return the "principal value" (for a description of this, see
`numpy.arctanh`) of `arctanh(x)`. For real `x` such that
`abs(x) < 1`, this is a real number. If `abs(x) > 1`, or if `x` is
complex, the result is complex. Finally, `x = 1` returns``inf`` and
`x=-1` returns ``-inf``.
Parameters
----------
x : array_like
The value(s) whose arctanh is (are) required.
Returns
-------
out : ndarray or scalar
The inverse hyperbolic tangent(s) of the `x` value(s). If `x` was
a scalar so is `out`, otherwise an array is returned.
See Also
--------
numpy.arctanh
Notes
-----
For an arctanh() that returns ``NAN`` when real `x` is not in the
interval ``(-1,1)``, use `numpy.arctanh` (this latter, however, does
return +/-inf for `x = +/-1`).
Examples
--------
>>> np.set_printoptions(precision=4)
>>> from numpy.testing import suppress_warnings
>>> with suppress_warnings() as sup:
... sup.filter(RuntimeWarning)
... np.emath.arctanh(np.eye(2))
array([[inf, 0.],
[ 0., inf]])
>>> np.emath.arctanh([1j])
array([0.+0.7854j])
"""
x = _fix_real_abs_gt_1(x)
return nx.arctanh(x)

View file

@ -0,0 +1,11 @@
def configuration(parent_package='',top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration('lib', parent_package, top_path)
config.add_subpackage('tests')
config.add_data_dir('tests/data')
return config
if __name__ == '__main__':
from numpy.distutils.core import setup
setup(configuration=configuration)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,265 @@
"""
Utilities that manipulate strides to achieve desirable effects.
An explanation of strides can be found in the "ndarray.rst" file in the
NumPy reference guide.
"""
import numpy as np
from numpy.core.overrides import array_function_dispatch
__all__ = ['broadcast_to', 'broadcast_arrays']
class DummyArray:
"""Dummy object that just exists to hang __array_interface__ dictionaries
and possibly keep alive a reference to a base array.
"""
def __init__(self, interface, base=None):
self.__array_interface__ = interface
self.base = base
def _maybe_view_as_subclass(original_array, new_array):
if type(original_array) is not type(new_array):
# if input was an ndarray subclass and subclasses were OK,
# then view the result as that subclass.
new_array = new_array.view(type=type(original_array))
# Since we have done something akin to a view from original_array, we
# should let the subclass finalize (if it has it implemented, i.e., is
# not None).
if new_array.__array_finalize__:
new_array.__array_finalize__(original_array)
return new_array
def as_strided(x, shape=None, strides=None, subok=False, writeable=True):
"""
Create a view into the array with the given shape and strides.
.. warning:: This function has to be used with extreme care, see notes.
Parameters
----------
x : ndarray
Array to create a new.
shape : sequence of int, optional
The shape of the new array. Defaults to ``x.shape``.
strides : sequence of int, optional
The strides of the new array. Defaults to ``x.strides``.
subok : bool, optional
.. versionadded:: 1.10
If True, subclasses are preserved.
writeable : bool, optional
.. versionadded:: 1.12
If set to False, the returned array will always be readonly.
Otherwise it will be writable if the original array was. It
is advisable to set this to False if possible (see Notes).
Returns
-------
view : ndarray
See also
--------
broadcast_to: broadcast an array to a given shape.
reshape : reshape an array.
Notes
-----
``as_strided`` creates a view into the array given the exact strides
and shape. This means it manipulates the internal data structure of
ndarray and, if done incorrectly, the array elements can point to
invalid memory and can corrupt results or crash your program.
It is advisable to always use the original ``x.strides`` when
calculating new strides to avoid reliance on a contiguous memory
layout.
Furthermore, arrays created with this function often contain self
overlapping memory, so that two elements are identical.
Vectorized write operations on such arrays will typically be
unpredictable. They may even give different results for small, large,
or transposed arrays.
Since writing to these arrays has to be tested and done with great
care, you may want to use ``writeable=False`` to avoid accidental write
operations.
For these reasons it is advisable to avoid ``as_strided`` when
possible.
"""
# first convert input to array, possibly keeping subclass
x = np.array(x, copy=False, subok=subok)
interface = dict(x.__array_interface__)
if shape is not None:
interface['shape'] = tuple(shape)
if strides is not None:
interface['strides'] = tuple(strides)
array = np.asarray(DummyArray(interface, base=x))
# The route via `__interface__` does not preserve structured
# dtypes. Since dtype should remain unchanged, we set it explicitly.
array.dtype = x.dtype
view = _maybe_view_as_subclass(x, array)
if view.flags.writeable and not writeable:
view.flags.writeable = False
return view
def _broadcast_to(array, shape, subok, readonly):
shape = tuple(shape) if np.iterable(shape) else (shape,)
array = np.array(array, copy=False, subok=subok)
if not shape and array.shape:
raise ValueError('cannot broadcast a non-scalar to a scalar array')
if any(size < 0 for size in shape):
raise ValueError('all elements of broadcast shape must be non-'
'negative')
extras = []
it = np.nditer(
(array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
op_flags=['readonly'], itershape=shape, order='C')
with it:
# never really has writebackifcopy semantics
broadcast = it.itviews[0]
result = _maybe_view_as_subclass(array, broadcast)
# In a future version this will go away
if not readonly and array.flags._writeable_no_warn:
result.flags.writeable = True
result.flags._warn_on_write = True
return result
def _broadcast_to_dispatcher(array, shape, subok=None):
return (array,)
@array_function_dispatch(_broadcast_to_dispatcher, module='numpy')
def broadcast_to(array, shape, subok=False):
"""Broadcast an array to a new shape.
Parameters
----------
array : array_like
The array to broadcast.
shape : tuple
The shape of the desired array.
subok : bool, optional
If True, then sub-classes will be passed-through, otherwise
the returned array will be forced to be a base-class array (default).
Returns
-------
broadcast : array
A readonly view on the original array with the given shape. It is
typically not contiguous. Furthermore, more than one element of a
broadcasted array may refer to a single memory location.
Raises
------
ValueError
If the array is not compatible with the new shape according to NumPy's
broadcasting rules.
Notes
-----
.. versionadded:: 1.10.0
Examples
--------
>>> x = np.array([1, 2, 3])
>>> np.broadcast_to(x, (3, 3))
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
"""
return _broadcast_to(array, shape, subok=subok, readonly=True)
def _broadcast_shape(*args):
"""Returns the shape of the arrays that would result from broadcasting the
supplied arrays against each other.
"""
# use the old-iterator because np.nditer does not handle size 0 arrays
# consistently
b = np.broadcast(*args[:32])
# unfortunately, it cannot handle 32 or more arguments directly
for pos in range(32, len(args), 31):
# ironically, np.broadcast does not properly handle np.broadcast
# objects (it treats them as scalars)
# use broadcasting to avoid allocating the full array
b = broadcast_to(0, b.shape)
b = np.broadcast(b, *args[pos:(pos + 31)])
return b.shape
def _broadcast_arrays_dispatcher(*args, subok=None):
return args
@array_function_dispatch(_broadcast_arrays_dispatcher, module='numpy')
def broadcast_arrays(*args, subok=False):
"""
Broadcast any number of arrays against each other.
Parameters
----------
`*args` : array_likes
The arrays to broadcast.
subok : bool, optional
If True, then sub-classes will be passed-through, otherwise
the returned arrays will be forced to be a base-class array (default).
Returns
-------
broadcasted : list of arrays
These arrays are views on the original arrays. They are typically
not contiguous. Furthermore, more than one element of a
broadcasted array may refer to a single memory location. If you need
to write to the arrays, make copies first. While you can set the
``writable`` flag True, writing to a single output value may end up
changing more than one location in the output array.
.. deprecated:: 1.17
The output is currently marked so that if written to, a deprecation
warning will be emitted. A future version will set the
``writable`` flag False so writing to it will raise an error.
Examples
--------
>>> x = np.array([[1,2,3]])
>>> y = np.array([[4],[5]])
>>> np.broadcast_arrays(x, y)
[array([[1, 2, 3],
[1, 2, 3]]), array([[4, 4, 4],
[5, 5, 5]])]
Here is a useful idiom for getting contiguous copies instead of
non-contiguous views.
>>> [np.array(a) for a in np.broadcast_arrays(x, y)]
[array([[1, 2, 3],
[1, 2, 3]]), array([[4, 4, 4],
[5, 5, 5]])]
"""
# nditer is not used here to avoid the limit of 32 arrays.
# Otherwise, something like the following one-liner would suffice:
# return np.nditer(args, flags=['multi_index', 'zerosize_ok'],
# order='C').itviews
args = [np.array(_m, copy=False, subok=subok) for _m in args]
shape = _broadcast_shape(*args)
if all(array.shape == shape for array in args):
# Common case where nothing needs to be broadcasted.
return args
return [_broadcast_to(array, shape, subok=subok, readonly=False)
for array in args]

View file

@ -0,0 +1,350 @@
import os
import pytest
from tempfile import mkdtemp, mkstemp, NamedTemporaryFile
from shutil import rmtree
import numpy.lib._datasource as datasource
from numpy.testing import assert_, assert_equal, assert_raises
import urllib.request as urllib_request
from urllib.parse import urlparse
from urllib.error import URLError
def urlopen_stub(url, data=None):
'''Stub to replace urlopen for testing.'''
if url == valid_httpurl():
tmpfile = NamedTemporaryFile(prefix='urltmp_')
return tmpfile
else:
raise URLError('Name or service not known')
# setup and teardown
old_urlopen = None
def setup_module():
global old_urlopen
old_urlopen = urllib_request.urlopen
urllib_request.urlopen = urlopen_stub
def teardown_module():
urllib_request.urlopen = old_urlopen
# A valid website for more robust testing
http_path = 'http://www.google.com/'
http_file = 'index.html'
http_fakepath = 'http://fake.abc.web/site/'
http_fakefile = 'fake.txt'
malicious_files = ['/etc/shadow', '../../shadow',
'..\\system.dat', 'c:\\windows\\system.dat']
magic_line = b'three is the magic number'
# Utility functions used by many tests
def valid_textfile(filedir):
# Generate and return a valid temporary file.
fd, path = mkstemp(suffix='.txt', prefix='dstmp_', dir=filedir, text=True)
os.close(fd)
return path
def invalid_textfile(filedir):
# Generate and return an invalid filename.
fd, path = mkstemp(suffix='.txt', prefix='dstmp_', dir=filedir)
os.close(fd)
os.remove(path)
return path
def valid_httpurl():
return http_path+http_file
def invalid_httpurl():
return http_fakepath+http_fakefile
def valid_baseurl():
return http_path
def invalid_baseurl():
return http_fakepath
def valid_httpfile():
return http_file
def invalid_httpfile():
return http_fakefile
class TestDataSourceOpen:
def setup(self):
self.tmpdir = mkdtemp()
self.ds = datasource.DataSource(self.tmpdir)
def teardown(self):
rmtree(self.tmpdir)
del self.ds
def test_ValidHTTP(self):
fh = self.ds.open(valid_httpurl())
assert_(fh)
fh.close()
def test_InvalidHTTP(self):
url = invalid_httpurl()
assert_raises(IOError, self.ds.open, url)
try:
self.ds.open(url)
except IOError as e:
# Regression test for bug fixed in r4342.
assert_(e.errno is None)
def test_InvalidHTTPCacheURLError(self):
assert_raises(URLError, self.ds._cache, invalid_httpurl())
def test_ValidFile(self):
local_file = valid_textfile(self.tmpdir)
fh = self.ds.open(local_file)
assert_(fh)
fh.close()
def test_InvalidFile(self):
invalid_file = invalid_textfile(self.tmpdir)
assert_raises(IOError, self.ds.open, invalid_file)
def test_ValidGzipFile(self):
try:
import gzip
except ImportError:
# We don't have the gzip capabilities to test.
pytest.skip()
# Test datasource's internal file_opener for Gzip files.
filepath = os.path.join(self.tmpdir, 'foobar.txt.gz')
fp = gzip.open(filepath, 'w')
fp.write(magic_line)
fp.close()
fp = self.ds.open(filepath)
result = fp.readline()
fp.close()
assert_equal(magic_line, result)
def test_ValidBz2File(self):
try:
import bz2
except ImportError:
# We don't have the bz2 capabilities to test.
pytest.skip()
# Test datasource's internal file_opener for BZip2 files.
filepath = os.path.join(self.tmpdir, 'foobar.txt.bz2')
fp = bz2.BZ2File(filepath, 'w')
fp.write(magic_line)
fp.close()
fp = self.ds.open(filepath)
result = fp.readline()
fp.close()
assert_equal(magic_line, result)
class TestDataSourceExists:
def setup(self):
self.tmpdir = mkdtemp()
self.ds = datasource.DataSource(self.tmpdir)
def teardown(self):
rmtree(self.tmpdir)
del self.ds
def test_ValidHTTP(self):
assert_(self.ds.exists(valid_httpurl()))
def test_InvalidHTTP(self):
assert_equal(self.ds.exists(invalid_httpurl()), False)
def test_ValidFile(self):
# Test valid file in destpath
tmpfile = valid_textfile(self.tmpdir)
assert_(self.ds.exists(tmpfile))
# Test valid local file not in destpath
localdir = mkdtemp()
tmpfile = valid_textfile(localdir)
assert_(self.ds.exists(tmpfile))
rmtree(localdir)
def test_InvalidFile(self):
tmpfile = invalid_textfile(self.tmpdir)
assert_equal(self.ds.exists(tmpfile), False)
class TestDataSourceAbspath:
def setup(self):
self.tmpdir = os.path.abspath(mkdtemp())
self.ds = datasource.DataSource(self.tmpdir)
def teardown(self):
rmtree(self.tmpdir)
del self.ds
def test_ValidHTTP(self):
scheme, netloc, upath, pms, qry, frg = urlparse(valid_httpurl())
local_path = os.path.join(self.tmpdir, netloc,
upath.strip(os.sep).strip('/'))
assert_equal(local_path, self.ds.abspath(valid_httpurl()))
def test_ValidFile(self):
tmpfile = valid_textfile(self.tmpdir)
tmpfilename = os.path.split(tmpfile)[-1]
# Test with filename only
assert_equal(tmpfile, self.ds.abspath(tmpfilename))
# Test filename with complete path
assert_equal(tmpfile, self.ds.abspath(tmpfile))
def test_InvalidHTTP(self):
scheme, netloc, upath, pms, qry, frg = urlparse(invalid_httpurl())
invalidhttp = os.path.join(self.tmpdir, netloc,
upath.strip(os.sep).strip('/'))
assert_(invalidhttp != self.ds.abspath(valid_httpurl()))
def test_InvalidFile(self):
invalidfile = valid_textfile(self.tmpdir)
tmpfile = valid_textfile(self.tmpdir)
tmpfilename = os.path.split(tmpfile)[-1]
# Test with filename only
assert_(invalidfile != self.ds.abspath(tmpfilename))
# Test filename with complete path
assert_(invalidfile != self.ds.abspath(tmpfile))
def test_sandboxing(self):
tmpfile = valid_textfile(self.tmpdir)
tmpfilename = os.path.split(tmpfile)[-1]
tmp_path = lambda x: os.path.abspath(self.ds.abspath(x))
assert_(tmp_path(valid_httpurl()).startswith(self.tmpdir))
assert_(tmp_path(invalid_httpurl()).startswith(self.tmpdir))
assert_(tmp_path(tmpfile).startswith(self.tmpdir))
assert_(tmp_path(tmpfilename).startswith(self.tmpdir))
for fn in malicious_files:
assert_(tmp_path(http_path+fn).startswith(self.tmpdir))
assert_(tmp_path(fn).startswith(self.tmpdir))
def test_windows_os_sep(self):
orig_os_sep = os.sep
try:
os.sep = '\\'
self.test_ValidHTTP()
self.test_ValidFile()
self.test_InvalidHTTP()
self.test_InvalidFile()
self.test_sandboxing()
finally:
os.sep = orig_os_sep
class TestRepositoryAbspath:
def setup(self):
self.tmpdir = os.path.abspath(mkdtemp())
self.repos = datasource.Repository(valid_baseurl(), self.tmpdir)
def teardown(self):
rmtree(self.tmpdir)
del self.repos
def test_ValidHTTP(self):
scheme, netloc, upath, pms, qry, frg = urlparse(valid_httpurl())
local_path = os.path.join(self.repos._destpath, netloc,
upath.strip(os.sep).strip('/'))
filepath = self.repos.abspath(valid_httpfile())
assert_equal(local_path, filepath)
def test_sandboxing(self):
tmp_path = lambda x: os.path.abspath(self.repos.abspath(x))
assert_(tmp_path(valid_httpfile()).startswith(self.tmpdir))
for fn in malicious_files:
assert_(tmp_path(http_path+fn).startswith(self.tmpdir))
assert_(tmp_path(fn).startswith(self.tmpdir))
def test_windows_os_sep(self):
orig_os_sep = os.sep
try:
os.sep = '\\'
self.test_ValidHTTP()
self.test_sandboxing()
finally:
os.sep = orig_os_sep
class TestRepositoryExists:
def setup(self):
self.tmpdir = mkdtemp()
self.repos = datasource.Repository(valid_baseurl(), self.tmpdir)
def teardown(self):
rmtree(self.tmpdir)
del self.repos
def test_ValidFile(self):
# Create local temp file
tmpfile = valid_textfile(self.tmpdir)
assert_(self.repos.exists(tmpfile))
def test_InvalidFile(self):
tmpfile = invalid_textfile(self.tmpdir)
assert_equal(self.repos.exists(tmpfile), False)
def test_RemoveHTTPFile(self):
assert_(self.repos.exists(valid_httpurl()))
def test_CachedHTTPFile(self):
localfile = valid_httpurl()
# Create a locally cached temp file with an URL based
# directory structure. This is similar to what Repository.open
# would do.
scheme, netloc, upath, pms, qry, frg = urlparse(localfile)
local_path = os.path.join(self.repos._destpath, netloc)
os.mkdir(local_path, 0o0700)
tmpfile = valid_textfile(local_path)
assert_(self.repos.exists(tmpfile))
class TestOpenFunc:
def setup(self):
self.tmpdir = mkdtemp()
def teardown(self):
rmtree(self.tmpdir)
def test_DataSourceOpen(self):
local_file = valid_textfile(self.tmpdir)
# Test case where destpath is passed in
fp = datasource.open(local_file, destpath=self.tmpdir)
assert_(fp)
fp.close()
# Test case where default destpath is used
fp = datasource.open(local_file)
assert_(fp)
fp.close()
def test_del_attr_handling():
# DataSource __del__ can be called
# even if __init__ fails when the
# Exception object is caught by the
# caller as happens in refguide_check
# is_deprecated() function
ds = datasource.DataSource()
# simulate failed __init__ by removing key attribute
# produced within __init__ and expected by __del__
del ds._istmpdest
# should not raise an AttributeError if __del__
# gracefully handles failed __init__:
ds.__del__()

View file

@ -0,0 +1,353 @@
import time
from datetime import date
import numpy as np
from numpy.testing import (
assert_, assert_equal, assert_allclose, assert_raises,
)
from numpy.lib._iotools import (
LineSplitter, NameValidator, StringConverter,
has_nested_fields, easy_dtype, flatten_dtype
)
class TestLineSplitter:
"Tests the LineSplitter class."
def test_no_delimiter(self):
"Test LineSplitter w/o delimiter"
strg = " 1 2 3 4 5 # test"
test = LineSplitter()(strg)
assert_equal(test, ['1', '2', '3', '4', '5'])
test = LineSplitter('')(strg)
assert_equal(test, ['1', '2', '3', '4', '5'])
def test_space_delimiter(self):
"Test space delimiter"
strg = " 1 2 3 4 5 # test"
test = LineSplitter(' ')(strg)
assert_equal(test, ['1', '2', '3', '4', '', '5'])
test = LineSplitter(' ')(strg)
assert_equal(test, ['1 2 3 4', '5'])
def test_tab_delimiter(self):
"Test tab delimiter"
strg = " 1\t 2\t 3\t 4\t 5 6"
test = LineSplitter('\t')(strg)
assert_equal(test, ['1', '2', '3', '4', '5 6'])
strg = " 1 2\t 3 4\t 5 6"
test = LineSplitter('\t')(strg)
assert_equal(test, ['1 2', '3 4', '5 6'])
def test_other_delimiter(self):
"Test LineSplitter on delimiter"
strg = "1,2,3,4,,5"
test = LineSplitter(',')(strg)
assert_equal(test, ['1', '2', '3', '4', '', '5'])
#
strg = " 1,2,3,4,,5 # test"
test = LineSplitter(',')(strg)
assert_equal(test, ['1', '2', '3', '4', '', '5'])
# gh-11028 bytes comment/delimiters should get encoded
strg = b" 1,2,3,4,,5 % test"
test = LineSplitter(delimiter=b',', comments=b'%')(strg)
assert_equal(test, ['1', '2', '3', '4', '', '5'])
def test_constant_fixed_width(self):
"Test LineSplitter w/ fixed-width fields"
strg = " 1 2 3 4 5 # test"
test = LineSplitter(3)(strg)
assert_equal(test, ['1', '2', '3', '4', '', '5', ''])
#
strg = " 1 3 4 5 6# test"
test = LineSplitter(20)(strg)
assert_equal(test, ['1 3 4 5 6'])
#
strg = " 1 3 4 5 6# test"
test = LineSplitter(30)(strg)
assert_equal(test, ['1 3 4 5 6'])
def test_variable_fixed_width(self):
strg = " 1 3 4 5 6# test"
test = LineSplitter((3, 6, 6, 3))(strg)
assert_equal(test, ['1', '3', '4 5', '6'])
#
strg = " 1 3 4 5 6# test"
test = LineSplitter((6, 6, 9))(strg)
assert_equal(test, ['1', '3 4', '5 6'])
# -----------------------------------------------------------------------------
class TestNameValidator:
def test_case_sensitivity(self):
"Test case sensitivity"
names = ['A', 'a', 'b', 'c']
test = NameValidator().validate(names)
assert_equal(test, ['A', 'a', 'b', 'c'])
test = NameValidator(case_sensitive=False).validate(names)
assert_equal(test, ['A', 'A_1', 'B', 'C'])
test = NameValidator(case_sensitive='upper').validate(names)
assert_equal(test, ['A', 'A_1', 'B', 'C'])
test = NameValidator(case_sensitive='lower').validate(names)
assert_equal(test, ['a', 'a_1', 'b', 'c'])
# check exceptions
assert_raises(ValueError, NameValidator, case_sensitive='foobar')
def test_excludelist(self):
"Test excludelist"
names = ['dates', 'data', 'Other Data', 'mask']
validator = NameValidator(excludelist=['dates', 'data', 'mask'])
test = validator.validate(names)
assert_equal(test, ['dates_', 'data_', 'Other_Data', 'mask_'])
def test_missing_names(self):
"Test validate missing names"
namelist = ('a', 'b', 'c')
validator = NameValidator()
assert_equal(validator(namelist), ['a', 'b', 'c'])
namelist = ('', 'b', 'c')
assert_equal(validator(namelist), ['f0', 'b', 'c'])
namelist = ('a', 'b', '')
assert_equal(validator(namelist), ['a', 'b', 'f0'])
namelist = ('', 'f0', '')
assert_equal(validator(namelist), ['f1', 'f0', 'f2'])
def test_validate_nb_names(self):
"Test validate nb names"
namelist = ('a', 'b', 'c')
validator = NameValidator()
assert_equal(validator(namelist, nbfields=1), ('a',))
assert_equal(validator(namelist, nbfields=5, defaultfmt="g%i"),
['a', 'b', 'c', 'g0', 'g1'])
def test_validate_wo_names(self):
"Test validate no names"
namelist = None
validator = NameValidator()
assert_(validator(namelist) is None)
assert_equal(validator(namelist, nbfields=3), ['f0', 'f1', 'f2'])
# -----------------------------------------------------------------------------
def _bytes_to_date(s):
return date(*time.strptime(s, "%Y-%m-%d")[:3])
class TestStringConverter:
"Test StringConverter"
def test_creation(self):
"Test creation of a StringConverter"
converter = StringConverter(int, -99999)
assert_equal(converter._status, 1)
assert_equal(converter.default, -99999)
def test_upgrade(self):
"Tests the upgrade method."
converter = StringConverter()
assert_equal(converter._status, 0)
# test int
assert_equal(converter.upgrade('0'), 0)
assert_equal(converter._status, 1)
# On systems where long defaults to 32-bit, the statuses will be
# offset by one, so we check for this here.
import numpy.core.numeric as nx
status_offset = int(nx.dtype(nx.int_).itemsize < nx.dtype(nx.int64).itemsize)
# test int > 2**32
assert_equal(converter.upgrade('17179869184'), 17179869184)
assert_equal(converter._status, 1 + status_offset)
# test float
assert_allclose(converter.upgrade('0.'), 0.0)
assert_equal(converter._status, 2 + status_offset)
# test complex
assert_equal(converter.upgrade('0j'), complex('0j'))
assert_equal(converter._status, 3 + status_offset)
# test str
# note that the longdouble type has been skipped, so the
# _status increases by 2. Everything should succeed with
# unicode conversion (8).
for s in ['a', b'a']:
res = converter.upgrade(s)
assert_(type(res) is str)
assert_equal(res, 'a')
assert_equal(converter._status, 8 + status_offset)
def test_missing(self):
"Tests the use of missing values."
converter = StringConverter(missing_values=('missing',
'missed'))
converter.upgrade('0')
assert_equal(converter('0'), 0)
assert_equal(converter(''), converter.default)
assert_equal(converter('missing'), converter.default)
assert_equal(converter('missed'), converter.default)
try:
converter('miss')
except ValueError:
pass
def test_upgrademapper(self):
"Tests updatemapper"
dateparser = _bytes_to_date
_original_mapper = StringConverter._mapper[:]
try:
StringConverter.upgrade_mapper(dateparser, date(2000, 1, 1))
convert = StringConverter(dateparser, date(2000, 1, 1))
test = convert('2001-01-01')
assert_equal(test, date(2001, 1, 1))
test = convert('2009-01-01')
assert_equal(test, date(2009, 1, 1))
test = convert('')
assert_equal(test, date(2000, 1, 1))
finally:
StringConverter._mapper = _original_mapper
def test_string_to_object(self):
"Make sure that string-to-object functions are properly recognized"
old_mapper = StringConverter._mapper[:] # copy of list
conv = StringConverter(_bytes_to_date)
assert_equal(conv._mapper, old_mapper)
assert_(hasattr(conv, 'default'))
def test_keep_default(self):
"Make sure we don't lose an explicit default"
converter = StringConverter(None, missing_values='',
default=-999)
converter.upgrade('3.14159265')
assert_equal(converter.default, -999)
assert_equal(converter.type, np.dtype(float))
#
converter = StringConverter(
None, missing_values='', default=0)
converter.upgrade('3.14159265')
assert_equal(converter.default, 0)
assert_equal(converter.type, np.dtype(float))
def test_keep_default_zero(self):
"Check that we don't lose a default of 0"
converter = StringConverter(int, default=0,
missing_values="N/A")
assert_equal(converter.default, 0)
def test_keep_missing_values(self):
"Check that we're not losing missing values"
converter = StringConverter(int, default=0,
missing_values="N/A")
assert_equal(
converter.missing_values, {'', 'N/A'})
def test_int64_dtype(self):
"Check that int64 integer types can be specified"
converter = StringConverter(np.int64, default=0)
val = "-9223372036854775807"
assert_(converter(val) == -9223372036854775807)
val = "9223372036854775807"
assert_(converter(val) == 9223372036854775807)
def test_uint64_dtype(self):
"Check that uint64 integer types can be specified"
converter = StringConverter(np.uint64, default=0)
val = "9223372043271415339"
assert_(converter(val) == 9223372043271415339)
class TestMiscFunctions:
def test_has_nested_dtype(self):
"Test has_nested_dtype"
ndtype = np.dtype(float)
assert_equal(has_nested_fields(ndtype), False)
ndtype = np.dtype([('A', '|S3'), ('B', float)])
assert_equal(has_nested_fields(ndtype), False)
ndtype = np.dtype([('A', int), ('B', [('BA', float), ('BB', '|S1')])])
assert_equal(has_nested_fields(ndtype), True)
def test_easy_dtype(self):
"Test ndtype on dtypes"
# Simple case
ndtype = float
assert_equal(easy_dtype(ndtype), np.dtype(float))
# As string w/o names
ndtype = "i4, f8"
assert_equal(easy_dtype(ndtype),
np.dtype([('f0', "i4"), ('f1', "f8")]))
# As string w/o names but different default format
assert_equal(easy_dtype(ndtype, defaultfmt="field_%03i"),
np.dtype([('field_000', "i4"), ('field_001', "f8")]))
# As string w/ names
ndtype = "i4, f8"
assert_equal(easy_dtype(ndtype, names="a, b"),
np.dtype([('a', "i4"), ('b', "f8")]))
# As string w/ names (too many)
ndtype = "i4, f8"
assert_equal(easy_dtype(ndtype, names="a, b, c"),
np.dtype([('a', "i4"), ('b', "f8")]))
# As string w/ names (not enough)
ndtype = "i4, f8"
assert_equal(easy_dtype(ndtype, names=", b"),
np.dtype([('f0', "i4"), ('b', "f8")]))
# ... (with different default format)
assert_equal(easy_dtype(ndtype, names="a", defaultfmt="f%02i"),
np.dtype([('a', "i4"), ('f00', "f8")]))
# As list of tuples w/o names
ndtype = [('A', int), ('B', float)]
assert_equal(easy_dtype(ndtype), np.dtype([('A', int), ('B', float)]))
# As list of tuples w/ names
assert_equal(easy_dtype(ndtype, names="a,b"),
np.dtype([('a', int), ('b', float)]))
# As list of tuples w/ not enough names
assert_equal(easy_dtype(ndtype, names="a"),
np.dtype([('a', int), ('f0', float)]))
# As list of tuples w/ too many names
assert_equal(easy_dtype(ndtype, names="a,b,c"),
np.dtype([('a', int), ('b', float)]))
# As list of types w/o names
ndtype = (int, float, float)
assert_equal(easy_dtype(ndtype),
np.dtype([('f0', int), ('f1', float), ('f2', float)]))
# As list of types w names
ndtype = (int, float, float)
assert_equal(easy_dtype(ndtype, names="a, b, c"),
np.dtype([('a', int), ('b', float), ('c', float)]))
# As simple dtype w/ names
ndtype = np.dtype(float)
assert_equal(easy_dtype(ndtype, names="a, b, c"),
np.dtype([(_, float) for _ in ('a', 'b', 'c')]))
# As simple dtype w/o names (but multiple fields)
ndtype = np.dtype(float)
assert_equal(
easy_dtype(ndtype, names=['', '', ''], defaultfmt="f%02i"),
np.dtype([(_, float) for _ in ('f00', 'f01', 'f02')]))
def test_flatten_dtype(self):
"Testing flatten_dtype"
# Standard dtype
dt = np.dtype([("a", "f8"), ("b", "f8")])
dt_flat = flatten_dtype(dt)
assert_equal(dt_flat, [float, float])
# Recursive dtype
dt = np.dtype([("a", [("aa", '|S1'), ("ab", '|S2')]), ("b", int)])
dt_flat = flatten_dtype(dt)
assert_equal(dt_flat, [np.dtype('|S1'), np.dtype('|S2'), int])
# dtype with shaped fields
dt = np.dtype([("a", (float, 2)), ("b", (int, 3))])
dt_flat = flatten_dtype(dt)
assert_equal(dt_flat, [float, int])
dt_flat = flatten_dtype(dt, True)
assert_equal(dt_flat, [float] * 2 + [int] * 3)
# dtype w/ titles
dt = np.dtype([(("a", "A"), "f8"), (("b", "B"), "f8")])
dt_flat = flatten_dtype(dt)
assert_equal(dt_flat, [float, float])

View file

@ -0,0 +1,64 @@
"""Tests for the NumpyVersion class.
"""
from numpy.testing import assert_, assert_raises
from numpy.lib import NumpyVersion
def test_main_versions():
assert_(NumpyVersion('1.8.0') == '1.8.0')
for ver in ['1.9.0', '2.0.0', '1.8.1']:
assert_(NumpyVersion('1.8.0') < ver)
for ver in ['1.7.0', '1.7.1', '0.9.9']:
assert_(NumpyVersion('1.8.0') > ver)
def test_version_1_point_10():
# regression test for gh-2998.
assert_(NumpyVersion('1.9.0') < '1.10.0')
assert_(NumpyVersion('1.11.0') < '1.11.1')
assert_(NumpyVersion('1.11.0') == '1.11.0')
assert_(NumpyVersion('1.99.11') < '1.99.12')
def test_alpha_beta_rc():
assert_(NumpyVersion('1.8.0rc1') == '1.8.0rc1')
for ver in ['1.8.0', '1.8.0rc2']:
assert_(NumpyVersion('1.8.0rc1') < ver)
for ver in ['1.8.0a2', '1.8.0b3', '1.7.2rc4']:
assert_(NumpyVersion('1.8.0rc1') > ver)
assert_(NumpyVersion('1.8.0b1') > '1.8.0a2')
def test_dev_version():
assert_(NumpyVersion('1.9.0.dev-Unknown') < '1.9.0')
for ver in ['1.9.0', '1.9.0a1', '1.9.0b2', '1.9.0b2.dev-ffffffff']:
assert_(NumpyVersion('1.9.0.dev-f16acvda') < ver)
assert_(NumpyVersion('1.9.0.dev-f16acvda') == '1.9.0.dev-11111111')
def test_dev_a_b_rc_mixed():
assert_(NumpyVersion('1.9.0a2.dev-f16acvda') == '1.9.0a2.dev-11111111')
assert_(NumpyVersion('1.9.0a2.dev-6acvda54') < '1.9.0a2')
def test_dev0_version():
assert_(NumpyVersion('1.9.0.dev0+Unknown') < '1.9.0')
for ver in ['1.9.0', '1.9.0a1', '1.9.0b2', '1.9.0b2.dev0+ffffffff']:
assert_(NumpyVersion('1.9.0.dev0+f16acvda') < ver)
assert_(NumpyVersion('1.9.0.dev0+f16acvda') == '1.9.0.dev0+11111111')
def test_dev0_a_b_rc_mixed():
assert_(NumpyVersion('1.9.0a2.dev0+f16acvda') == '1.9.0a2.dev0+11111111')
assert_(NumpyVersion('1.9.0a2.dev0+6acvda54') < '1.9.0a2')
def test_raises():
for ver in ['1.9', '1,9.0', '1.7.x']:
assert_raises(ValueError, NumpyVersion, ver)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,673 @@
"""Test functions for 1D array set operations.
"""
import numpy as np
from numpy.testing import (assert_array_equal, assert_equal,
assert_raises, assert_raises_regex)
from numpy.lib.arraysetops import (
ediff1d, intersect1d, setxor1d, union1d, setdiff1d, unique, in1d, isin
)
import pytest
class TestSetOps:
def test_intersect1d(self):
# unique inputs
a = np.array([5, 7, 1, 2])
b = np.array([2, 4, 3, 1, 5])
ec = np.array([1, 2, 5])
c = intersect1d(a, b, assume_unique=True)
assert_array_equal(c, ec)
# non-unique inputs
a = np.array([5, 5, 7, 1, 2])
b = np.array([2, 1, 4, 3, 3, 1, 5])
ed = np.array([1, 2, 5])
c = intersect1d(a, b)
assert_array_equal(c, ed)
assert_array_equal([], intersect1d([], []))
def test_intersect1d_array_like(self):
# See gh-11772
class Test:
def __array__(self):
return np.arange(3)
a = Test()
res = intersect1d(a, a)
assert_array_equal(res, a)
res = intersect1d([1, 2, 3], [1, 2, 3])
assert_array_equal(res, [1, 2, 3])
def test_intersect1d_indices(self):
# unique inputs
a = np.array([1, 2, 3, 4])
b = np.array([2, 1, 4, 6])
c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True)
ee = np.array([1, 2, 4])
assert_array_equal(c, ee)
assert_array_equal(a[i1], ee)
assert_array_equal(b[i2], ee)
# non-unique inputs
a = np.array([1, 2, 2, 3, 4, 3, 2])
b = np.array([1, 8, 4, 2, 2, 3, 2, 3])
c, i1, i2 = intersect1d(a, b, return_indices=True)
ef = np.array([1, 2, 3, 4])
assert_array_equal(c, ef)
assert_array_equal(a[i1], ef)
assert_array_equal(b[i2], ef)
# non1d, unique inputs
a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]])
b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]])
c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True)
ui1 = np.unravel_index(i1, a.shape)
ui2 = np.unravel_index(i2, b.shape)
ea = np.array([2, 6, 7, 8])
assert_array_equal(ea, a[ui1])
assert_array_equal(ea, b[ui2])
# non1d, not assumed to be uniqueinputs
a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]])
b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]])
c, i1, i2 = intersect1d(a, b, return_indices=True)
ui1 = np.unravel_index(i1, a.shape)
ui2 = np.unravel_index(i2, b.shape)
ea = np.array([2, 7, 8])
assert_array_equal(ea, a[ui1])
assert_array_equal(ea, b[ui2])
def test_setxor1d(self):
a = np.array([5, 7, 1, 2])
b = np.array([2, 4, 3, 1, 5])
ec = np.array([3, 4, 7])
c = setxor1d(a, b)
assert_array_equal(c, ec)
a = np.array([1, 2, 3])
b = np.array([6, 5, 4])
ec = np.array([1, 2, 3, 4, 5, 6])
c = setxor1d(a, b)
assert_array_equal(c, ec)
a = np.array([1, 8, 2, 3])
b = np.array([6, 5, 4, 8])
ec = np.array([1, 2, 3, 4, 5, 6])
c = setxor1d(a, b)
assert_array_equal(c, ec)
assert_array_equal([], setxor1d([], []))
def test_ediff1d(self):
zero_elem = np.array([])
one_elem = np.array([1])
two_elem = np.array([1, 2])
assert_array_equal([], ediff1d(zero_elem))
assert_array_equal([0], ediff1d(zero_elem, to_begin=0))
assert_array_equal([0], ediff1d(zero_elem, to_end=0))
assert_array_equal([-1, 0], ediff1d(zero_elem, to_begin=-1, to_end=0))
assert_array_equal([], ediff1d(one_elem))
assert_array_equal([1], ediff1d(two_elem))
assert_array_equal([7, 1, 9], ediff1d(two_elem, to_begin=7, to_end=9))
assert_array_equal([5, 6, 1, 7, 8],
ediff1d(two_elem, to_begin=[5, 6], to_end=[7, 8]))
assert_array_equal([1, 9], ediff1d(two_elem, to_end=9))
assert_array_equal([1, 7, 8], ediff1d(two_elem, to_end=[7, 8]))
assert_array_equal([7, 1], ediff1d(two_elem, to_begin=7))
assert_array_equal([5, 6, 1], ediff1d(two_elem, to_begin=[5, 6]))
@pytest.mark.parametrize("ary, prepend, append", [
# should fail because trying to cast
# np.nan standard floating point value
# into an integer array:
(np.array([1, 2, 3], dtype=np.int64),
None,
np.nan),
# should fail because attempting
# to downcast to int type:
(np.array([1, 2, 3], dtype=np.int64),
np.array([5, 7, 2], dtype=np.float32),
None),
# should fail because attempting to cast
# two special floating point values
# to integers (on both sides of ary):
(np.array([1., 3., 9.], dtype=np.int8),
np.nan,
np.nan),
])
def test_ediff1d_forbidden_type_casts(self, ary, prepend, append):
# verify resolution of gh-11490
# specifically, raise an appropriate
# Exception when attempting to append or
# prepend with an incompatible type
msg = 'must be compatible'
with assert_raises_regex(TypeError, msg):
ediff1d(ary=ary,
to_end=append,
to_begin=prepend)
@pytest.mark.parametrize(
"ary,prepend,append,expected",
[
(np.array([1, 2, 3], dtype=np.int16),
2**16, # will be cast to int16 under same kind rule.
2**16 + 4,
np.array([0, 1, 1, 4], dtype=np.int16)),
(np.array([1, 2, 3], dtype=np.float32),
np.array([5], dtype=np.float64),
None,
np.array([5, 1, 1], dtype=np.float32)),
(np.array([1, 2, 3], dtype=np.int32),
0,
0,
np.array([0, 1, 1, 0], dtype=np.int32)),
(np.array([1, 2, 3], dtype=np.int64),
3,
-9,
np.array([3, 1, 1, -9], dtype=np.int64)),
]
)
def test_ediff1d_scalar_handling(self,
ary,
prepend,
append,
expected):
# maintain backwards-compatibility
# of scalar prepend / append behavior
# in ediff1d following fix for gh-11490
actual = np.ediff1d(ary=ary,
to_end=append,
to_begin=prepend)
assert_equal(actual, expected)
assert actual.dtype == expected.dtype
def test_isin(self):
# the tests for in1d cover most of isin's behavior
# if in1d is removed, would need to change those tests to test
# isin instead.
def _isin_slow(a, b):
b = np.asarray(b).flatten().tolist()
return a in b
isin_slow = np.vectorize(_isin_slow, otypes=[bool], excluded={1})
def assert_isin_equal(a, b):
x = isin(a, b)
y = isin_slow(a, b)
assert_array_equal(x, y)
# multidimensional arrays in both arguments
a = np.arange(24).reshape([2, 3, 4])
b = np.array([[10, 20, 30], [0, 1, 3], [11, 22, 33]])
assert_isin_equal(a, b)
# array-likes as both arguments
c = [(9, 8), (7, 6)]
d = (9, 7)
assert_isin_equal(c, d)
# zero-d array:
f = np.array(3)
assert_isin_equal(f, b)
assert_isin_equal(a, f)
assert_isin_equal(f, f)
# scalar:
assert_isin_equal(5, b)
assert_isin_equal(a, 6)
assert_isin_equal(5, 6)
# empty array-like:
x = []
assert_isin_equal(x, b)
assert_isin_equal(a, x)
assert_isin_equal(x, x)
def test_in1d(self):
# we use two different sizes for the b array here to test the
# two different paths in in1d().
for mult in (1, 10):
# One check without np.array to make sure lists are handled correct
a = [5, 7, 1, 2]
b = [2, 4, 3, 1, 5] * mult
ec = np.array([True, False, True, True])
c = in1d(a, b, assume_unique=True)
assert_array_equal(c, ec)
a[0] = 8
ec = np.array([False, False, True, True])
c = in1d(a, b, assume_unique=True)
assert_array_equal(c, ec)
a[0], a[3] = 4, 8
ec = np.array([True, False, True, False])
c = in1d(a, b, assume_unique=True)
assert_array_equal(c, ec)
a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5])
b = [2, 3, 4] * mult
ec = [False, True, False, True, True, True, True, True, True,
False, True, False, False, False]
c = in1d(a, b)
assert_array_equal(c, ec)
b = b + [5, 5, 4] * mult
ec = [True, True, True, True, True, True, True, True, True, True,
True, False, True, True]
c = in1d(a, b)
assert_array_equal(c, ec)
a = np.array([5, 7, 1, 2])
b = np.array([2, 4, 3, 1, 5] * mult)
ec = np.array([True, False, True, True])
c = in1d(a, b)
assert_array_equal(c, ec)
a = np.array([5, 7, 1, 1, 2])
b = np.array([2, 4, 3, 3, 1, 5] * mult)
ec = np.array([True, False, True, True, True])
c = in1d(a, b)
assert_array_equal(c, ec)
a = np.array([5, 5])
b = np.array([2, 2] * mult)
ec = np.array([False, False])
c = in1d(a, b)
assert_array_equal(c, ec)
a = np.array([5])
b = np.array([2])
ec = np.array([False])
c = in1d(a, b)
assert_array_equal(c, ec)
assert_array_equal(in1d([], []), [])
def test_in1d_char_array(self):
a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b'])
b = np.array(['a', 'c'])
ec = np.array([True, False, True, False, False, True, False, False])
c = in1d(a, b)
assert_array_equal(c, ec)
def test_in1d_invert(self):
"Test in1d's invert parameter"
# We use two different sizes for the b array here to test the
# two different paths in in1d().
for mult in (1, 10):
a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5])
b = [2, 3, 4] * mult
assert_array_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
def test_in1d_ravel(self):
# Test that in1d ravels its input arrays. This is not documented
# behavior however. The test is to ensure consistentency.
a = np.arange(6).reshape(2, 3)
b = np.arange(3, 9).reshape(3, 2)
long_b = np.arange(3, 63).reshape(30, 2)
ec = np.array([False, False, False, True, True, True])
assert_array_equal(in1d(a, b, assume_unique=True), ec)
assert_array_equal(in1d(a, b, assume_unique=False), ec)
assert_array_equal(in1d(a, long_b, assume_unique=True), ec)
assert_array_equal(in1d(a, long_b, assume_unique=False), ec)
def test_in1d_first_array_is_object(self):
ar1 = [None]
ar2 = np.array([1]*10)
expected = np.array([False])
result = np.in1d(ar1, ar2)
assert_array_equal(result, expected)
def test_in1d_second_array_is_object(self):
ar1 = 1
ar2 = np.array([None]*10)
expected = np.array([False])
result = np.in1d(ar1, ar2)
assert_array_equal(result, expected)
def test_in1d_both_arrays_are_object(self):
ar1 = [None]
ar2 = np.array([None]*10)
expected = np.array([True])
result = np.in1d(ar1, ar2)
assert_array_equal(result, expected)
def test_in1d_both_arrays_have_structured_dtype(self):
# Test arrays of a structured data type containing an integer field
# and a field of dtype `object` allowing for arbitrary Python objects
dt = np.dtype([('field1', int), ('field2', object)])
ar1 = np.array([(1, None)], dtype=dt)
ar2 = np.array([(1, None)]*10, dtype=dt)
expected = np.array([True])
result = np.in1d(ar1, ar2)
assert_array_equal(result, expected)
def test_union1d(self):
a = np.array([5, 4, 7, 1, 2])
b = np.array([2, 4, 3, 3, 2, 1, 5])
ec = np.array([1, 2, 3, 4, 5, 7])
c = union1d(a, b)
assert_array_equal(c, ec)
# Tests gh-10340, arguments to union1d should be
# flattened if they are not already 1D
x = np.array([[0, 1, 2], [3, 4, 5]])
y = np.array([0, 1, 2, 3, 4])
ez = np.array([0, 1, 2, 3, 4, 5])
z = union1d(x, y)
assert_array_equal(z, ez)
assert_array_equal([], union1d([], []))
def test_setdiff1d(self):
a = np.array([6, 5, 4, 7, 1, 2, 7, 4])
b = np.array([2, 4, 3, 3, 2, 1, 5])
ec = np.array([6, 7])
c = setdiff1d(a, b)
assert_array_equal(c, ec)
a = np.arange(21)
b = np.arange(19)
ec = np.array([19, 20])
c = setdiff1d(a, b)
assert_array_equal(c, ec)
assert_array_equal([], setdiff1d([], []))
a = np.array((), np.uint32)
assert_equal(setdiff1d(a, []).dtype, np.uint32)
def test_setdiff1d_unique(self):
a = np.array([3, 2, 1])
b = np.array([7, 5, 2])
expected = np.array([3, 1])
actual = setdiff1d(a, b, assume_unique=True)
assert_equal(actual, expected)
def test_setdiff1d_char_array(self):
a = np.array(['a', 'b', 'c'])
b = np.array(['a', 'b', 's'])
assert_array_equal(setdiff1d(a, b), np.array(['c']))
def test_manyways(self):
a = np.array([5, 7, 1, 2, 8])
b = np.array([9, 8, 2, 4, 3, 1, 5])
c1 = setxor1d(a, b)
aux1 = intersect1d(a, b)
aux2 = union1d(a, b)
c2 = setdiff1d(aux2, aux1)
assert_array_equal(c1, c2)
class TestUnique:
def test_unique_1d(self):
def check_all(a, b, i1, i2, c, dt):
base_msg = 'check {0} failed for type {1}'
msg = base_msg.format('values', dt)
v = unique(a)
assert_array_equal(v, b, msg)
msg = base_msg.format('return_index', dt)
v, j = unique(a, True, False, False)
assert_array_equal(v, b, msg)
assert_array_equal(j, i1, msg)
msg = base_msg.format('return_inverse', dt)
v, j = unique(a, False, True, False)
assert_array_equal(v, b, msg)
assert_array_equal(j, i2, msg)
msg = base_msg.format('return_counts', dt)
v, j = unique(a, False, False, True)
assert_array_equal(v, b, msg)
assert_array_equal(j, c, msg)
msg = base_msg.format('return_index and return_inverse', dt)
v, j1, j2 = unique(a, True, True, False)
assert_array_equal(v, b, msg)
assert_array_equal(j1, i1, msg)
assert_array_equal(j2, i2, msg)
msg = base_msg.format('return_index and return_counts', dt)
v, j1, j2 = unique(a, True, False, True)
assert_array_equal(v, b, msg)
assert_array_equal(j1, i1, msg)
assert_array_equal(j2, c, msg)
msg = base_msg.format('return_inverse and return_counts', dt)
v, j1, j2 = unique(a, False, True, True)
assert_array_equal(v, b, msg)
assert_array_equal(j1, i2, msg)
assert_array_equal(j2, c, msg)
msg = base_msg.format(('return_index, return_inverse '
'and return_counts'), dt)
v, j1, j2, j3 = unique(a, True, True, True)
assert_array_equal(v, b, msg)
assert_array_equal(j1, i1, msg)
assert_array_equal(j2, i2, msg)
assert_array_equal(j3, c, msg)
a = [5, 7, 1, 2, 1, 5, 7]*10
b = [1, 2, 5, 7]
i1 = [2, 3, 0, 1]
i2 = [2, 3, 0, 1, 0, 2, 3]*10
c = np.multiply([2, 1, 2, 2], 10)
# test for numeric arrays
types = []
types.extend(np.typecodes['AllInteger'])
types.extend(np.typecodes['AllFloat'])
types.append('datetime64[D]')
types.append('timedelta64[D]')
for dt in types:
aa = np.array(a, dt)
bb = np.array(b, dt)
check_all(aa, bb, i1, i2, c, dt)
# test for object arrays
dt = 'O'
aa = np.empty(len(a), dt)
aa[:] = a
bb = np.empty(len(b), dt)
bb[:] = b
check_all(aa, bb, i1, i2, c, dt)
# test for structured arrays
dt = [('', 'i'), ('', 'i')]
aa = np.array(list(zip(a, a)), dt)
bb = np.array(list(zip(b, b)), dt)
check_all(aa, bb, i1, i2, c, dt)
# test for ticket #2799
aa = [1. + 0.j, 1 - 1.j, 1]
assert_array_equal(np.unique(aa), [1. - 1.j, 1. + 0.j])
# test for ticket #4785
a = [(1, 2), (1, 2), (2, 3)]
unq = [1, 2, 3]
inv = [0, 1, 0, 1, 1, 2]
a1 = unique(a)
assert_array_equal(a1, unq)
a2, a2_inv = unique(a, return_inverse=True)
assert_array_equal(a2, unq)
assert_array_equal(a2_inv, inv)
# test for chararrays with return_inverse (gh-5099)
a = np.chararray(5)
a[...] = ''
a2, a2_inv = np.unique(a, return_inverse=True)
assert_array_equal(a2_inv, np.zeros(5))
# test for ticket #9137
a = []
a1_idx = np.unique(a, return_index=True)[1]
a2_inv = np.unique(a, return_inverse=True)[1]
a3_idx, a3_inv = np.unique(a, return_index=True,
return_inverse=True)[1:]
assert_equal(a1_idx.dtype, np.intp)
assert_equal(a2_inv.dtype, np.intp)
assert_equal(a3_idx.dtype, np.intp)
assert_equal(a3_inv.dtype, np.intp)
def test_unique_axis_errors(self):
assert_raises(TypeError, self._run_axis_tests, object)
assert_raises(TypeError, self._run_axis_tests,
[('a', int), ('b', object)])
assert_raises(np.AxisError, unique, np.arange(10), axis=2)
assert_raises(np.AxisError, unique, np.arange(10), axis=-2)
def test_unique_axis_list(self):
msg = "Unique failed on list of lists"
inp = [[0, 1, 0], [0, 1, 0]]
inp_arr = np.asarray(inp)
assert_array_equal(unique(inp, axis=0), unique(inp_arr, axis=0), msg)
assert_array_equal(unique(inp, axis=1), unique(inp_arr, axis=1), msg)
def test_unique_axis(self):
types = []
types.extend(np.typecodes['AllInteger'])
types.extend(np.typecodes['AllFloat'])
types.append('datetime64[D]')
types.append('timedelta64[D]')
types.append([('a', int), ('b', int)])
types.append([('a', int), ('b', float)])
for dtype in types:
self._run_axis_tests(dtype)
msg = 'Non-bitwise-equal booleans test failed'
data = np.arange(10, dtype=np.uint8).reshape(-1, 2).view(bool)
result = np.array([[False, True], [True, True]], dtype=bool)
assert_array_equal(unique(data, axis=0), result, msg)
msg = 'Negative zero equality test failed'
data = np.array([[-0.0, 0.0], [0.0, -0.0], [-0.0, 0.0], [0.0, -0.0]])
result = np.array([[-0.0, 0.0]])
assert_array_equal(unique(data, axis=0), result, msg)
@pytest.mark.parametrize("axis", [0, -1])
def test_unique_1d_with_axis(self, axis):
x = np.array([4, 3, 2, 3, 2, 1, 2, 2])
uniq = unique(x, axis=axis)
assert_array_equal(uniq, [1, 2, 3, 4])
def test_unique_axis_zeros(self):
# issue 15559
single_zero = np.empty(shape=(2, 0), dtype=np.int8)
uniq, idx, inv, cnt = unique(single_zero, axis=0, return_index=True,
return_inverse=True, return_counts=True)
# there's 1 element of shape (0,) along axis 0
assert_equal(uniq.dtype, single_zero.dtype)
assert_array_equal(uniq, np.empty(shape=(1, 0)))
assert_array_equal(idx, np.array([0]))
assert_array_equal(inv, np.array([0, 0]))
assert_array_equal(cnt, np.array([2]))
# there's 0 elements of shape (2,) along axis 1
uniq, idx, inv, cnt = unique(single_zero, axis=1, return_index=True,
return_inverse=True, return_counts=True)
assert_equal(uniq.dtype, single_zero.dtype)
assert_array_equal(uniq, np.empty(shape=(2, 0)))
assert_array_equal(idx, np.array([]))
assert_array_equal(inv, np.array([]))
assert_array_equal(cnt, np.array([]))
# test a "complicated" shape
shape = (0, 2, 0, 3, 0, 4, 0)
multiple_zeros = np.empty(shape=shape)
for axis in range(len(shape)):
expected_shape = list(shape)
if shape[axis] == 0:
expected_shape[axis] = 0
else:
expected_shape[axis] = 1
assert_array_equal(unique(multiple_zeros, axis=axis),
np.empty(shape=expected_shape))
def test_unique_masked(self):
# issue 8664
x = np.array([64, 0, 1, 2, 3, 63, 63, 0, 0, 0, 1, 2, 0, 63, 0],
dtype='uint8')
y = np.ma.masked_equal(x, 0)
v = np.unique(y)
v2, i, c = np.unique(y, return_index=True, return_counts=True)
msg = 'Unique returned different results when asked for index'
assert_array_equal(v.data, v2.data, msg)
assert_array_equal(v.mask, v2.mask, msg)
def test_unique_sort_order_with_axis(self):
# These tests fail if sorting along axis is done by treating subarrays
# as unsigned byte strings. See gh-10495.
fmt = "sort order incorrect for integer type '%s'"
for dt in 'bhilq':
a = np.array([[-1], [0]], dt)
b = np.unique(a, axis=0)
assert_array_equal(a, b, fmt % dt)
def _run_axis_tests(self, dtype):
data = np.array([[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[1, 0, 0, 0]]).astype(dtype)
msg = 'Unique with 1d array and axis=0 failed'
result = np.array([0, 1])
assert_array_equal(unique(data), result.astype(dtype), msg)
msg = 'Unique with 2d array and axis=0 failed'
result = np.array([[0, 1, 0, 0], [1, 0, 0, 0]])
assert_array_equal(unique(data, axis=0), result.astype(dtype), msg)
msg = 'Unique with 2d array and axis=1 failed'
result = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1], [0, 1, 0]])
assert_array_equal(unique(data, axis=1), result.astype(dtype), msg)
msg = 'Unique with 3d array and axis=2 failed'
data3d = np.array([[[1, 1],
[1, 0]],
[[0, 1],
[0, 0]]]).astype(dtype)
result = np.take(data3d, [1, 0], axis=2)
assert_array_equal(unique(data3d, axis=2), result, msg)
uniq, idx, inv, cnt = unique(data, axis=0, return_index=True,
return_inverse=True, return_counts=True)
msg = "Unique's return_index=True failed with axis=0"
assert_array_equal(data[idx], uniq, msg)
msg = "Unique's return_inverse=True failed with axis=0"
assert_array_equal(uniq[inv], data)
msg = "Unique's return_counts=True failed with axis=0"
assert_array_equal(cnt, np.array([2, 2]), msg)
uniq, idx, inv, cnt = unique(data, axis=1, return_index=True,
return_inverse=True, return_counts=True)
msg = "Unique's return_index=True failed with axis=1"
assert_array_equal(data[:, idx], uniq)
msg = "Unique's return_inverse=True failed with axis=1"
assert_array_equal(uniq[:, inv], data)
msg = "Unique's return_counts=True failed with axis=1"
assert_array_equal(cnt, np.array([2, 1, 1]), msg)

View file

@ -0,0 +1,46 @@
from operator import mul
from functools import reduce
import numpy as np
from numpy.random import randint
from numpy.lib import Arrayterator
from numpy.testing import assert_
def test():
np.random.seed(np.arange(10))
# Create a random array
ndims = randint(5)+1
shape = tuple(randint(10)+1 for dim in range(ndims))
els = reduce(mul, shape)
a = np.arange(els)
a.shape = shape
buf_size = randint(2*els)
b = Arrayterator(a, buf_size)
# Check that each block has at most ``buf_size`` elements
for block in b:
assert_(len(block.flat) <= (buf_size or els))
# Check that all elements are iterated correctly
assert_(list(b.flat) == list(a.flat))
# Slice arrayterator
start = [randint(dim) for dim in shape]
stop = [randint(dim)+1 for dim in shape]
step = [randint(dim)+1 for dim in shape]
slice_ = tuple(slice(*t) for t in zip(start, stop, step))
c = b[slice_]
d = a[slice_]
# Check that each block has at most ``buf_size`` elements
for block in c:
assert_(len(block.flat) <= (buf_size or els))
# Check that the arrayterator is sliced correctly
assert_(np.all(c.__array__() == d))
# Check that all elements are iterated correctly
assert_(list(c.flat) == list(d.flat))

View file

@ -0,0 +1,380 @@
import warnings
from decimal import Decimal
import numpy as np
from numpy.testing import (
assert_, assert_almost_equal, assert_allclose, assert_equal, assert_raises
)
def filter_deprecation(func):
def newfunc(*args, **kwargs):
with warnings.catch_warnings(record=True) as ws:
warnings.filterwarnings('always', category=DeprecationWarning)
func(*args, **kwargs)
assert_(all(w.category is DeprecationWarning for w in ws))
return newfunc
class TestFinancial:
@filter_deprecation
def test_npv_irr_congruence(self):
# IRR is defined as the rate required for the present value of a
# a series of cashflows to be zero i.e. NPV(IRR(x), x) = 0
cashflows = np.array([-40000, 5000, 8000, 12000, 30000])
assert_allclose(np.npv(np.irr(cashflows), cashflows), 0, atol=1e-10, rtol=0)
@filter_deprecation
def test_rate(self):
assert_almost_equal(
np.rate(10, 0, -3500, 10000),
0.1107, 4)
@filter_deprecation
def test_rate_decimal(self):
rate = np.rate(Decimal('10'), Decimal('0'), Decimal('-3500'), Decimal('10000'))
assert_equal(Decimal('0.1106908537142689284704528100'), rate)
@filter_deprecation
def test_irr(self):
v = [-150000, 15000, 25000, 35000, 45000, 60000]
assert_almost_equal(np.irr(v), 0.0524, 2)
v = [-100, 0, 0, 74]
assert_almost_equal(np.irr(v), -0.0955, 2)
v = [-100, 39, 59, 55, 20]
assert_almost_equal(np.irr(v), 0.28095, 2)
v = [-100, 100, 0, -7]
assert_almost_equal(np.irr(v), -0.0833, 2)
v = [-100, 100, 0, 7]
assert_almost_equal(np.irr(v), 0.06206, 2)
v = [-5, 10.5, 1, -8, 1]
assert_almost_equal(np.irr(v), 0.0886, 2)
# Test that if there is no solution then np.irr returns nan
# Fixes gh-6744
v = [-1, -2, -3]
assert_equal(np.irr(v), np.nan)
@filter_deprecation
def test_pv(self):
assert_almost_equal(np.pv(0.07, 20, 12000, 0), -127128.17, 2)
@filter_deprecation
def test_pv_decimal(self):
assert_equal(np.pv(Decimal('0.07'), Decimal('20'), Decimal('12000'), Decimal('0')),
Decimal('-127128.1709461939327295222005'))
@filter_deprecation
def test_fv(self):
assert_equal(np.fv(0.075, 20, -2000, 0, 0), 86609.362673042924)
@filter_deprecation
def test_fv_decimal(self):
assert_equal(np.fv(Decimal('0.075'), Decimal('20'), Decimal('-2000'), 0, 0),
Decimal('86609.36267304300040536731624'))
@filter_deprecation
def test_pmt(self):
res = np.pmt(0.08 / 12, 5 * 12, 15000)
tgt = -304.145914
assert_allclose(res, tgt)
# Test the edge case where rate == 0.0
res = np.pmt(0.0, 5 * 12, 15000)
tgt = -250.0
assert_allclose(res, tgt)
# Test the case where we use broadcast and
# the arguments passed in are arrays.
res = np.pmt([[0.0, 0.8], [0.3, 0.8]], [12, 3], [2000, 20000])
tgt = np.array([[-166.66667, -19311.258], [-626.90814, -19311.258]])
assert_allclose(res, tgt)
@filter_deprecation
def test_pmt_decimal(self):
res = np.pmt(Decimal('0.08') / Decimal('12'), 5 * 12, 15000)
tgt = Decimal('-304.1459143262052370338701494')
assert_equal(res, tgt)
# Test the edge case where rate == 0.0
res = np.pmt(Decimal('0'), Decimal('60'), Decimal('15000'))
tgt = -250
assert_equal(res, tgt)
# Test the case where we use broadcast and
# the arguments passed in are arrays.
res = np.pmt([[Decimal('0'), Decimal('0.8')], [Decimal('0.3'), Decimal('0.8')]],
[Decimal('12'), Decimal('3')], [Decimal('2000'), Decimal('20000')])
tgt = np.array([[Decimal('-166.6666666666666666666666667'), Decimal('-19311.25827814569536423841060')],
[Decimal('-626.9081401700757748402586600'), Decimal('-19311.25827814569536423841060')]])
# Cannot use the `assert_allclose` because it uses isfinite under the covers
# which does not support the Decimal type
# See issue: https://github.com/numpy/numpy/issues/9954
assert_equal(res[0][0], tgt[0][0])
assert_equal(res[0][1], tgt[0][1])
assert_equal(res[1][0], tgt[1][0])
assert_equal(res[1][1], tgt[1][1])
@filter_deprecation
def test_ppmt(self):
assert_equal(np.round(np.ppmt(0.1 / 12, 1, 60, 55000), 2), -710.25)
@filter_deprecation
def test_ppmt_decimal(self):
assert_equal(np.ppmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('60'), Decimal('55000')),
Decimal('-710.2541257864217612489830917'))
# Two tests showing how Decimal is actually getting at a more exact result
# .23 / 12 does not come out nicely as a float but does as a decimal
@filter_deprecation
def test_ppmt_special_rate(self):
assert_equal(np.round(np.ppmt(0.23 / 12, 1, 60, 10000000000), 8), -90238044.232277036)
@filter_deprecation
def test_ppmt_special_rate_decimal(self):
# When rounded out to 8 decimal places like the float based test, this should not equal the same value
# as the float, substituted for the decimal
def raise_error_because_not_equal():
assert_equal(
round(np.ppmt(Decimal('0.23') / Decimal('12'), 1, 60, Decimal('10000000000')), 8),
Decimal('-90238044.232277036'))
assert_raises(AssertionError, raise_error_because_not_equal)
assert_equal(np.ppmt(Decimal('0.23') / Decimal('12'), 1, 60, Decimal('10000000000')),
Decimal('-90238044.2322778884413969909'))
@filter_deprecation
def test_ipmt(self):
assert_almost_equal(np.round(np.ipmt(0.1 / 12, 1, 24, 2000), 2), -16.67)
@filter_deprecation
def test_ipmt_decimal(self):
result = np.ipmt(Decimal('0.1') / Decimal('12'), 1, 24, 2000)
assert_equal(result.flat[0], Decimal('-16.66666666666666666666666667'))
@filter_deprecation
def test_nper(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
21.54, 2)
@filter_deprecation
def test_nper2(self):
assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
50.0, 1)
@filter_deprecation
def test_npv(self):
assert_almost_equal(
np.npv(0.05, [-15000, 1500, 2500, 3500, 4500, 6000]),
122.89, 2)
@filter_deprecation
def test_npv_decimal(self):
assert_equal(
np.npv(Decimal('0.05'), [-15000, 1500, 2500, 3500, 4500, 6000]),
Decimal('122.894854950942692161628715'))
@filter_deprecation
def test_mirr(self):
val = [-4500, -800, 800, 800, 600, 600, 800, 800, 700, 3000]
assert_almost_equal(np.mirr(val, 0.08, 0.055), 0.0666, 4)
val = [-120000, 39000, 30000, 21000, 37000, 46000]
assert_almost_equal(np.mirr(val, 0.10, 0.12), 0.126094, 6)
val = [100, 200, -50, 300, -200]
assert_almost_equal(np.mirr(val, 0.05, 0.06), 0.3428, 4)
val = [39000, 30000, 21000, 37000, 46000]
assert_(np.isnan(np.mirr(val, 0.10, 0.12)))
@filter_deprecation
def test_mirr_decimal(self):
val = [Decimal('-4500'), Decimal('-800'), Decimal('800'), Decimal('800'),
Decimal('600'), Decimal('600'), Decimal('800'), Decimal('800'),
Decimal('700'), Decimal('3000')]
assert_equal(np.mirr(val, Decimal('0.08'), Decimal('0.055')),
Decimal('0.066597175031553548874239618'))
val = [Decimal('-120000'), Decimal('39000'), Decimal('30000'),
Decimal('21000'), Decimal('37000'), Decimal('46000')]
assert_equal(np.mirr(val, Decimal('0.10'), Decimal('0.12')), Decimal('0.126094130365905145828421880'))
val = [Decimal('100'), Decimal('200'), Decimal('-50'),
Decimal('300'), Decimal('-200')]
assert_equal(np.mirr(val, Decimal('0.05'), Decimal('0.06')), Decimal('0.342823387842176663647819868'))
val = [Decimal('39000'), Decimal('30000'), Decimal('21000'), Decimal('37000'), Decimal('46000')]
assert_(np.isnan(np.mirr(val, Decimal('0.10'), Decimal('0.12'))))
@filter_deprecation
def test_when(self):
# begin
assert_equal(np.rate(10, 20, -3500, 10000, 1),
np.rate(10, 20, -3500, 10000, 'begin'))
# end
assert_equal(np.rate(10, 20, -3500, 10000),
np.rate(10, 20, -3500, 10000, 'end'))
assert_equal(np.rate(10, 20, -3500, 10000, 0),
np.rate(10, 20, -3500, 10000, 'end'))
# begin
assert_equal(np.pv(0.07, 20, 12000, 0, 1),
np.pv(0.07, 20, 12000, 0, 'begin'))
# end
assert_equal(np.pv(0.07, 20, 12000, 0),
np.pv(0.07, 20, 12000, 0, 'end'))
assert_equal(np.pv(0.07, 20, 12000, 0, 0),
np.pv(0.07, 20, 12000, 0, 'end'))
# begin
assert_equal(np.fv(0.075, 20, -2000, 0, 1),
np.fv(0.075, 20, -2000, 0, 'begin'))
# end
assert_equal(np.fv(0.075, 20, -2000, 0),
np.fv(0.075, 20, -2000, 0, 'end'))
assert_equal(np.fv(0.075, 20, -2000, 0, 0),
np.fv(0.075, 20, -2000, 0, 'end'))
# begin
assert_equal(np.pmt(0.08 / 12, 5 * 12, 15000., 0, 1),
np.pmt(0.08 / 12, 5 * 12, 15000., 0, 'begin'))
# end
assert_equal(np.pmt(0.08 / 12, 5 * 12, 15000., 0),
np.pmt(0.08 / 12, 5 * 12, 15000., 0, 'end'))
assert_equal(np.pmt(0.08 / 12, 5 * 12, 15000., 0, 0),
np.pmt(0.08 / 12, 5 * 12, 15000., 0, 'end'))
# begin
assert_equal(np.ppmt(0.1 / 12, 1, 60, 55000, 0, 1),
np.ppmt(0.1 / 12, 1, 60, 55000, 0, 'begin'))
# end
assert_equal(np.ppmt(0.1 / 12, 1, 60, 55000, 0),
np.ppmt(0.1 / 12, 1, 60, 55000, 0, 'end'))
assert_equal(np.ppmt(0.1 / 12, 1, 60, 55000, 0, 0),
np.ppmt(0.1 / 12, 1, 60, 55000, 0, 'end'))
# begin
assert_equal(np.ipmt(0.1 / 12, 1, 24, 2000, 0, 1),
np.ipmt(0.1 / 12, 1, 24, 2000, 0, 'begin'))
# end
assert_equal(np.ipmt(0.1 / 12, 1, 24, 2000, 0),
np.ipmt(0.1 / 12, 1, 24, 2000, 0, 'end'))
assert_equal(np.ipmt(0.1 / 12, 1, 24, 2000, 0, 0),
np.ipmt(0.1 / 12, 1, 24, 2000, 0, 'end'))
# begin
assert_equal(np.nper(0.075, -2000, 0, 100000., 1),
np.nper(0.075, -2000, 0, 100000., 'begin'))
# end
assert_equal(np.nper(0.075, -2000, 0, 100000.),
np.nper(0.075, -2000, 0, 100000., 'end'))
assert_equal(np.nper(0.075, -2000, 0, 100000., 0),
np.nper(0.075, -2000, 0, 100000., 'end'))
@filter_deprecation
def test_decimal_with_when(self):
"""Test that decimals are still supported if the when argument is passed"""
# begin
assert_equal(np.rate(Decimal('10'), Decimal('20'), Decimal('-3500'), Decimal('10000'), Decimal('1')),
np.rate(Decimal('10'), Decimal('20'), Decimal('-3500'), Decimal('10000'), 'begin'))
# end
assert_equal(np.rate(Decimal('10'), Decimal('20'), Decimal('-3500'), Decimal('10000')),
np.rate(Decimal('10'), Decimal('20'), Decimal('-3500'), Decimal('10000'), 'end'))
assert_equal(np.rate(Decimal('10'), Decimal('20'), Decimal('-3500'), Decimal('10000'), Decimal('0')),
np.rate(Decimal('10'), Decimal('20'), Decimal('-3500'), Decimal('10000'), 'end'))
# begin
assert_equal(np.pv(Decimal('0.07'), Decimal('20'), Decimal('12000'), Decimal('0'), Decimal('1')),
np.pv(Decimal('0.07'), Decimal('20'), Decimal('12000'), Decimal('0'), 'begin'))
# end
assert_equal(np.pv(Decimal('0.07'), Decimal('20'), Decimal('12000'), Decimal('0')),
np.pv(Decimal('0.07'), Decimal('20'), Decimal('12000'), Decimal('0'), 'end'))
assert_equal(np.pv(Decimal('0.07'), Decimal('20'), Decimal('12000'), Decimal('0'), Decimal('0')),
np.pv(Decimal('0.07'), Decimal('20'), Decimal('12000'), Decimal('0'), 'end'))
# begin
assert_equal(np.fv(Decimal('0.075'), Decimal('20'), Decimal('-2000'), Decimal('0'), Decimal('1')),
np.fv(Decimal('0.075'), Decimal('20'), Decimal('-2000'), Decimal('0'), 'begin'))
# end
assert_equal(np.fv(Decimal('0.075'), Decimal('20'), Decimal('-2000'), Decimal('0')),
np.fv(Decimal('0.075'), Decimal('20'), Decimal('-2000'), Decimal('0'), 'end'))
assert_equal(np.fv(Decimal('0.075'), Decimal('20'), Decimal('-2000'), Decimal('0'), Decimal('0')),
np.fv(Decimal('0.075'), Decimal('20'), Decimal('-2000'), Decimal('0'), 'end'))
# begin
assert_equal(np.pmt(Decimal('0.08') / Decimal('12'), Decimal('5') * Decimal('12'), Decimal('15000.'),
Decimal('0'), Decimal('1')),
np.pmt(Decimal('0.08') / Decimal('12'), Decimal('5') * Decimal('12'), Decimal('15000.'),
Decimal('0'), 'begin'))
# end
assert_equal(np.pmt(Decimal('0.08') / Decimal('12'), Decimal('5') * Decimal('12'), Decimal('15000.'),
Decimal('0')),
np.pmt(Decimal('0.08') / Decimal('12'), Decimal('5') * Decimal('12'), Decimal('15000.'),
Decimal('0'), 'end'))
assert_equal(np.pmt(Decimal('0.08') / Decimal('12'), Decimal('5') * Decimal('12'), Decimal('15000.'),
Decimal('0'), Decimal('0')),
np.pmt(Decimal('0.08') / Decimal('12'), Decimal('5') * Decimal('12'), Decimal('15000.'),
Decimal('0'), 'end'))
# begin
assert_equal(np.ppmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('60'), Decimal('55000'),
Decimal('0'), Decimal('1')),
np.ppmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('60'), Decimal('55000'),
Decimal('0'), 'begin'))
# end
assert_equal(np.ppmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('60'), Decimal('55000'),
Decimal('0')),
np.ppmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('60'), Decimal('55000'),
Decimal('0'), 'end'))
assert_equal(np.ppmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('60'), Decimal('55000'),
Decimal('0'), Decimal('0')),
np.ppmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('60'), Decimal('55000'),
Decimal('0'), 'end'))
# begin
assert_equal(np.ipmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('24'), Decimal('2000'),
Decimal('0'), Decimal('1')).flat[0],
np.ipmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('24'), Decimal('2000'),
Decimal('0'), 'begin').flat[0])
# end
assert_equal(np.ipmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('24'), Decimal('2000'),
Decimal('0')).flat[0],
np.ipmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('24'), Decimal('2000'),
Decimal('0'), 'end').flat[0])
assert_equal(np.ipmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('24'), Decimal('2000'),
Decimal('0'), Decimal('0')).flat[0],
np.ipmt(Decimal('0.1') / Decimal('12'), Decimal('1'), Decimal('24'), Decimal('2000'),
Decimal('0'), 'end').flat[0])
@filter_deprecation
def test_broadcast(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
[21.5449442, 20.76156441], 4)
assert_almost_equal(np.ipmt(0.1 / 12, list(range(5)), 24, 2000),
[-17.29165168, -16.66666667, -16.03647345,
-15.40102862, -14.76028842], 4)
assert_almost_equal(np.ppmt(0.1 / 12, list(range(5)), 24, 2000),
[-74.998201, -75.62318601, -76.25337923,
-76.88882405, -77.52956425], 4)
assert_almost_equal(np.ppmt(0.1 / 12, list(range(5)), 24, 2000, 0,
[0, 0, 1, 'end', 'begin']),
[-74.998201, -75.62318601, -75.62318601,
-76.88882405, -76.88882405], 4)
@filter_deprecation
def test_broadcast_decimal(self):
# Use almost equal because precision is tested in the explicit tests, this test is to ensure
# broadcast with Decimal is not broken.
assert_almost_equal(np.ipmt(Decimal('0.1') / Decimal('12'), list(range(5)), Decimal('24'), Decimal('2000')),
[Decimal('-17.29165168'), Decimal('-16.66666667'), Decimal('-16.03647345'),
Decimal('-15.40102862'), Decimal('-14.76028842')], 4)
assert_almost_equal(np.ppmt(Decimal('0.1') / Decimal('12'), list(range(5)), Decimal('24'), Decimal('2000')),
[Decimal('-74.998201'), Decimal('-75.62318601'), Decimal('-76.25337923'),
Decimal('-76.88882405'), Decimal('-77.52956425')], 4)
assert_almost_equal(np.ppmt(Decimal('0.1') / Decimal('12'), list(range(5)), Decimal('24'), Decimal('2000'),
Decimal('0'), [Decimal('0'), Decimal('0'), Decimal('1'), 'end', 'begin']),
[Decimal('-74.998201'), Decimal('-75.62318601'), Decimal('-75.62318601'),
Decimal('-76.88882405'), Decimal('-76.88882405')], 4)

View file

@ -0,0 +1,982 @@
# doctest
r''' Test the .npy file format.
Set up:
>>> import sys
>>> from io import BytesIO
>>> from numpy.lib import format
>>>
>>> scalars = [
... np.uint8,
... np.int8,
... np.uint16,
... np.int16,
... np.uint32,
... np.int32,
... np.uint64,
... np.int64,
... np.float32,
... np.float64,
... np.complex64,
... np.complex128,
... object,
... ]
>>>
>>> basic_arrays = []
>>>
>>> for scalar in scalars:
... for endian in '<>':
... dtype = np.dtype(scalar).newbyteorder(endian)
... basic = np.arange(15).astype(dtype)
... basic_arrays.extend([
... np.array([], dtype=dtype),
... np.array(10, dtype=dtype),
... basic,
... basic.reshape((3,5)),
... basic.reshape((3,5)).T,
... basic.reshape((3,5))[::-1,::2],
... ])
...
>>>
>>> Pdescr = [
... ('x', 'i4', (2,)),
... ('y', 'f8', (2, 2)),
... ('z', 'u1')]
>>>
>>>
>>> PbufferT = [
... ([3,2], [[6.,4.],[6.,4.]], 8),
... ([4,3], [[7.,5.],[7.,5.]], 9),
... ]
>>>
>>>
>>> Ndescr = [
... ('x', 'i4', (2,)),
... ('Info', [
... ('value', 'c16'),
... ('y2', 'f8'),
... ('Info2', [
... ('name', 'S2'),
... ('value', 'c16', (2,)),
... ('y3', 'f8', (2,)),
... ('z3', 'u4', (2,))]),
... ('name', 'S2'),
... ('z2', 'b1')]),
... ('color', 'S2'),
... ('info', [
... ('Name', 'U8'),
... ('Value', 'c16')]),
... ('y', 'f8', (2, 2)),
... ('z', 'u1')]
>>>
>>>
>>> NbufferT = [
... ([3,2], (6j, 6., ('nn', [6j,4j], [6.,4.], [1,2]), 'NN', True), 'cc', ('NN', 6j), [[6.,4.],[6.,4.]], 8),
... ([4,3], (7j, 7., ('oo', [7j,5j], [7.,5.], [2,1]), 'OO', False), 'dd', ('OO', 7j), [[7.,5.],[7.,5.]], 9),
... ]
>>>
>>>
>>> record_arrays = [
... np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('<')),
... np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('<')),
... np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('>')),
... np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('>')),
... ]
Test the magic string writing.
>>> format.magic(1, 0)
'\x93NUMPY\x01\x00'
>>> format.magic(0, 0)
'\x93NUMPY\x00\x00'
>>> format.magic(255, 255)
'\x93NUMPY\xff\xff'
>>> format.magic(2, 5)
'\x93NUMPY\x02\x05'
Test the magic string reading.
>>> format.read_magic(BytesIO(format.magic(1, 0)))
(1, 0)
>>> format.read_magic(BytesIO(format.magic(0, 0)))
(0, 0)
>>> format.read_magic(BytesIO(format.magic(255, 255)))
(255, 255)
>>> format.read_magic(BytesIO(format.magic(2, 5)))
(2, 5)
Test the header writing.
>>> for arr in basic_arrays + record_arrays:
... f = BytesIO()
... format.write_array_header_1_0(f, arr) # XXX: arr is not a dict, items gets called on it
... print(repr(f.getvalue()))
...
"F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '|u1', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '|u1', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '|u1', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '|u1', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '|i1', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '|i1', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '|i1', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '|i1', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '<u2', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '<u2', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '<u2', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '<u2', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '<u2', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '<u2', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '>u2', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '>u2', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '>u2', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '>u2', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '>u2', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '>u2', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '<i2', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '<i2', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '<i2', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '<i2', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '<i2', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '<i2', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '>i2', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '>i2', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '>i2', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '>i2', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '>i2', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '>i2', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '<u4', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '<u4', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '<u4', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '<u4', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '<u4', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '<u4', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '>u4', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '>u4', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '>u4', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '>u4', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '>u4', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '>u4', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '<i4', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '<i4', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '<i4', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '<i4', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '<i4', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '<i4', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '>i4', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '>i4', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '>i4', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '>i4', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '>i4', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '>i4', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '<u8', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '<u8', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '<u8', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '<u8', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '<u8', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '<u8', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '>u8', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '>u8', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '>u8', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '>u8', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '>u8', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '>u8', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '<i8', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '<i8', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '<i8', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '<i8', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '<i8', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '<i8', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '>i8', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '>i8', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '>i8', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '>i8', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '>i8', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '>i8', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '<f4', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '<f4', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '<f4', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '<f4', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '<f4', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '<f4', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '>f4', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '>f4', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '>f4', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '>f4', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '>f4', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '>f4', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '<f8', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '<f8', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '<f8', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '<f8', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '<f8', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '<f8', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '>f8', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '>f8', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '>f8', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '>f8', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '>f8', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '>f8', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '<c8', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '<c8', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '<c8', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '<c8', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '<c8', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '<c8', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '>c8', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '>c8', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '>c8', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '>c8', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '>c8', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '>c8', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '<c16', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '<c16', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '<c16', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '<c16', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '<c16', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '<c16', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': '>c16', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': '>c16', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': '>c16', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': '>c16', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': '>c16', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': '>c16', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': 'O', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': 'O', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': 'O', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': 'O', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 3)} \n"
"F\x00{'descr': 'O', 'fortran_order': False, 'shape': (0,)} \n"
"F\x00{'descr': 'O', 'fortran_order': False, 'shape': ()} \n"
"F\x00{'descr': 'O', 'fortran_order': False, 'shape': (15,)} \n"
"F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 5)} \n"
"F\x00{'descr': 'O', 'fortran_order': True, 'shape': (5, 3)} \n"
"F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 3)} \n"
"v\x00{'descr': [('x', '<i4', (2,)), ('y', '<f8', (2, 2)), ('z', '|u1')],\n 'fortran_order': False,\n 'shape': (2,)} \n"
"\x16\x02{'descr': [('x', '<i4', (2,)),\n ('Info',\n [('value', '<c16'),\n ('y2', '<f8'),\n ('Info2',\n [('name', '|S2'),\n ('value', '<c16', (2,)),\n ('y3', '<f8', (2,)),\n ('z3', '<u4', (2,))]),\n ('name', '|S2'),\n ('z2', '|b1')]),\n ('color', '|S2'),\n ('info', [('Name', '<U8'), ('Value', '<c16')]),\n ('y', '<f8', (2, 2)),\n ('z', '|u1')],\n 'fortran_order': False,\n 'shape': (2,)} \n"
"v\x00{'descr': [('x', '>i4', (2,)), ('y', '>f8', (2, 2)), ('z', '|u1')],\n 'fortran_order': False,\n 'shape': (2,)} \n"
"\x16\x02{'descr': [('x', '>i4', (2,)),\n ('Info',\n [('value', '>c16'),\n ('y2', '>f8'),\n ('Info2',\n [('name', '|S2'),\n ('value', '>c16', (2,)),\n ('y3', '>f8', (2,)),\n ('z3', '>u4', (2,))]),\n ('name', '|S2'),\n ('z2', '|b1')]),\n ('color', '|S2'),\n ('info', [('Name', '>U8'), ('Value', '>c16')]),\n ('y', '>f8', (2, 2)),\n ('z', '|u1')],\n 'fortran_order': False,\n 'shape': (2,)} \n"
'''
import sys
import os
import shutil
import tempfile
import warnings
import pytest
from io import BytesIO
import numpy as np
from numpy.testing import (
assert_, assert_array_equal, assert_raises, assert_raises_regex,
assert_warns
)
from numpy.lib import format
tempdir = None
# Module-level setup.
def setup_module():
global tempdir
tempdir = tempfile.mkdtemp()
def teardown_module():
global tempdir
if tempdir is not None and os.path.isdir(tempdir):
shutil.rmtree(tempdir)
tempdir = None
# Generate some basic arrays to test with.
scalars = [
np.uint8,
np.int8,
np.uint16,
np.int16,
np.uint32,
np.int32,
np.uint64,
np.int64,
np.float32,
np.float64,
np.complex64,
np.complex128,
object,
]
basic_arrays = []
for scalar in scalars:
for endian in '<>':
dtype = np.dtype(scalar).newbyteorder(endian)
basic = np.arange(1500).astype(dtype)
basic_arrays.extend([
# Empty
np.array([], dtype=dtype),
# Rank-0
np.array(10, dtype=dtype),
# 1-D
basic,
# 2-D C-contiguous
basic.reshape((30, 50)),
# 2-D F-contiguous
basic.reshape((30, 50)).T,
# 2-D non-contiguous
basic.reshape((30, 50))[::-1, ::2],
])
# More complicated record arrays.
# This is the structure of the table used for plain objects:
#
# +-+-+-+
# |x|y|z|
# +-+-+-+
# Structure of a plain array description:
Pdescr = [
('x', 'i4', (2,)),
('y', 'f8', (2, 2)),
('z', 'u1')]
# A plain list of tuples with values for testing:
PbufferT = [
# x y z
([3, 2], [[6., 4.], [6., 4.]], 8),
([4, 3], [[7., 5.], [7., 5.]], 9),
]
# This is the structure of the table used for nested objects (DON'T PANIC!):
#
# +-+---------------------------------+-----+----------+-+-+
# |x|Info |color|info |y|z|
# | +-----+--+----------------+----+--+ +----+-----+ | |
# | |value|y2|Info2 |name|z2| |Name|Value| | |
# | | | +----+-----+--+--+ | | | | | | |
# | | | |name|value|y3|z3| | | | | | | |
# +-+-----+--+----+-----+--+--+----+--+-----+----+-----+-+-+
#
# The corresponding nested array description:
Ndescr = [
('x', 'i4', (2,)),
('Info', [
('value', 'c16'),
('y2', 'f8'),
('Info2', [
('name', 'S2'),
('value', 'c16', (2,)),
('y3', 'f8', (2,)),
('z3', 'u4', (2,))]),
('name', 'S2'),
('z2', 'b1')]),
('color', 'S2'),
('info', [
('Name', 'U8'),
('Value', 'c16')]),
('y', 'f8', (2, 2)),
('z', 'u1')]
NbufferT = [
# x Info color info y z
# value y2 Info2 name z2 Name Value
# name value y3 z3
([3, 2], (6j, 6., ('nn', [6j, 4j], [6., 4.], [1, 2]), 'NN', True),
'cc', ('NN', 6j), [[6., 4.], [6., 4.]], 8),
([4, 3], (7j, 7., ('oo', [7j, 5j], [7., 5.], [2, 1]), 'OO', False),
'dd', ('OO', 7j), [[7., 5.], [7., 5.]], 9),
]
record_arrays = [
np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('<')),
np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('<')),
np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('>')),
np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('>')),
np.zeros(1, dtype=[('c', ('<f8', (5,)), (2,))])
]
#BytesIO that reads a random number of bytes at a time
class BytesIOSRandomSize(BytesIO):
def read(self, size=None):
import random
size = random.randint(1, size)
return super(BytesIOSRandomSize, self).read(size)
def roundtrip(arr):
f = BytesIO()
format.write_array(f, arr)
f2 = BytesIO(f.getvalue())
arr2 = format.read_array(f2, allow_pickle=True)
return arr2
def roundtrip_randsize(arr):
f = BytesIO()
format.write_array(f, arr)
f2 = BytesIOSRandomSize(f.getvalue())
arr2 = format.read_array(f2)
return arr2
def roundtrip_truncated(arr):
f = BytesIO()
format.write_array(f, arr)
#BytesIO is one byte short
f2 = BytesIO(f.getvalue()[0:-1])
arr2 = format.read_array(f2)
return arr2
def assert_equal_(o1, o2):
assert_(o1 == o2)
def test_roundtrip():
for arr in basic_arrays + record_arrays:
arr2 = roundtrip(arr)
assert_array_equal(arr, arr2)
def test_roundtrip_randsize():
for arr in basic_arrays + record_arrays:
if arr.dtype != object:
arr2 = roundtrip_randsize(arr)
assert_array_equal(arr, arr2)
def test_roundtrip_truncated():
for arr in basic_arrays:
if arr.dtype != object:
assert_raises(ValueError, roundtrip_truncated, arr)
def test_long_str():
# check items larger than internal buffer size, gh-4027
long_str_arr = np.ones(1, dtype=np.dtype((str, format.BUFFER_SIZE + 1)))
long_str_arr2 = roundtrip(long_str_arr)
assert_array_equal(long_str_arr, long_str_arr2)
@pytest.mark.slow
def test_memmap_roundtrip():
# Fixme: used to crash on windows
if not (sys.platform == 'win32' or sys.platform == 'cygwin'):
for arr in basic_arrays + record_arrays:
if arr.dtype.hasobject:
# Skip these since they can't be mmap'ed.
continue
# Write it out normally and through mmap.
nfn = os.path.join(tempdir, 'normal.npy')
mfn = os.path.join(tempdir, 'memmap.npy')
fp = open(nfn, 'wb')
try:
format.write_array(fp, arr)
finally:
fp.close()
fortran_order = (
arr.flags.f_contiguous and not arr.flags.c_contiguous)
ma = format.open_memmap(mfn, mode='w+', dtype=arr.dtype,
shape=arr.shape, fortran_order=fortran_order)
ma[...] = arr
del ma
# Check that both of these files' contents are the same.
fp = open(nfn, 'rb')
normal_bytes = fp.read()
fp.close()
fp = open(mfn, 'rb')
memmap_bytes = fp.read()
fp.close()
assert_equal_(normal_bytes, memmap_bytes)
# Check that reading the file using memmap works.
ma = format.open_memmap(nfn, mode='r')
del ma
def test_compressed_roundtrip():
arr = np.random.rand(200, 200)
npz_file = os.path.join(tempdir, 'compressed.npz')
np.savez_compressed(npz_file, arr=arr)
arr1 = np.load(npz_file)['arr']
assert_array_equal(arr, arr1)
# aligned
dt1 = np.dtype('i1, i4, i1', align=True)
# non-aligned, explicit offsets
dt2 = np.dtype({'names': ['a', 'b'], 'formats': ['i4', 'i4'],
'offsets': [1, 6]})
# nested struct-in-struct
dt3 = np.dtype({'names': ['c', 'd'], 'formats': ['i4', dt2]})
# field with '' name
dt4 = np.dtype({'names': ['a', '', 'b'], 'formats': ['i4']*3})
# titles
dt5 = np.dtype({'names': ['a', 'b'], 'formats': ['i4', 'i4'],
'offsets': [1, 6], 'titles': ['aa', 'bb']})
# empty
dt6 = np.dtype({'names': [], 'formats': [], 'itemsize': 8})
@pytest.mark.parametrize("dt", [dt1, dt2, dt3, dt4, dt5, dt6])
def test_load_padded_dtype(dt):
arr = np.zeros(3, dt)
for i in range(3):
arr[i] = i + 5
npz_file = os.path.join(tempdir, 'aligned.npz')
np.savez(npz_file, arr=arr)
arr1 = np.load(npz_file)['arr']
assert_array_equal(arr, arr1)
def test_python2_python3_interoperability():
fname = 'win64python2.npy'
path = os.path.join(os.path.dirname(__file__), 'data', fname)
data = np.load(path)
assert_array_equal(data, np.ones(2))
def test_pickle_python2_python3():
# Test that loading object arrays saved on Python 2 works both on
# Python 2 and Python 3 and vice versa
data_dir = os.path.join(os.path.dirname(__file__), 'data')
expected = np.array([None, range, u'\u512a\u826f',
b'\xe4\xb8\x8d\xe8\x89\xaf'],
dtype=object)
for fname in ['py2-objarr.npy', 'py2-objarr.npz',
'py3-objarr.npy', 'py3-objarr.npz']:
path = os.path.join(data_dir, fname)
for encoding in ['bytes', 'latin1']:
data_f = np.load(path, allow_pickle=True, encoding=encoding)
if fname.endswith('.npz'):
data = data_f['x']
data_f.close()
else:
data = data_f
if encoding == 'latin1' and fname.startswith('py2'):
assert_(isinstance(data[3], str))
assert_array_equal(data[:-1], expected[:-1])
# mojibake occurs
assert_array_equal(data[-1].encode(encoding), expected[-1])
else:
assert_(isinstance(data[3], bytes))
assert_array_equal(data, expected)
if fname.startswith('py2'):
if fname.endswith('.npz'):
data = np.load(path, allow_pickle=True)
assert_raises(UnicodeError, data.__getitem__, 'x')
data.close()
data = np.load(path, allow_pickle=True, fix_imports=False,
encoding='latin1')
assert_raises(ImportError, data.__getitem__, 'x')
data.close()
else:
assert_raises(UnicodeError, np.load, path,
allow_pickle=True)
assert_raises(ImportError, np.load, path,
allow_pickle=True, fix_imports=False,
encoding='latin1')
def test_pickle_disallow():
data_dir = os.path.join(os.path.dirname(__file__), 'data')
path = os.path.join(data_dir, 'py2-objarr.npy')
assert_raises(ValueError, np.load, path,
allow_pickle=False, encoding='latin1')
path = os.path.join(data_dir, 'py2-objarr.npz')
f = np.load(path, allow_pickle=False, encoding='latin1')
assert_raises(ValueError, f.__getitem__, 'x')
path = os.path.join(tempdir, 'pickle-disabled.npy')
assert_raises(ValueError, np.save, path, np.array([None], dtype=object),
allow_pickle=False)
@pytest.mark.parametrize('dt', [
np.dtype(np.dtype([('a', np.int8),
('b', np.int16),
('c', np.int32),
], align=True),
(3,)),
np.dtype([('x', np.dtype({'names':['a','b'],
'formats':['i1','i1'],
'offsets':[0,4],
'itemsize':8,
},
(3,)),
(4,),
)]),
np.dtype([('x',
('<f8', (5,)),
(2,),
)]),
np.dtype([('x', np.dtype((
np.dtype((
np.dtype({'names':['a','b'],
'formats':['i1','i1'],
'offsets':[0,4],
'itemsize':8}),
(3,)
)),
(4,)
)))
]),
np.dtype([
('a', np.dtype((
np.dtype((
np.dtype((
np.dtype([
('a', int),
('b', np.dtype({'names':['a','b'],
'formats':['i1','i1'],
'offsets':[0,4],
'itemsize':8})),
]),
(3,),
)),
(4,),
)),
(5,),
)))
]),
])
def test_descr_to_dtype(dt):
dt1 = format.descr_to_dtype(dt.descr)
assert_equal_(dt1, dt)
arr1 = np.zeros(3, dt)
arr2 = roundtrip(arr1)
assert_array_equal(arr1, arr2)
def test_version_2_0():
f = BytesIO()
# requires more than 2 byte for header
dt = [(("%d" % i) * 100, float) for i in range(500)]
d = np.ones(1000, dtype=dt)
format.write_array(f, d, version=(2, 0))
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', UserWarning)
format.write_array(f, d)
assert_(w[0].category is UserWarning)
# check alignment of data portion
f.seek(0)
header = f.readline()
assert_(len(header) % format.ARRAY_ALIGN == 0)
f.seek(0)
n = format.read_array(f)
assert_array_equal(d, n)
# 1.0 requested but data cannot be saved this way
assert_raises(ValueError, format.write_array, f, d, (1, 0))
@pytest.mark.slow
def test_version_2_0_memmap():
# requires more than 2 byte for header
dt = [(("%d" % i) * 100, float) for i in range(500)]
d = np.ones(1000, dtype=dt)
tf = tempfile.mktemp('', 'mmap', dir=tempdir)
# 1.0 requested but data cannot be saved this way
assert_raises(ValueError, format.open_memmap, tf, mode='w+', dtype=d.dtype,
shape=d.shape, version=(1, 0))
ma = format.open_memmap(tf, mode='w+', dtype=d.dtype,
shape=d.shape, version=(2, 0))
ma[...] = d
del ma
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', UserWarning)
ma = format.open_memmap(tf, mode='w+', dtype=d.dtype,
shape=d.shape, version=None)
assert_(w[0].category is UserWarning)
ma[...] = d
del ma
ma = format.open_memmap(tf, mode='r')
assert_array_equal(ma, d)
def test_write_version():
f = BytesIO()
arr = np.arange(1)
# These should pass.
format.write_array(f, arr, version=(1, 0))
format.write_array(f, arr)
format.write_array(f, arr, version=None)
format.write_array(f, arr)
format.write_array(f, arr, version=(2, 0))
format.write_array(f, arr)
# These should all fail.
bad_versions = [
(1, 1),
(0, 0),
(0, 1),
(2, 2),
(255, 255),
]
for version in bad_versions:
with assert_raises_regex(ValueError,
'we only support format version.*'):
format.write_array(f, arr, version=version)
bad_version_magic = [
b'\x93NUMPY\x01\x01',
b'\x93NUMPY\x00\x00',
b'\x93NUMPY\x00\x01',
b'\x93NUMPY\x02\x00',
b'\x93NUMPY\x02\x02',
b'\x93NUMPY\xff\xff',
]
malformed_magic = [
b'\x92NUMPY\x01\x00',
b'\x00NUMPY\x01\x00',
b'\x93numpy\x01\x00',
b'\x93MATLB\x01\x00',
b'\x93NUMPY\x01',
b'\x93NUMPY',
b'',
]
def test_read_magic():
s1 = BytesIO()
s2 = BytesIO()
arr = np.ones((3, 6), dtype=float)
format.write_array(s1, arr, version=(1, 0))
format.write_array(s2, arr, version=(2, 0))
s1.seek(0)
s2.seek(0)
version1 = format.read_magic(s1)
version2 = format.read_magic(s2)
assert_(version1 == (1, 0))
assert_(version2 == (2, 0))
assert_(s1.tell() == format.MAGIC_LEN)
assert_(s2.tell() == format.MAGIC_LEN)
def test_read_magic_bad_magic():
for magic in malformed_magic:
f = BytesIO(magic)
assert_raises(ValueError, format.read_array, f)
def test_read_version_1_0_bad_magic():
for magic in bad_version_magic + malformed_magic:
f = BytesIO(magic)
assert_raises(ValueError, format.read_array, f)
def test_bad_magic_args():
assert_raises(ValueError, format.magic, -1, 1)
assert_raises(ValueError, format.magic, 256, 1)
assert_raises(ValueError, format.magic, 1, -1)
assert_raises(ValueError, format.magic, 1, 256)
def test_large_header():
s = BytesIO()
d = {'a': 1, 'b': 2}
format.write_array_header_1_0(s, d)
s = BytesIO()
d = {'a': 1, 'b': 2, 'c': 'x'*256*256}
assert_raises(ValueError, format.write_array_header_1_0, s, d)
def test_read_array_header_1_0():
s = BytesIO()
arr = np.ones((3, 6), dtype=float)
format.write_array(s, arr, version=(1, 0))
s.seek(format.MAGIC_LEN)
shape, fortran, dtype = format.read_array_header_1_0(s)
assert_(s.tell() % format.ARRAY_ALIGN == 0)
assert_((shape, fortran, dtype) == ((3, 6), False, float))
def test_read_array_header_2_0():
s = BytesIO()
arr = np.ones((3, 6), dtype=float)
format.write_array(s, arr, version=(2, 0))
s.seek(format.MAGIC_LEN)
shape, fortran, dtype = format.read_array_header_2_0(s)
assert_(s.tell() % format.ARRAY_ALIGN == 0)
assert_((shape, fortran, dtype) == ((3, 6), False, float))
def test_bad_header():
# header of length less than 2 should fail
s = BytesIO()
assert_raises(ValueError, format.read_array_header_1_0, s)
s = BytesIO(b'1')
assert_raises(ValueError, format.read_array_header_1_0, s)
# header shorter than indicated size should fail
s = BytesIO(b'\x01\x00')
assert_raises(ValueError, format.read_array_header_1_0, s)
# headers without the exact keys required should fail
d = {"shape": (1, 2),
"descr": "x"}
s = BytesIO()
format.write_array_header_1_0(s, d)
assert_raises(ValueError, format.read_array_header_1_0, s)
d = {"shape": (1, 2),
"fortran_order": False,
"descr": "x",
"extrakey": -1}
s = BytesIO()
format.write_array_header_1_0(s, d)
assert_raises(ValueError, format.read_array_header_1_0, s)
def test_large_file_support():
if (sys.platform == 'win32' or sys.platform == 'cygwin'):
pytest.skip("Unknown if Windows has sparse filesystems")
# try creating a large sparse file
tf_name = os.path.join(tempdir, 'sparse_file')
try:
# seek past end would work too, but linux truncate somewhat
# increases the chances that we have a sparse filesystem and can
# avoid actually writing 5GB
import subprocess as sp
sp.check_call(["truncate", "-s", "5368709120", tf_name])
except Exception:
pytest.skip("Could not create 5GB large file")
# write a small array to the end
with open(tf_name, "wb") as f:
f.seek(5368709120)
d = np.arange(5)
np.save(f, d)
# read it back
with open(tf_name, "rb") as f:
f.seek(5368709120)
r = np.load(f)
assert_array_equal(r, d)
@pytest.mark.skipif(np.dtype(np.intp).itemsize < 8,
reason="test requires 64-bit system")
@pytest.mark.slow
def test_large_archive():
# Regression test for product of saving arrays with dimensions of array
# having a product that doesn't fit in int32. See gh-7598 for details.
try:
a = np.empty((2**30, 2), dtype=np.uint8)
except MemoryError:
pytest.skip("Could not create large file")
fname = os.path.join(tempdir, "large_archive")
with open(fname, "wb") as f:
np.savez(f, arr=a)
with open(fname, "rb") as f:
new_a = np.load(f)["arr"]
assert_(a.shape == new_a.shape)
def test_empty_npz():
# Test for gh-9989
fname = os.path.join(tempdir, "nothing.npz")
np.savez(fname)
np.load(fname)
def test_unicode_field_names():
# gh-7391
arr = np.array([
(1, 3),
(1, 2),
(1, 3),
(1, 2)
], dtype=[
('int', int),
(u'\N{CJK UNIFIED IDEOGRAPH-6574}\N{CJK UNIFIED IDEOGRAPH-5F62}', int)
])
fname = os.path.join(tempdir, "unicode.npy")
with open(fname, 'wb') as f:
format.write_array(f, arr, version=(3, 0))
with open(fname, 'rb') as f:
arr2 = format.read_array(f)
assert_array_equal(arr, arr2)
# notifies the user that 3.0 is selected
with open(fname, 'wb') as f:
with assert_warns(UserWarning):
format.write_array(f, arr, version=None)
@pytest.mark.parametrize('dt, fail', [
(np.dtype({'names': ['a', 'b'], 'formats': [float, np.dtype('S3',
metadata={'some': 'stuff'})]}), True),
(np.dtype(int, metadata={'some': 'stuff'}), False),
(np.dtype([('subarray', (int, (2,)))], metadata={'some': 'stuff'}), False),
# recursive: metadata on the field of a dtype
(np.dtype({'names': ['a', 'b'], 'formats': [
float, np.dtype({'names': ['c'], 'formats': [np.dtype(int, metadata={})]})
]}), False)
])
def test_metadata_dtype(dt, fail):
# gh-14142
arr = np.ones(10, dtype=dt)
buf = BytesIO()
with assert_warns(UserWarning):
np.save(buf, arr)
buf.seek(0)
if fail:
with assert_raises(ValueError):
np.load(buf)
else:
arr2 = np.load(buf)
# BUG: assert_array_equal does not check metadata
from numpy.lib.format import _has_metadata
assert_array_equal(arr, arr2)
assert _has_metadata(arr.dtype)
assert not _has_metadata(arr2.dtype)

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,838 @@
import numpy as np
from numpy.lib.histograms import histogram, histogramdd, histogram_bin_edges
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_almost_equal,
assert_array_almost_equal, assert_raises, assert_allclose,
assert_array_max_ulp, assert_raises_regex, suppress_warnings,
)
import pytest
class TestHistogram:
def setup(self):
pass
def teardown(self):
pass
def test_simple(self):
n = 100
v = np.random.rand(n)
(a, b) = histogram(v)
# check if the sum of the bins equals the number of samples
assert_equal(np.sum(a, axis=0), n)
# check that the bin counts are evenly spaced when the data is from
# a linear function
(a, b) = histogram(np.linspace(0, 10, 100))
assert_array_equal(a, 10)
def test_one_bin(self):
# Ticket 632
hist, edges = histogram([1, 2, 3, 4], [1, 2])
assert_array_equal(hist, [2, ])
assert_array_equal(edges, [1, 2])
assert_raises(ValueError, histogram, [1, 2], bins=0)
h, e = histogram([1, 2], bins=1)
assert_equal(h, np.array([2]))
assert_allclose(e, np.array([1., 2.]))
def test_normed(self):
sup = suppress_warnings()
with sup:
rec = sup.record(np.VisibleDeprecationWarning, '.*normed.*')
# Check that the integral of the density equals 1.
n = 100
v = np.random.rand(n)
a, b = histogram(v, normed=True)
area = np.sum(a * np.diff(b))
assert_almost_equal(area, 1)
assert_equal(len(rec), 1)
sup = suppress_warnings()
with sup:
rec = sup.record(np.VisibleDeprecationWarning, '.*normed.*')
# Check with non-constant bin widths (buggy but backwards
# compatible)
v = np.arange(10)
bins = [0, 1, 5, 9, 10]
a, b = histogram(v, bins, normed=True)
area = np.sum(a * np.diff(b))
assert_almost_equal(area, 1)
assert_equal(len(rec), 1)
def test_density(self):
# Check that the integral of the density equals 1.
n = 100
v = np.random.rand(n)
a, b = histogram(v, density=True)
area = np.sum(a * np.diff(b))
assert_almost_equal(area, 1)
# Check with non-constant bin widths
v = np.arange(10)
bins = [0, 1, 3, 6, 10]
a, b = histogram(v, bins, density=True)
assert_array_equal(a, .1)
assert_equal(np.sum(a * np.diff(b)), 1)
# Test that passing False works too
a, b = histogram(v, bins, density=False)
assert_array_equal(a, [1, 2, 3, 4])
# Variable bin widths are especially useful to deal with
# infinities.
v = np.arange(10)
bins = [0, 1, 3, 6, np.inf]
a, b = histogram(v, bins, density=True)
assert_array_equal(a, [.1, .1, .1, 0.])
# Taken from a bug report from N. Becker on the numpy-discussion
# mailing list Aug. 6, 2010.
counts, dmy = np.histogram(
[1, 2, 3, 4], [0.5, 1.5, np.inf], density=True)
assert_equal(counts, [.25, 0])
def test_outliers(self):
# Check that outliers are not tallied
a = np.arange(10) + .5
# Lower outliers
h, b = histogram(a, range=[0, 9])
assert_equal(h.sum(), 9)
# Upper outliers
h, b = histogram(a, range=[1, 10])
assert_equal(h.sum(), 9)
# Normalization
h, b = histogram(a, range=[1, 9], density=True)
assert_almost_equal((h * np.diff(b)).sum(), 1, decimal=15)
# Weights
w = np.arange(10) + .5
h, b = histogram(a, range=[1, 9], weights=w, density=True)
assert_equal((h * np.diff(b)).sum(), 1)
h, b = histogram(a, bins=8, range=[1, 9], weights=w)
assert_equal(h, w[1:-1])
def test_arr_weights_mismatch(self):
a = np.arange(10) + .5
w = np.arange(11) + .5
with assert_raises_regex(ValueError, "same shape as"):
h, b = histogram(a, range=[1, 9], weights=w, density=True)
def test_type(self):
# Check the type of the returned histogram
a = np.arange(10) + .5
h, b = histogram(a)
assert_(np.issubdtype(h.dtype, np.integer))
h, b = histogram(a, density=True)
assert_(np.issubdtype(h.dtype, np.floating))
h, b = histogram(a, weights=np.ones(10, int))
assert_(np.issubdtype(h.dtype, np.integer))
h, b = histogram(a, weights=np.ones(10, float))
assert_(np.issubdtype(h.dtype, np.floating))
def test_f32_rounding(self):
# gh-4799, check that the rounding of the edges works with float32
x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32)
y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32)
counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100)
assert_equal(counts_hist.sum(), 3.)
def test_bool_conversion(self):
# gh-12107
# Reference integer histogram
a = np.array([1, 1, 0], dtype=np.uint8)
int_hist, int_edges = np.histogram(a)
# Should raise an warning on booleans
# Ensure that the histograms are equivalent, need to suppress
# the warnings to get the actual outputs
with suppress_warnings() as sup:
rec = sup.record(RuntimeWarning, 'Converting input from .*')
hist, edges = np.histogram([True, True, False])
# A warning should be issued
assert_equal(len(rec), 1)
assert_array_equal(hist, int_hist)
assert_array_equal(edges, int_edges)
def test_weights(self):
v = np.random.rand(100)
w = np.ones(100) * 5
a, b = histogram(v)
na, nb = histogram(v, density=True)
wa, wb = histogram(v, weights=w)
nwa, nwb = histogram(v, weights=w, density=True)
assert_array_almost_equal(a * 5, wa)
assert_array_almost_equal(na, nwa)
# Check weights are properly applied.
v = np.linspace(0, 10, 10)
w = np.concatenate((np.zeros(5), np.ones(5)))
wa, wb = histogram(v, bins=np.arange(11), weights=w)
assert_array_almost_equal(wa, w)
# Check with integer weights
wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
assert_array_equal(wa, [4, 5, 0, 1])
wa, wb = histogram(
[1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], density=True)
assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4)
# Check weights with non-uniform bin widths
a, b = histogram(
np.arange(9), [0, 1, 3, 6, 10],
weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True)
assert_almost_equal(a, [.2, .1, .1, .075])
def test_exotic_weights(self):
# Test the use of weights that are not integer or floats, but e.g.
# complex numbers or object types.
# Complex weights
values = np.array([1.3, 2.5, 2.3])
weights = np.array([1, -1, 2]) + 1j * np.array([2, 1, 2])
# Check with custom bins
wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
# Check with even bins
wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
# Decimal weights
from decimal import Decimal
values = np.array([1.3, 2.5, 2.3])
weights = np.array([Decimal(1), Decimal(2), Decimal(3)])
# Check with custom bins
wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
# Check with even bins
wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
def test_no_side_effects(self):
# This is a regression test that ensures that values passed to
# ``histogram`` are unchanged.
values = np.array([1.3, 2.5, 2.3])
np.histogram(values, range=[-10, 10], bins=100)
assert_array_almost_equal(values, [1.3, 2.5, 2.3])
def test_empty(self):
a, b = histogram([], bins=([0, 1]))
assert_array_equal(a, np.array([0]))
assert_array_equal(b, np.array([0, 1]))
def test_error_binnum_type (self):
# Tests if right Error is raised if bins argument is float
vals = np.linspace(0.0, 1.0, num=100)
histogram(vals, 5)
assert_raises(TypeError, histogram, vals, 2.4)
def test_finite_range(self):
# Normal ranges should be fine
vals = np.linspace(0.0, 1.0, num=100)
histogram(vals, range=[0.25,0.75])
assert_raises(ValueError, histogram, vals, range=[np.nan,0.75])
assert_raises(ValueError, histogram, vals, range=[0.25,np.inf])
def test_invalid_range(self):
# start of range must be < end of range
vals = np.linspace(0.0, 1.0, num=100)
with assert_raises_regex(ValueError, "max must be larger than"):
np.histogram(vals, range=[0.1, 0.01])
def test_bin_edge_cases(self):
# Ensure that floating-point computations correctly place edge cases.
arr = np.array([337, 404, 739, 806, 1007, 1811, 2012])
hist, edges = np.histogram(arr, bins=8296, range=(2, 2280))
mask = hist > 0
left_edges = edges[:-1][mask]
right_edges = edges[1:][mask]
for x, left, right in zip(arr, left_edges, right_edges):
assert_(x >= left)
assert_(x < right)
def test_last_bin_inclusive_range(self):
arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.])
hist, edges = np.histogram(arr, bins=30, range=(-0.5, 5))
assert_equal(hist[-1], 1)
def test_bin_array_dims(self):
# gracefully handle bins object > 1 dimension
vals = np.linspace(0.0, 1.0, num=100)
bins = np.array([[0, 0.5], [0.6, 1.0]])
with assert_raises_regex(ValueError, "must be 1d"):
np.histogram(vals, bins=bins)
def test_unsigned_monotonicity_check(self):
# Ensures ValueError is raised if bins not increasing monotonically
# when bins contain unsigned values (see #9222)
arr = np.array([2])
bins = np.array([1, 3, 1], dtype='uint64')
with assert_raises(ValueError):
hist, edges = np.histogram(arr, bins=bins)
def test_object_array_of_0d(self):
# gh-7864
assert_raises(ValueError,
histogram, [np.array(0.4) for i in range(10)] + [-np.inf])
assert_raises(ValueError,
histogram, [np.array(0.4) for i in range(10)] + [np.inf])
# these should not crash
np.histogram([np.array(0.5) for i in range(10)] + [.500000000000001])
np.histogram([np.array(0.5) for i in range(10)] + [.5])
def test_some_nan_values(self):
# gh-7503
one_nan = np.array([0, 1, np.nan])
all_nan = np.array([np.nan, np.nan])
# the internal comparisons with NaN give warnings
sup = suppress_warnings()
sup.filter(RuntimeWarning)
with sup:
# can't infer range with nan
assert_raises(ValueError, histogram, one_nan, bins='auto')
assert_raises(ValueError, histogram, all_nan, bins='auto')
# explicit range solves the problem
h, b = histogram(one_nan, bins='auto', range=(0, 1))
assert_equal(h.sum(), 2) # nan is not counted
h, b = histogram(all_nan, bins='auto', range=(0, 1))
assert_equal(h.sum(), 0) # nan is not counted
# as does an explicit set of bins
h, b = histogram(one_nan, bins=[0, 1])
assert_equal(h.sum(), 2) # nan is not counted
h, b = histogram(all_nan, bins=[0, 1])
assert_equal(h.sum(), 0) # nan is not counted
def test_datetime(self):
begin = np.datetime64('2000-01-01', 'D')
offsets = np.array([0, 0, 1, 1, 2, 3, 5, 10, 20])
bins = np.array([0, 2, 7, 20])
dates = begin + offsets
date_bins = begin + bins
td = np.dtype('timedelta64[D]')
# Results should be the same for integer offsets or datetime values.
# For now, only explicit bins are supported, since linspace does not
# work on datetimes or timedeltas
d_count, d_edge = histogram(dates, bins=date_bins)
t_count, t_edge = histogram(offsets.astype(td), bins=bins.astype(td))
i_count, i_edge = histogram(offsets, bins=bins)
assert_equal(d_count, i_count)
assert_equal(t_count, i_count)
assert_equal((d_edge - begin).astype(int), i_edge)
assert_equal(t_edge.astype(int), i_edge)
assert_equal(d_edge.dtype, dates.dtype)
assert_equal(t_edge.dtype, td)
def do_signed_overflow_bounds(self, dtype):
exponent = 8 * np.dtype(dtype).itemsize - 1
arr = np.array([-2**exponent + 4, 2**exponent - 4], dtype=dtype)
hist, e = histogram(arr, bins=2)
assert_equal(e, [-2**exponent + 4, 0, 2**exponent - 4])
assert_equal(hist, [1, 1])
def test_signed_overflow_bounds(self):
self.do_signed_overflow_bounds(np.byte)
self.do_signed_overflow_bounds(np.short)
self.do_signed_overflow_bounds(np.intc)
self.do_signed_overflow_bounds(np.int_)
self.do_signed_overflow_bounds(np.longlong)
def do_precision_lower_bound(self, float_small, float_large):
eps = np.finfo(float_large).eps
arr = np.array([1.0], float_small)
range = np.array([1.0 + eps, 2.0], float_large)
# test is looking for behavior when the bounds change between dtypes
if range.astype(float_small)[0] != 1:
return
# previously crashed
count, x_loc = np.histogram(arr, bins=1, range=range)
assert_equal(count, [1])
# gh-10322 means that the type comes from arr - this may change
assert_equal(x_loc.dtype, float_small)
def do_precision_upper_bound(self, float_small, float_large):
eps = np.finfo(float_large).eps
arr = np.array([1.0], float_small)
range = np.array([0.0, 1.0 - eps], float_large)
# test is looking for behavior when the bounds change between dtypes
if range.astype(float_small)[-1] != 1:
return
# previously crashed
count, x_loc = np.histogram(arr, bins=1, range=range)
assert_equal(count, [1])
# gh-10322 means that the type comes from arr - this may change
assert_equal(x_loc.dtype, float_small)
def do_precision(self, float_small, float_large):
self.do_precision_lower_bound(float_small, float_large)
self.do_precision_upper_bound(float_small, float_large)
def test_precision(self):
# not looping results in a useful stack trace upon failure
self.do_precision(np.half, np.single)
self.do_precision(np.half, np.double)
self.do_precision(np.half, np.longdouble)
self.do_precision(np.single, np.double)
self.do_precision(np.single, np.longdouble)
self.do_precision(np.double, np.longdouble)
def test_histogram_bin_edges(self):
hist, e = histogram([1, 2, 3, 4], [1, 2])
edges = histogram_bin_edges([1, 2, 3, 4], [1, 2])
assert_array_equal(edges, e)
arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.])
hist, e = histogram(arr, bins=30, range=(-0.5, 5))
edges = histogram_bin_edges(arr, bins=30, range=(-0.5, 5))
assert_array_equal(edges, e)
hist, e = histogram(arr, bins='auto', range=(0, 1))
edges = histogram_bin_edges(arr, bins='auto', range=(0, 1))
assert_array_equal(edges, e)
class TestHistogramOptimBinNums:
"""
Provide test coverage when using provided estimators for optimal number of
bins
"""
def test_empty(self):
estimator_list = ['fd', 'scott', 'rice', 'sturges',
'doane', 'sqrt', 'auto', 'stone']
# check it can deal with empty data
for estimator in estimator_list:
a, b = histogram([], bins=estimator)
assert_array_equal(a, np.array([0]))
assert_array_equal(b, np.array([0, 1]))
def test_simple(self):
"""
Straightforward testing with a mixture of linspace data (for
consistency). All test values have been precomputed and the values
shouldn't change
"""
# Some basic sanity checking, with some fixed data.
# Checking for the correct number of bins
basic_test = {50: {'fd': 4, 'scott': 4, 'rice': 8, 'sturges': 7,
'doane': 8, 'sqrt': 8, 'auto': 7, 'stone': 2},
500: {'fd': 8, 'scott': 8, 'rice': 16, 'sturges': 10,
'doane': 12, 'sqrt': 23, 'auto': 10, 'stone': 9},
5000: {'fd': 17, 'scott': 17, 'rice': 35, 'sturges': 14,
'doane': 17, 'sqrt': 71, 'auto': 17, 'stone': 20}}
for testlen, expectedResults in basic_test.items():
# Create some sort of non uniform data to test with
# (2 peak uniform mixture)
x1 = np.linspace(-10, -1, testlen // 5 * 2)
x2 = np.linspace(1, 10, testlen // 5 * 3)
x = np.concatenate((x1, x2))
for estimator, numbins in expectedResults.items():
a, b = np.histogram(x, estimator)
assert_equal(len(a), numbins, err_msg="For the {0} estimator "
"with datasize of {1}".format(estimator, testlen))
def test_small(self):
"""
Smaller datasets have the potential to cause issues with the data
adaptive methods, especially the FD method. All bin numbers have been
precalculated.
"""
small_dat = {1: {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
'doane': 1, 'sqrt': 1, 'stone': 1},
2: {'fd': 2, 'scott': 1, 'rice': 3, 'sturges': 2,
'doane': 1, 'sqrt': 2, 'stone': 1},
3: {'fd': 2, 'scott': 2, 'rice': 3, 'sturges': 3,
'doane': 3, 'sqrt': 2, 'stone': 1}}
for testlen, expectedResults in small_dat.items():
testdat = np.arange(testlen)
for estimator, expbins in expectedResults.items():
a, b = np.histogram(testdat, estimator)
assert_equal(len(a), expbins, err_msg="For the {0} estimator "
"with datasize of {1}".format(estimator, testlen))
def test_incorrect_methods(self):
"""
Check a Value Error is thrown when an unknown string is passed in
"""
check_list = ['mad', 'freeman', 'histograms', 'IQR']
for estimator in check_list:
assert_raises(ValueError, histogram, [1, 2, 3], estimator)
def test_novariance(self):
"""
Check that methods handle no variance in data
Primarily for Scott and FD as the SD and IQR are both 0 in this case
"""
novar_dataset = np.ones(100)
novar_resultdict = {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
'doane': 1, 'sqrt': 1, 'auto': 1, 'stone': 1}
for estimator, numbins in novar_resultdict.items():
a, b = np.histogram(novar_dataset, estimator)
assert_equal(len(a), numbins, err_msg="{0} estimator, "
"No Variance test".format(estimator))
def test_limited_variance(self):
"""
Check when IQR is 0, but variance exists, we return the sturges value
and not the fd value.
"""
lim_var_data = np.ones(1000)
lim_var_data[:3] = 0
lim_var_data[-4:] = 100
edges_auto = histogram_bin_edges(lim_var_data, 'auto')
assert_equal(edges_auto, np.linspace(0, 100, 12))
edges_fd = histogram_bin_edges(lim_var_data, 'fd')
assert_equal(edges_fd, np.array([0, 100]))
edges_sturges = histogram_bin_edges(lim_var_data, 'sturges')
assert_equal(edges_sturges, np.linspace(0, 100, 12))
def test_outlier(self):
"""
Check the FD, Scott and Doane with outliers.
The FD estimates a smaller binwidth since it's less affected by
outliers. Since the range is so (artificially) large, this means more
bins, most of which will be empty, but the data of interest usually is
unaffected. The Scott estimator is more affected and returns fewer bins,
despite most of the variance being in one area of the data. The Doane
estimator lies somewhere between the other two.
"""
xcenter = np.linspace(-10, 10, 50)
outlier_dataset = np.hstack((np.linspace(-110, -100, 5), xcenter))
outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11, 'stone': 6}
for estimator, numbins in outlier_resultdict.items():
a, b = np.histogram(outlier_dataset, estimator)
assert_equal(len(a), numbins)
def test_scott_vs_stone(self):
"""Verify that Scott's rule and Stone's rule converges for normally distributed data"""
def nbins_ratio(seed, size):
rng = np.random.RandomState(seed)
x = rng.normal(loc=0, scale=2, size=size)
a, b = len(np.histogram(x, 'stone')[0]), len(np.histogram(x, 'scott')[0])
return a / (a + b)
ll = [[nbins_ratio(seed, size) for size in np.geomspace(start=10, stop=100, num=4).round().astype(int)]
for seed in range(10)]
# the average difference between the two methods decreases as the dataset size increases.
avg = abs(np.mean(ll, axis=0) - 0.5)
assert_almost_equal(avg, [0.15, 0.09, 0.08, 0.03], decimal=2)
def test_simple_range(self):
"""
Straightforward testing with a mixture of linspace data (for
consistency). Adding in a 3rd mixture that will then be
completely ignored. All test values have been precomputed and
the shouldn't change.
"""
# some basic sanity checking, with some fixed data.
# Checking for the correct number of bins
basic_test = {
50: {'fd': 8, 'scott': 8, 'rice': 15,
'sturges': 14, 'auto': 14, 'stone': 8},
500: {'fd': 15, 'scott': 16, 'rice': 32,
'sturges': 20, 'auto': 20, 'stone': 80},
5000: {'fd': 33, 'scott': 33, 'rice': 69,
'sturges': 27, 'auto': 33, 'stone': 80}
}
for testlen, expectedResults in basic_test.items():
# create some sort of non uniform data to test with
# (3 peak uniform mixture)
x1 = np.linspace(-10, -1, testlen // 5 * 2)
x2 = np.linspace(1, 10, testlen // 5 * 3)
x3 = np.linspace(-100, -50, testlen)
x = np.hstack((x1, x2, x3))
for estimator, numbins in expectedResults.items():
a, b = np.histogram(x, estimator, range = (-20, 20))
msg = "For the {0} estimator".format(estimator)
msg += " with datasize of {0}".format(testlen)
assert_equal(len(a), numbins, err_msg=msg)
@pytest.mark.parametrize("bins", ['auto', 'fd', 'doane', 'scott',
'stone', 'rice', 'sturges'])
def test_signed_integer_data(self, bins):
# Regression test for gh-14379.
a = np.array([-2, 0, 127], dtype=np.int8)
hist, edges = np.histogram(a, bins=bins)
hist32, edges32 = np.histogram(a.astype(np.int32), bins=bins)
assert_array_equal(hist, hist32)
assert_array_equal(edges, edges32)
def test_simple_weighted(self):
"""
Check that weighted data raises a TypeError
"""
estimator_list = ['fd', 'scott', 'rice', 'sturges', 'auto']
for estimator in estimator_list:
assert_raises(TypeError, histogram, [1, 2, 3],
estimator, weights=[1, 2, 3])
class TestHistogramdd:
def test_simple(self):
x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5],
[.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
H, edges = histogramdd(x, (2, 3, 3),
range=[[-1, 1], [0, 3], [0, 3]])
answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]],
[[0, 1, 0], [0, 0, 1], [0, 0, 1]]])
assert_array_equal(H, answer)
# Check normalization
ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
H, edges = histogramdd(x, bins=ed, density=True)
assert_(np.all(H == answer / 12.))
# Check that H has the correct shape.
H, edges = histogramdd(x, (2, 3, 4),
range=[[-1, 1], [0, 3], [0, 4]],
density=True)
answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]],
[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]])
assert_array_almost_equal(H, answer / 6., 4)
# Check that a sequence of arrays is accepted and H has the correct
# shape.
z = [np.squeeze(y) for y in np.split(x, 3, axis=1)]
H, edges = histogramdd(
z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]])
answer = np.array([[[0, 0], [0, 0], [0, 0]],
[[0, 1], [0, 0], [1, 0]],
[[0, 1], [0, 0], [0, 0]],
[[0, 0], [0, 0], [0, 0]]])
assert_array_equal(H, answer)
Z = np.zeros((5, 5, 5))
Z[list(range(5)), list(range(5)), list(range(5))] = 1.
H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5)
assert_array_equal(H, Z)
def test_shape_3d(self):
# All possible permutations for bins of different lengths in 3D.
bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
(4, 5, 6))
r = np.random.rand(10, 3)
for b in bins:
H, edges = histogramdd(r, b)
assert_(H.shape == b)
def test_shape_4d(self):
# All possible permutations for bins of different lengths in 4D.
bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
(5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
(7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
(4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
(6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
(5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))
r = np.random.rand(10, 4)
for b in bins:
H, edges = histogramdd(r, b)
assert_(H.shape == b)
def test_weights(self):
v = np.random.rand(100, 2)
hist, edges = histogramdd(v)
n_hist, edges = histogramdd(v, density=True)
w_hist, edges = histogramdd(v, weights=np.ones(100))
assert_array_equal(w_hist, hist)
w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, density=True)
assert_array_equal(w_hist, n_hist)
w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2)
assert_array_equal(w_hist, 2 * hist)
def test_identical_samples(self):
x = np.zeros((10, 2), int)
hist, edges = histogramdd(x, bins=2)
assert_array_equal(edges[0], np.array([-0.5, 0., 0.5]))
def test_empty(self):
a, b = histogramdd([[], []], bins=([0, 1], [0, 1]))
assert_array_max_ulp(a, np.array([[0.]]))
a, b = np.histogramdd([[], [], []], bins=2)
assert_array_max_ulp(a, np.zeros((2, 2, 2)))
def test_bins_errors(self):
# There are two ways to specify bins. Check for the right errors
# when mixing those.
x = np.arange(8).reshape(2, 4)
assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5])
assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1])
assert_raises(
ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]])
assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]]))
def test_inf_edges(self):
# Test using +/-inf bin edges works. See #1788.
with np.errstate(invalid='ignore'):
x = np.arange(6).reshape(3, 2)
expected = np.array([[1, 0], [0, 1], [0, 1]])
h, e = np.histogramdd(x, bins=[3, [-np.inf, 2, 10]])
assert_allclose(h, expected)
h, e = np.histogramdd(x, bins=[3, np.array([-1, 2, np.inf])])
assert_allclose(h, expected)
h, e = np.histogramdd(x, bins=[3, [-np.inf, 3, np.inf]])
assert_allclose(h, expected)
def test_rightmost_binedge(self):
# Test event very close to rightmost binedge. See Github issue #4266
x = [0.9999999995]
bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 1.)
x = [1.0]
bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 1.)
x = [1.0000000001]
bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 0.0)
x = [1.0001]
bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 0.0)
def test_finite_range(self):
vals = np.random.random((100, 3))
histogramdd(vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, 0.5]])
assert_raises(ValueError, histogramdd, vals,
range=[[0.0, 1.0], [0.25, 0.75], [0.25, np.inf]])
assert_raises(ValueError, histogramdd, vals,
range=[[0.0, 1.0], [np.nan, 0.75], [0.25, 0.5]])
def test_equal_edges(self):
""" Test that adjacent entries in an edge array can be equal """
x = np.array([0, 1, 2])
y = np.array([0, 1, 2])
x_edges = np.array([0, 2, 2])
y_edges = 1
hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))
hist_expected = np.array([
[2.],
[1.], # x == 2 falls in the final bin
])
assert_equal(hist, hist_expected)
def test_edge_dtype(self):
""" Test that if an edge array is input, its type is preserved """
x = np.array([0, 10, 20])
y = x / 10
x_edges = np.array([0, 5, 15, 20])
y_edges = x_edges / 10
hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))
assert_equal(edges[0].dtype, x_edges.dtype)
assert_equal(edges[1].dtype, y_edges.dtype)
def test_large_integers(self):
big = 2**60 # Too large to represent with a full precision float
x = np.array([0], np.int64)
x_edges = np.array([-1, +1], np.int64)
y = big + x
y_edges = big + x_edges
hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))
assert_equal(hist[0, 0], 1)
def test_density_non_uniform_2d(self):
# Defines the following grid:
#
# 0 2 8
# 0+-+-----+
# + | +
# + | +
# 6+-+-----+
# 8+-+-----+
x_edges = np.array([0, 2, 8])
y_edges = np.array([0, 6, 8])
relative_areas = np.array([
[3, 9],
[1, 3]])
# ensure the number of points in each region is proportional to its area
x = np.array([1] + [1]*3 + [7]*3 + [7]*9)
y = np.array([7] + [1]*3 + [7]*3 + [1]*9)
# sanity check that the above worked as intended
hist, edges = histogramdd((y, x), bins=(y_edges, x_edges))
assert_equal(hist, relative_areas)
# resulting histogram should be uniform, since counts and areas are proportional
hist, edges = histogramdd((y, x), bins=(y_edges, x_edges), density=True)
assert_equal(hist, 1 / (8*8))
def test_density_non_uniform_1d(self):
# compare to histogram to show the results are the same
v = np.arange(10)
bins = np.array([0, 1, 3, 6, 10])
hist, edges = histogram(v, bins, density=True)
hist_dd, edges_dd = histogramdd((v,), (bins,), density=True)
assert_equal(hist, hist_dd)
assert_equal(edges, edges_dd[0])
def test_density_via_normed(self):
# normed should simply alias to density argument
v = np.arange(10)
bins = np.array([0, 1, 3, 6, 10])
hist, edges = histogram(v, bins, density=True)
hist_dd, edges_dd = histogramdd((v,), (bins,), normed=True)
assert_equal(hist, hist_dd)
assert_equal(edges, edges_dd[0])
def test_density_normed_redundancy(self):
v = np.arange(10)
bins = np.array([0, 1, 3, 6, 10])
with assert_raises_regex(TypeError, "Cannot specify both"):
hist_dd, edges_dd = histogramdd((v,), (bins,),
density=True,
normed=True)

View file

@ -0,0 +1,498 @@
import pytest
import numpy as np
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_almost_equal,
assert_array_almost_equal, assert_raises, assert_raises_regex,
assert_warns
)
from numpy.lib.index_tricks import (
mgrid, ogrid, ndenumerate, fill_diagonal, diag_indices, diag_indices_from,
index_exp, ndindex, r_, s_, ix_
)
class TestRavelUnravelIndex:
def test_basic(self):
assert_equal(np.unravel_index(2, (2, 2)), (1, 0))
# test backwards compatibility with older dims
# keyword argument; see Issue #10586
with assert_warns(DeprecationWarning):
# we should achieve the correct result
# AND raise the appropriate warning
# when using older "dims" kw argument
assert_equal(np.unravel_index(indices=2,
dims=(2, 2)),
(1, 0))
# test that new shape argument works properly
assert_equal(np.unravel_index(indices=2,
shape=(2, 2)),
(1, 0))
# test that an invalid second keyword argument
# is properly handled
with assert_raises(TypeError):
np.unravel_index(indices=2, hape=(2, 2))
with assert_raises(TypeError):
np.unravel_index(2, hape=(2, 2))
with assert_raises(TypeError):
np.unravel_index(254, ims=(17, 94))
assert_equal(np.ravel_multi_index((1, 0), (2, 2)), 2)
assert_equal(np.unravel_index(254, (17, 94)), (2, 66))
assert_equal(np.ravel_multi_index((2, 66), (17, 94)), 254)
assert_raises(ValueError, np.unravel_index, -1, (2, 2))
assert_raises(TypeError, np.unravel_index, 0.5, (2, 2))
assert_raises(ValueError, np.unravel_index, 4, (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (-3, 1), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (2, 1), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (0, -3), (2, 2))
assert_raises(ValueError, np.ravel_multi_index, (0, 2), (2, 2))
assert_raises(TypeError, np.ravel_multi_index, (0.1, 0.), (2, 2))
assert_equal(np.unravel_index((2*3 + 1)*6 + 4, (4, 3, 6)), [2, 1, 4])
assert_equal(
np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2*3 + 1)*6 + 4)
arr = np.array([[3, 6, 6], [4, 5, 1]])
assert_equal(np.ravel_multi_index(arr, (7, 6)), [22, 41, 37])
assert_equal(
np.ravel_multi_index(arr, (7, 6), order='F'), [31, 41, 13])
assert_equal(
np.ravel_multi_index(arr, (4, 6), mode='clip'), [22, 23, 19])
assert_equal(np.ravel_multi_index(arr, (4, 4), mode=('clip', 'wrap')),
[12, 13, 13])
assert_equal(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), 1621)
assert_equal(np.unravel_index(np.array([22, 41, 37]), (7, 6)),
[[3, 6, 6], [4, 5, 1]])
assert_equal(
np.unravel_index(np.array([31, 41, 13]), (7, 6), order='F'),
[[3, 6, 6], [4, 5, 1]])
assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1])
def test_empty_indices(self):
msg1 = 'indices must be integral: the provided empty sequence was'
msg2 = 'only int indices permitted'
assert_raises_regex(TypeError, msg1, np.unravel_index, [], (10, 3, 5))
assert_raises_regex(TypeError, msg1, np.unravel_index, (), (10, 3, 5))
assert_raises_regex(TypeError, msg2, np.unravel_index, np.array([]),
(10, 3, 5))
assert_equal(np.unravel_index(np.array([],dtype=int), (10, 3, 5)),
[[], [], []])
assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], []),
(10, 3))
assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], ['abc']),
(10, 3))
assert_raises_regex(TypeError, msg2, np.ravel_multi_index,
(np.array([]), np.array([])), (5, 3))
assert_equal(np.ravel_multi_index(
(np.array([], dtype=int), np.array([], dtype=int)), (5, 3)), [])
assert_equal(np.ravel_multi_index(np.array([[], []], dtype=int),
(5, 3)), [])
def test_big_indices(self):
# ravel_multi_index for big indices (issue #7546)
if np.intp == np.int64:
arr = ([1, 29], [3, 5], [3, 117], [19, 2],
[2379, 1284], [2, 2], [0, 1])
assert_equal(
np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)),
[5627771580, 117259570957])
# test unravel_index for big indices (issue #9538)
assert_raises(ValueError, np.unravel_index, 1, (2**32-1, 2**31+1))
# test overflow checking for too big array (issue #7546)
dummy_arr = ([0],[0])
half_max = np.iinfo(np.intp).max // 2
assert_equal(
np.ravel_multi_index(dummy_arr, (half_max, 2)), [0])
assert_raises(ValueError,
np.ravel_multi_index, dummy_arr, (half_max+1, 2))
assert_equal(
np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0])
assert_raises(ValueError,
np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F')
def test_dtypes(self):
# Test with different data types
for dtype in [np.int16, np.uint16, np.int32,
np.uint32, np.int64, np.uint64]:
coords = np.array(
[[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0]], dtype=dtype)
shape = (5, 8)
uncoords = 8*coords[0]+coords[1]
assert_equal(np.ravel_multi_index(coords, shape), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape))
uncoords = coords[0]+5*coords[1]
assert_equal(
np.ravel_multi_index(coords, shape, order='F'), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape, order='F'))
coords = np.array(
[[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0], [1, 3, 1, 0, 9, 5]],
dtype=dtype)
shape = (5, 8, 10)
uncoords = 10*(8*coords[0]+coords[1])+coords[2]
assert_equal(np.ravel_multi_index(coords, shape), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape))
uncoords = coords[0]+5*(coords[1]+8*coords[2])
assert_equal(
np.ravel_multi_index(coords, shape, order='F'), uncoords)
assert_equal(coords, np.unravel_index(uncoords, shape, order='F'))
def test_clipmodes(self):
# Test clipmodes
assert_equal(
np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), mode='wrap'),
np.ravel_multi_index([1, 1, 6, 2], (4, 3, 7, 12)))
assert_equal(np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12),
mode=(
'wrap', 'raise', 'clip', 'raise')),
np.ravel_multi_index([1, 1, 0, 2], (4, 3, 7, 12)))
assert_raises(
ValueError, np.ravel_multi_index, [5, 1, -1, 2], (4, 3, 7, 12))
def test_writeability(self):
# See gh-7269
x, y = np.unravel_index([1, 2, 3], (4, 5))
assert_(x.flags.writeable)
assert_(y.flags.writeable)
def test_0d(self):
# gh-580
x = np.unravel_index(0, ())
assert_equal(x, ())
assert_raises_regex(ValueError, "0d array", np.unravel_index, [0], ())
assert_raises_regex(
ValueError, "out of bounds", np.unravel_index, [1], ())
@pytest.mark.parametrize("mode", ["clip", "wrap", "raise"])
def test_empty_array_ravel(self, mode):
res = np.ravel_multi_index(
np.zeros((3, 0), dtype=np.intp), (2, 1, 0), mode=mode)
assert(res.shape == (0,))
with assert_raises(ValueError):
np.ravel_multi_index(
np.zeros((3, 1), dtype=np.intp), (2, 1, 0), mode=mode)
def test_empty_array_unravel(self):
res = np.unravel_index(np.zeros(0, dtype=np.intp), (2, 1, 0))
# res is a tuple of three empty arrays
assert(len(res) == 3)
assert(all(a.shape == (0,) for a in res))
with assert_raises(ValueError):
np.unravel_index([1], (2, 1, 0))
class TestGrid:
def test_basic(self):
a = mgrid[-1:1:10j]
b = mgrid[-1:1:0.1]
assert_(a.shape == (10,))
assert_(b.shape == (20,))
assert_(a[0] == -1)
assert_almost_equal(a[-1], 1)
assert_(b[0] == -1)
assert_almost_equal(b[1]-b[0], 0.1, 11)
assert_almost_equal(b[-1], b[0]+19*0.1, 11)
assert_almost_equal(a[1]-a[0], 2.0/9.0, 11)
def test_linspace_equivalence(self):
y, st = np.linspace(2, 10, retstep=True)
assert_almost_equal(st, 8/49.0)
assert_array_almost_equal(y, mgrid[2:10:50j], 13)
def test_nd(self):
c = mgrid[-1:1:10j, -2:2:10j]
d = mgrid[-1:1:0.1, -2:2:0.2]
assert_(c.shape == (2, 10, 10))
assert_(d.shape == (2, 20, 20))
assert_array_equal(c[0][0, :], -np.ones(10, 'd'))
assert_array_equal(c[1][:, 0], -2*np.ones(10, 'd'))
assert_array_almost_equal(c[0][-1, :], np.ones(10, 'd'), 11)
assert_array_almost_equal(c[1][:, -1], 2*np.ones(10, 'd'), 11)
assert_array_almost_equal(d[0, 1, :] - d[0, 0, :],
0.1*np.ones(20, 'd'), 11)
assert_array_almost_equal(d[1, :, 1] - d[1, :, 0],
0.2*np.ones(20, 'd'), 11)
def test_sparse(self):
grid_full = mgrid[-1:1:10j, -2:2:10j]
grid_sparse = ogrid[-1:1:10j, -2:2:10j]
# sparse grids can be made dense by broadcasting
grid_broadcast = np.broadcast_arrays(*grid_sparse)
for f, b in zip(grid_full, grid_broadcast):
assert_equal(f, b)
@pytest.mark.parametrize("start, stop, step, expected", [
(None, 10, 10j, (200, 10)),
(-10, 20, None, (1800, 30)),
])
def test_mgrid_size_none_handling(self, start, stop, step, expected):
# regression test None value handling for
# start and step values used by mgrid;
# internally, this aims to cover previously
# unexplored code paths in nd_grid()
grid = mgrid[start:stop:step, start:stop:step]
# need a smaller grid to explore one of the
# untested code paths
grid_small = mgrid[start:stop:step]
assert_equal(grid.size, expected[0])
assert_equal(grid_small.size, expected[1])
class TestConcatenator:
def test_1d(self):
assert_array_equal(r_[1, 2, 3, 4, 5, 6], np.array([1, 2, 3, 4, 5, 6]))
b = np.ones(5)
c = r_[b, 0, 0, b]
assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
def test_mixed_type(self):
g = r_[10.1, 1:10]
assert_(g.dtype == 'f8')
def test_more_mixed_type(self):
g = r_[-10.1, np.array([1]), np.array([2, 3, 4]), 10.0]
assert_(g.dtype == 'f8')
def test_complex_step(self):
# Regression test for #12262
g = r_[0:36:100j]
assert_(g.shape == (100,))
def test_2d(self):
b = np.random.rand(5, 5)
c = np.random.rand(5, 5)
d = r_['1', b, c] # append columns
assert_(d.shape == (5, 10))
assert_array_equal(d[:, :5], b)
assert_array_equal(d[:, 5:], c)
d = r_[b, c]
assert_(d.shape == (10, 5))
assert_array_equal(d[:5, :], b)
assert_array_equal(d[5:, :], c)
def test_0d(self):
assert_equal(r_[0, np.array(1), 2], [0, 1, 2])
assert_equal(r_[[0, 1, 2], np.array(3)], [0, 1, 2, 3])
assert_equal(r_[np.array(0), [1, 2, 3]], [0, 1, 2, 3])
class TestNdenumerate:
def test_basic(self):
a = np.array([[1, 2], [3, 4]])
assert_equal(list(ndenumerate(a)),
[((0, 0), 1), ((0, 1), 2), ((1, 0), 3), ((1, 1), 4)])
class TestIndexExpression:
def test_regression_1(self):
# ticket #1196
a = np.arange(2)
assert_equal(a[:-1], a[s_[:-1]])
assert_equal(a[:-1], a[index_exp[:-1]])
def test_simple_1(self):
a = np.random.rand(4, 5, 6)
assert_equal(a[:, :3, [1, 2]], a[index_exp[:, :3, [1, 2]]])
assert_equal(a[:, :3, [1, 2]], a[s_[:, :3, [1, 2]]])
class TestIx_:
def test_regression_1(self):
# Test empty untyped inputs create outputs of indexing type, gh-5804
a, = np.ix_(range(0))
assert_equal(a.dtype, np.intp)
a, = np.ix_([])
assert_equal(a.dtype, np.intp)
# but if the type is specified, don't change it
a, = np.ix_(np.array([], dtype=np.float32))
assert_equal(a.dtype, np.float32)
def test_shape_and_dtype(self):
sizes = (4, 5, 3, 2)
# Test both lists and arrays
for func in (range, np.arange):
arrays = np.ix_(*[func(sz) for sz in sizes])
for k, (a, sz) in enumerate(zip(arrays, sizes)):
assert_equal(a.shape[k], sz)
assert_(all(sh == 1 for j, sh in enumerate(a.shape) if j != k))
assert_(np.issubdtype(a.dtype, np.integer))
def test_bool(self):
bool_a = [True, False, True, True]
int_a, = np.nonzero(bool_a)
assert_equal(np.ix_(bool_a)[0], int_a)
def test_1d_only(self):
idx2d = [[1, 2, 3], [4, 5, 6]]
assert_raises(ValueError, np.ix_, idx2d)
def test_repeated_input(self):
length_of_vector = 5
x = np.arange(length_of_vector)
out = ix_(x, x)
assert_equal(out[0].shape, (length_of_vector, 1))
assert_equal(out[1].shape, (1, length_of_vector))
# check that input shape is not modified
assert_equal(x.shape, (length_of_vector,))
def test_c_():
a = np.c_[np.array([[1, 2, 3]]), 0, 0, np.array([[4, 5, 6]])]
assert_equal(a, [[1, 2, 3, 0, 0, 4, 5, 6]])
class TestFillDiagonal:
def test_basic(self):
a = np.zeros((3, 3), int)
fill_diagonal(a, 5)
assert_array_equal(
a, np.array([[5, 0, 0],
[0, 5, 0],
[0, 0, 5]])
)
def test_tall_matrix(self):
a = np.zeros((10, 3), int)
fill_diagonal(a, 5)
assert_array_equal(
a, np.array([[5, 0, 0],
[0, 5, 0],
[0, 0, 5],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
)
def test_tall_matrix_wrap(self):
a = np.zeros((10, 3), int)
fill_diagonal(a, 5, True)
assert_array_equal(
a, np.array([[5, 0, 0],
[0, 5, 0],
[0, 0, 5],
[0, 0, 0],
[5, 0, 0],
[0, 5, 0],
[0, 0, 5],
[0, 0, 0],
[5, 0, 0],
[0, 5, 0]])
)
def test_wide_matrix(self):
a = np.zeros((3, 10), int)
fill_diagonal(a, 5)
assert_array_equal(
a, np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 5, 0, 0, 0, 0, 0, 0, 0]])
)
def test_operate_4d_array(self):
a = np.zeros((3, 3, 3, 3), int)
fill_diagonal(a, 4)
i = np.array([0, 1, 2])
assert_equal(np.where(a != 0), (i, i, i, i))
def test_low_dim_handling(self):
# raise error with low dimensionality
a = np.zeros(3, int)
with assert_raises_regex(ValueError, "at least 2-d"):
fill_diagonal(a, 5)
def test_hetero_shape_handling(self):
# raise error with high dimensionality and
# shape mismatch
a = np.zeros((3,3,7,3), int)
with assert_raises_regex(ValueError, "equal length"):
fill_diagonal(a, 2)
def test_diag_indices():
di = diag_indices(4)
a = np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16]])
a[di] = 100
assert_array_equal(
a, np.array([[100, 2, 3, 4],
[5, 100, 7, 8],
[9, 10, 100, 12],
[13, 14, 15, 100]])
)
# Now, we create indices to manipulate a 3-d array:
d3 = diag_indices(2, 3)
# And use it to set the diagonal of a zeros array to 1:
a = np.zeros((2, 2, 2), int)
a[d3] = 1
assert_array_equal(
a, np.array([[[1, 0],
[0, 0]],
[[0, 0],
[0, 1]]])
)
class TestDiagIndicesFrom:
def test_diag_indices_from(self):
x = np.random.random((4, 4))
r, c = diag_indices_from(x)
assert_array_equal(r, np.arange(4))
assert_array_equal(c, np.arange(4))
def test_error_small_input(self):
x = np.ones(7)
with assert_raises_regex(ValueError, "at least 2-d"):
diag_indices_from(x)
def test_error_shape_mismatch(self):
x = np.zeros((3, 3, 2, 3), int)
with assert_raises_regex(ValueError, "equal length"):
diag_indices_from(x)
def test_ndindex():
x = list(ndindex(1, 2, 3))
expected = [ix for ix, e in ndenumerate(np.zeros((1, 2, 3)))]
assert_array_equal(x, expected)
x = list(ndindex((1, 2, 3)))
assert_array_equal(x, expected)
# Test use of scalars and tuples
x = list(ndindex((3,)))
assert_array_equal(x, list(ndindex(3)))
# Make sure size argument is optional
x = list(ndindex())
assert_equal(x, [()])
x = list(ndindex(()))
assert_equal(x, [()])
# Make sure 0-sized ndindex works correctly
x = list(ndindex(*[0]))
assert_equal(x, [])

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,216 @@
import numbers
import operator
import numpy as np
from numpy.testing import assert_, assert_equal, assert_raises
# NOTE: This class should be kept as an exact copy of the example from the
# docstring for NDArrayOperatorsMixin.
class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
def __init__(self, value):
self.value = np.asarray(value)
# One might also consider adding the built-in list type to this
# list, to support operations like np.add(array_like, list)
_HANDLED_TYPES = (np.ndarray, numbers.Number)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
out = kwargs.get('out', ())
for x in inputs + out:
# Only support operations with instances of _HANDLED_TYPES.
# Use ArrayLike instead of type(self) for isinstance to
# allow subclasses that don't override __array_ufunc__ to
# handle ArrayLike objects.
if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):
return NotImplemented
# Defer to the implementation of the ufunc on unwrapped values.
inputs = tuple(x.value if isinstance(x, ArrayLike) else x
for x in inputs)
if out:
kwargs['out'] = tuple(
x.value if isinstance(x, ArrayLike) else x
for x in out)
result = getattr(ufunc, method)(*inputs, **kwargs)
if type(result) is tuple:
# multiple return values
return tuple(type(self)(x) for x in result)
elif method == 'at':
# no return value
return None
else:
# one return value
return type(self)(result)
def __repr__(self):
return '%s(%r)' % (type(self).__name__, self.value)
def wrap_array_like(result):
if type(result) is tuple:
return tuple(ArrayLike(r) for r in result)
else:
return ArrayLike(result)
def _assert_equal_type_and_value(result, expected, err_msg=None):
assert_equal(type(result), type(expected), err_msg=err_msg)
if isinstance(result, tuple):
assert_equal(len(result), len(expected), err_msg=err_msg)
for result_item, expected_item in zip(result, expected):
_assert_equal_type_and_value(result_item, expected_item, err_msg)
else:
assert_equal(result.value, expected.value, err_msg=err_msg)
assert_equal(getattr(result.value, 'dtype', None),
getattr(expected.value, 'dtype', None), err_msg=err_msg)
_ALL_BINARY_OPERATORS = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.gt,
operator.ge,
operator.add,
operator.sub,
operator.mul,
operator.truediv,
operator.floordiv,
operator.mod,
divmod,
pow,
operator.lshift,
operator.rshift,
operator.and_,
operator.xor,
operator.or_,
]
class TestNDArrayOperatorsMixin:
def test_array_like_add(self):
def check(result):
_assert_equal_type_and_value(result, ArrayLike(0))
check(ArrayLike(0) + 0)
check(0 + ArrayLike(0))
check(ArrayLike(0) + np.array(0))
check(np.array(0) + ArrayLike(0))
check(ArrayLike(np.array(0)) + 0)
check(0 + ArrayLike(np.array(0)))
check(ArrayLike(np.array(0)) + np.array(0))
check(np.array(0) + ArrayLike(np.array(0)))
def test_inplace(self):
array_like = ArrayLike(np.array([0]))
array_like += 1
_assert_equal_type_and_value(array_like, ArrayLike(np.array([1])))
array = np.array([0])
array += ArrayLike(1)
_assert_equal_type_and_value(array, ArrayLike(np.array([1])))
def test_opt_out(self):
class OptOut:
"""Object that opts out of __array_ufunc__."""
__array_ufunc__ = None
def __add__(self, other):
return self
def __radd__(self, other):
return self
array_like = ArrayLike(1)
opt_out = OptOut()
# supported operations
assert_(array_like + opt_out is opt_out)
assert_(opt_out + array_like is opt_out)
# not supported
with assert_raises(TypeError):
# don't use the Python default, array_like = array_like + opt_out
array_like += opt_out
with assert_raises(TypeError):
array_like - opt_out
with assert_raises(TypeError):
opt_out - array_like
def test_subclass(self):
class SubArrayLike(ArrayLike):
"""Should take precedence over ArrayLike."""
x = ArrayLike(0)
y = SubArrayLike(1)
_assert_equal_type_and_value(x + y, y)
_assert_equal_type_and_value(y + x, y)
def test_object(self):
x = ArrayLike(0)
obj = object()
with assert_raises(TypeError):
x + obj
with assert_raises(TypeError):
obj + x
with assert_raises(TypeError):
x += obj
def test_unary_methods(self):
array = np.array([-1, 0, 1, 2])
array_like = ArrayLike(array)
for op in [operator.neg,
operator.pos,
abs,
operator.invert]:
_assert_equal_type_and_value(op(array_like), ArrayLike(op(array)))
def test_forward_binary_methods(self):
array = np.array([-1, 0, 1, 2])
array_like = ArrayLike(array)
for op in _ALL_BINARY_OPERATORS:
expected = wrap_array_like(op(array, 1))
actual = op(array_like, 1)
err_msg = 'failed for operator {}'.format(op)
_assert_equal_type_and_value(expected, actual, err_msg=err_msg)
def test_reflected_binary_methods(self):
for op in _ALL_BINARY_OPERATORS:
expected = wrap_array_like(op(2, 1))
actual = op(2, ArrayLike(1))
err_msg = 'failed for operator {}'.format(op)
_assert_equal_type_and_value(expected, actual, err_msg=err_msg)
def test_matmul(self):
array = np.array([1, 2], dtype=np.float64)
array_like = ArrayLike(array)
expected = ArrayLike(np.float64(5))
_assert_equal_type_and_value(expected, np.matmul(array_like, array))
_assert_equal_type_and_value(
expected, operator.matmul(array_like, array))
_assert_equal_type_and_value(
expected, operator.matmul(array, array_like))
def test_ufunc_at(self):
array = ArrayLike(np.array([1, 2, 3, 4]))
assert_(np.negative.at(array, np.array([0, 1])) is None)
_assert_equal_type_and_value(array, ArrayLike([-1, -2, 3, 4]))
def test_ufunc_two_outputs(self):
mantissa, exponent = np.frexp(2 ** -3)
expected = (ArrayLike(mantissa), ArrayLike(exponent))
_assert_equal_type_and_value(
np.frexp(ArrayLike(2 ** -3)), expected)
_assert_equal_type_and_value(
np.frexp(ArrayLike(np.array(2 ** -3))), expected)

View file

@ -0,0 +1,980 @@
import warnings
import pytest
import numpy as np
from numpy.lib.nanfunctions import _nan_mask, _replace_nan
from numpy.testing import (
assert_, assert_equal, assert_almost_equal, assert_no_warnings,
assert_raises, assert_array_equal, suppress_warnings
)
# Test data
_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
[0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833],
[np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954],
[0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]])
# Rows of _ndat with nans removed
_rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]),
np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]),
np.array([0.1042, -0.5954]),
np.array([0.1610, 0.1859, 0.3146])]
# Rows of _ndat with nans converted to ones
_ndat_ones = np.array([[0.6244, 1.0, 0.2692, 0.0116, 1.0, 0.1170],
[0.5351, -0.9403, 1.0, 0.2100, 0.4759, 0.2833],
[1.0, 1.0, 1.0, 0.1042, 1.0, -0.5954],
[0.1610, 1.0, 1.0, 0.1859, 0.3146, 1.0]])
# Rows of _ndat with nans converted to zeros
_ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170],
[0.5351, -0.9403, 0.0, 0.2100, 0.4759, 0.2833],
[0.0, 0.0, 0.0, 0.1042, 0.0, -0.5954],
[0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]])
class TestNanFunctions_MinMax:
nanfuncs = [np.nanmin, np.nanmax]
stdfuncs = [np.min, np.max]
def test_mutation(self):
# Check that passed array is not modified.
ndat = _ndat.copy()
for f in self.nanfuncs:
f(ndat)
assert_equal(ndat, _ndat)
def test_keepdims(self):
mat = np.eye(3)
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
for axis in [None, 0, 1]:
tgt = rf(mat, axis=axis, keepdims=True)
res = nf(mat, axis=axis, keepdims=True)
assert_(res.ndim == tgt.ndim)
def test_out(self):
mat = np.eye(3)
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
resout = np.zeros(3)
tgt = rf(mat, axis=1)
res = nf(mat, axis=1, out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
def test_dtype_from_input(self):
codes = 'efdgFDG'
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
for c in codes:
mat = np.eye(3, dtype=c)
tgt = rf(mat, axis=1).dtype.type
res = nf(mat, axis=1).dtype.type
assert_(res is tgt)
# scalar case
tgt = rf(mat, axis=None).dtype.type
res = nf(mat, axis=None).dtype.type
assert_(res is tgt)
def test_result_values(self):
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
tgt = [rf(d) for d in _rdat]
res = nf(_ndat, axis=1)
assert_almost_equal(res, tgt)
def test_allnans(self):
mat = np.array([np.nan]*9).reshape(3, 3)
for f in self.nanfuncs:
for axis in [None, 0, 1]:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_(np.isnan(f(mat, axis=axis)).all())
assert_(len(w) == 1, 'no warning raised')
assert_(issubclass(w[0].category, RuntimeWarning))
# Check scalars
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_(np.isnan(f(np.nan)))
assert_(len(w) == 1, 'no warning raised')
assert_(issubclass(w[0].category, RuntimeWarning))
def test_masked(self):
mat = np.ma.fix_invalid(_ndat)
msk = mat._mask.copy()
for f in [np.nanmin]:
res = f(mat, axis=1)
tgt = f(_ndat, axis=1)
assert_equal(res, tgt)
assert_equal(mat._mask, msk)
assert_(not np.isinf(mat).any())
def test_scalar(self):
for f in self.nanfuncs:
assert_(f(0.) == 0.)
def test_subclass(self):
class MyNDArray(np.ndarray):
pass
# Check that it works and that type and
# shape are preserved
mine = np.eye(3).view(MyNDArray)
for f in self.nanfuncs:
res = f(mine, axis=0)
assert_(isinstance(res, MyNDArray))
assert_(res.shape == (3,))
res = f(mine, axis=1)
assert_(isinstance(res, MyNDArray))
assert_(res.shape == (3,))
res = f(mine)
assert_(res.shape == ())
# check that rows of nan are dealt with for subclasses (#4628)
mine[1] = np.nan
for f in self.nanfuncs:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
res = f(mine, axis=0)
assert_(isinstance(res, MyNDArray))
assert_(not np.any(np.isnan(res)))
assert_(len(w) == 0)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
res = f(mine, axis=1)
assert_(isinstance(res, MyNDArray))
assert_(np.isnan(res[1]) and not np.isnan(res[0])
and not np.isnan(res[2]))
assert_(len(w) == 1, 'no warning raised')
assert_(issubclass(w[0].category, RuntimeWarning))
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
res = f(mine)
assert_(res.shape == ())
assert_(res != np.nan)
assert_(len(w) == 0)
def test_object_array(self):
arr = np.array([[1.0, 2.0], [np.nan, 4.0], [np.nan, np.nan]], dtype=object)
assert_equal(np.nanmin(arr), 1.0)
assert_equal(np.nanmin(arr, axis=0), [1.0, 2.0])
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
# assert_equal does not work on object arrays of nan
assert_equal(list(np.nanmin(arr, axis=1)), [1.0, 4.0, np.nan])
assert_(len(w) == 1, 'no warning raised')
assert_(issubclass(w[0].category, RuntimeWarning))
class TestNanFunctions_ArgminArgmax:
nanfuncs = [np.nanargmin, np.nanargmax]
def test_mutation(self):
# Check that passed array is not modified.
ndat = _ndat.copy()
for f in self.nanfuncs:
f(ndat)
assert_equal(ndat, _ndat)
def test_result_values(self):
for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]):
for row in _ndat:
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "invalid value encountered in")
ind = f(row)
val = row[ind]
# comparing with NaN is tricky as the result
# is always false except for NaN != NaN
assert_(not np.isnan(val))
assert_(not fcmp(val, row).any())
assert_(not np.equal(val, row[:ind]).any())
def test_allnans(self):
mat = np.array([np.nan]*9).reshape(3, 3)
for f in self.nanfuncs:
for axis in [None, 0, 1]:
assert_raises(ValueError, f, mat, axis=axis)
assert_raises(ValueError, f, np.nan)
def test_empty(self):
mat = np.zeros((0, 3))
for f in self.nanfuncs:
for axis in [0, None]:
assert_raises(ValueError, f, mat, axis=axis)
for axis in [1]:
res = f(mat, axis=axis)
assert_equal(res, np.zeros(0))
def test_scalar(self):
for f in self.nanfuncs:
assert_(f(0.) == 0.)
def test_subclass(self):
class MyNDArray(np.ndarray):
pass
# Check that it works and that type and
# shape are preserved
mine = np.eye(3).view(MyNDArray)
for f in self.nanfuncs:
res = f(mine, axis=0)
assert_(isinstance(res, MyNDArray))
assert_(res.shape == (3,))
res = f(mine, axis=1)
assert_(isinstance(res, MyNDArray))
assert_(res.shape == (3,))
res = f(mine)
assert_(res.shape == ())
class TestNanFunctions_IntTypes:
int_types = (np.int8, np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)
mat = np.array([127, 39, 93, 87, 46])
def integer_arrays(self):
for dtype in self.int_types:
yield self.mat.astype(dtype)
def test_nanmin(self):
tgt = np.min(self.mat)
for mat in self.integer_arrays():
assert_equal(np.nanmin(mat), tgt)
def test_nanmax(self):
tgt = np.max(self.mat)
for mat in self.integer_arrays():
assert_equal(np.nanmax(mat), tgt)
def test_nanargmin(self):
tgt = np.argmin(self.mat)
for mat in self.integer_arrays():
assert_equal(np.nanargmin(mat), tgt)
def test_nanargmax(self):
tgt = np.argmax(self.mat)
for mat in self.integer_arrays():
assert_equal(np.nanargmax(mat), tgt)
def test_nansum(self):
tgt = np.sum(self.mat)
for mat in self.integer_arrays():
assert_equal(np.nansum(mat), tgt)
def test_nanprod(self):
tgt = np.prod(self.mat)
for mat in self.integer_arrays():
assert_equal(np.nanprod(mat), tgt)
def test_nancumsum(self):
tgt = np.cumsum(self.mat)
for mat in self.integer_arrays():
assert_equal(np.nancumsum(mat), tgt)
def test_nancumprod(self):
tgt = np.cumprod(self.mat)
for mat in self.integer_arrays():
assert_equal(np.nancumprod(mat), tgt)
def test_nanmean(self):
tgt = np.mean(self.mat)
for mat in self.integer_arrays():
assert_equal(np.nanmean(mat), tgt)
def test_nanvar(self):
tgt = np.var(self.mat)
for mat in self.integer_arrays():
assert_equal(np.nanvar(mat), tgt)
tgt = np.var(mat, ddof=1)
for mat in self.integer_arrays():
assert_equal(np.nanvar(mat, ddof=1), tgt)
def test_nanstd(self):
tgt = np.std(self.mat)
for mat in self.integer_arrays():
assert_equal(np.nanstd(mat), tgt)
tgt = np.std(self.mat, ddof=1)
for mat in self.integer_arrays():
assert_equal(np.nanstd(mat, ddof=1), tgt)
class SharedNanFunctionsTestsMixin:
def test_mutation(self):
# Check that passed array is not modified.
ndat = _ndat.copy()
for f in self.nanfuncs:
f(ndat)
assert_equal(ndat, _ndat)
def test_keepdims(self):
mat = np.eye(3)
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
for axis in [None, 0, 1]:
tgt = rf(mat, axis=axis, keepdims=True)
res = nf(mat, axis=axis, keepdims=True)
assert_(res.ndim == tgt.ndim)
def test_out(self):
mat = np.eye(3)
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
resout = np.zeros(3)
tgt = rf(mat, axis=1)
res = nf(mat, axis=1, out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
def test_dtype_from_dtype(self):
mat = np.eye(3)
codes = 'efdgFDG'
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
for c in codes:
with suppress_warnings() as sup:
if nf in {np.nanstd, np.nanvar} and c in 'FDG':
# Giving the warning is a small bug, see gh-8000
sup.filter(np.ComplexWarning)
tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
assert_(res is tgt)
# scalar case
tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
assert_(res is tgt)
def test_dtype_from_char(self):
mat = np.eye(3)
codes = 'efdgFDG'
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
for c in codes:
with suppress_warnings() as sup:
if nf in {np.nanstd, np.nanvar} and c in 'FDG':
# Giving the warning is a small bug, see gh-8000
sup.filter(np.ComplexWarning)
tgt = rf(mat, dtype=c, axis=1).dtype.type
res = nf(mat, dtype=c, axis=1).dtype.type
assert_(res is tgt)
# scalar case
tgt = rf(mat, dtype=c, axis=None).dtype.type
res = nf(mat, dtype=c, axis=None).dtype.type
assert_(res is tgt)
def test_dtype_from_input(self):
codes = 'efdgFDG'
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
for c in codes:
mat = np.eye(3, dtype=c)
tgt = rf(mat, axis=1).dtype.type
res = nf(mat, axis=1).dtype.type
assert_(res is tgt, "res %s, tgt %s" % (res, tgt))
# scalar case
tgt = rf(mat, axis=None).dtype.type
res = nf(mat, axis=None).dtype.type
assert_(res is tgt)
def test_result_values(self):
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
tgt = [rf(d) for d in _rdat]
res = nf(_ndat, axis=1)
assert_almost_equal(res, tgt)
def test_scalar(self):
for f in self.nanfuncs:
assert_(f(0.) == 0.)
def test_subclass(self):
class MyNDArray(np.ndarray):
pass
# Check that it works and that type and
# shape are preserved
array = np.eye(3)
mine = array.view(MyNDArray)
for f in self.nanfuncs:
expected_shape = f(array, axis=0).shape
res = f(mine, axis=0)
assert_(isinstance(res, MyNDArray))
assert_(res.shape == expected_shape)
expected_shape = f(array, axis=1).shape
res = f(mine, axis=1)
assert_(isinstance(res, MyNDArray))
assert_(res.shape == expected_shape)
expected_shape = f(array).shape
res = f(mine)
assert_(isinstance(res, MyNDArray))
assert_(res.shape == expected_shape)
class TestNanFunctions_SumProd(SharedNanFunctionsTestsMixin):
nanfuncs = [np.nansum, np.nanprod]
stdfuncs = [np.sum, np.prod]
def test_allnans(self):
# Check for FutureWarning
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
res = np.nansum([np.nan]*3, axis=None)
assert_(res == 0, 'result is not 0')
assert_(len(w) == 0, 'warning raised')
# Check scalar
res = np.nansum(np.nan)
assert_(res == 0, 'result is not 0')
assert_(len(w) == 0, 'warning raised')
# Check there is no warning for not all-nan
np.nansum([0]*3, axis=None)
assert_(len(w) == 0, 'unwanted warning raised')
def test_empty(self):
for f, tgt_value in zip([np.nansum, np.nanprod], [0, 1]):
mat = np.zeros((0, 3))
tgt = [tgt_value]*3
res = f(mat, axis=0)
assert_equal(res, tgt)
tgt = []
res = f(mat, axis=1)
assert_equal(res, tgt)
tgt = tgt_value
res = f(mat, axis=None)
assert_equal(res, tgt)
class TestNanFunctions_CumSumProd(SharedNanFunctionsTestsMixin):
nanfuncs = [np.nancumsum, np.nancumprod]
stdfuncs = [np.cumsum, np.cumprod]
def test_allnans(self):
for f, tgt_value in zip(self.nanfuncs, [0, 1]):
# Unlike other nan-functions, sum/prod/cumsum/cumprod don't warn on all nan input
with assert_no_warnings():
res = f([np.nan]*3, axis=None)
tgt = tgt_value*np.ones((3))
assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((3))' % (tgt_value))
# Check scalar
res = f(np.nan)
tgt = tgt_value*np.ones((1))
assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((1))' % (tgt_value))
# Check there is no warning for not all-nan
f([0]*3, axis=None)
def test_empty(self):
for f, tgt_value in zip(self.nanfuncs, [0, 1]):
mat = np.zeros((0, 3))
tgt = tgt_value*np.ones((0, 3))
res = f(mat, axis=0)
assert_equal(res, tgt)
tgt = mat
res = f(mat, axis=1)
assert_equal(res, tgt)
tgt = np.zeros((0))
res = f(mat, axis=None)
assert_equal(res, tgt)
def test_keepdims(self):
for f, g in zip(self.nanfuncs, self.stdfuncs):
mat = np.eye(3)
for axis in [None, 0, 1]:
tgt = f(mat, axis=axis, out=None)
res = g(mat, axis=axis, out=None)
assert_(res.ndim == tgt.ndim)
for f in self.nanfuncs:
d = np.ones((3, 5, 7, 11))
# Randomly set some elements to NaN:
rs = np.random.RandomState(0)
d[rs.rand(*d.shape) < 0.5] = np.nan
res = f(d, axis=None)
assert_equal(res.shape, (1155,))
for axis in np.arange(4):
res = f(d, axis=axis)
assert_equal(res.shape, (3, 5, 7, 11))
def test_result_values(self):
for axis in (-2, -1, 0, 1, None):
tgt = np.cumprod(_ndat_ones, axis=axis)
res = np.nancumprod(_ndat, axis=axis)
assert_almost_equal(res, tgt)
tgt = np.cumsum(_ndat_zeros,axis=axis)
res = np.nancumsum(_ndat, axis=axis)
assert_almost_equal(res, tgt)
def test_out(self):
mat = np.eye(3)
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
resout = np.eye(3)
for axis in (-2, -1, 0, 1):
tgt = rf(mat, axis=axis)
res = nf(mat, axis=axis, out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
class TestNanFunctions_MeanVarStd(SharedNanFunctionsTestsMixin):
nanfuncs = [np.nanmean, np.nanvar, np.nanstd]
stdfuncs = [np.mean, np.var, np.std]
def test_dtype_error(self):
for f in self.nanfuncs:
for dtype in [np.bool_, np.int_, np.object_]:
assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype)
def test_out_dtype_error(self):
for f in self.nanfuncs:
for dtype in [np.bool_, np.int_, np.object_]:
out = np.empty(_ndat.shape[0], dtype=dtype)
assert_raises(TypeError, f, _ndat, axis=1, out=out)
def test_ddof(self):
nanfuncs = [np.nanvar, np.nanstd]
stdfuncs = [np.var, np.std]
for nf, rf in zip(nanfuncs, stdfuncs):
for ddof in [0, 1]:
tgt = [rf(d, ddof=ddof) for d in _rdat]
res = nf(_ndat, axis=1, ddof=ddof)
assert_almost_equal(res, tgt)
def test_ddof_too_big(self):
nanfuncs = [np.nanvar, np.nanstd]
stdfuncs = [np.var, np.std]
dsize = [len(d) for d in _rdat]
for nf, rf in zip(nanfuncs, stdfuncs):
for ddof in range(5):
with suppress_warnings() as sup:
sup.record(RuntimeWarning)
sup.filter(np.ComplexWarning)
tgt = [ddof >= d for d in dsize]
res = nf(_ndat, axis=1, ddof=ddof)
assert_equal(np.isnan(res), tgt)
if any(tgt):
assert_(len(sup.log) == 1)
else:
assert_(len(sup.log) == 0)
def test_allnans(self):
mat = np.array([np.nan]*9).reshape(3, 3)
for f in self.nanfuncs:
for axis in [None, 0, 1]:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_(np.isnan(f(mat, axis=axis)).all())
assert_(len(w) == 1)
assert_(issubclass(w[0].category, RuntimeWarning))
# Check scalar
assert_(np.isnan(f(np.nan)))
assert_(len(w) == 2)
assert_(issubclass(w[0].category, RuntimeWarning))
def test_empty(self):
mat = np.zeros((0, 3))
for f in self.nanfuncs:
for axis in [0, None]:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_(np.isnan(f(mat, axis=axis)).all())
assert_(len(w) == 1)
assert_(issubclass(w[0].category, RuntimeWarning))
for axis in [1]:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_equal(f(mat, axis=axis), np.zeros([]))
assert_(len(w) == 0)
class TestNanFunctions_Median:
def test_mutation(self):
# Check that passed array is not modified.
ndat = _ndat.copy()
np.nanmedian(ndat)
assert_equal(ndat, _ndat)
def test_keepdims(self):
mat = np.eye(3)
for axis in [None, 0, 1]:
tgt = np.median(mat, axis=axis, out=None, overwrite_input=False)
res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False)
assert_(res.ndim == tgt.ndim)
d = np.ones((3, 5, 7, 11))
# Randomly set some elements to NaN:
w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
w = w.astype(np.intp)
d[tuple(w)] = np.nan
with suppress_warnings() as sup:
sup.filter(RuntimeWarning)
res = np.nanmedian(d, axis=None, keepdims=True)
assert_equal(res.shape, (1, 1, 1, 1))
res = np.nanmedian(d, axis=(0, 1), keepdims=True)
assert_equal(res.shape, (1, 1, 7, 11))
res = np.nanmedian(d, axis=(0, 3), keepdims=True)
assert_equal(res.shape, (1, 5, 7, 1))
res = np.nanmedian(d, axis=(1,), keepdims=True)
assert_equal(res.shape, (3, 1, 7, 11))
res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True)
assert_equal(res.shape, (1, 1, 1, 1))
res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True)
assert_equal(res.shape, (1, 1, 7, 1))
def test_out(self):
mat = np.random.rand(3, 3)
nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
resout = np.zeros(3)
tgt = np.median(mat, axis=1)
res = np.nanmedian(nan_mat, axis=1, out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
# 0-d output:
resout = np.zeros(())
tgt = np.median(mat, axis=None)
res = np.nanmedian(nan_mat, axis=None, out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
res = np.nanmedian(nan_mat, axis=(0, 1), out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
def test_small_large(self):
# test the small and large code paths, current cutoff 400 elements
for s in [5, 20, 51, 200, 1000]:
d = np.random.randn(4, s)
# Randomly set some elements to NaN:
w = np.random.randint(0, d.size, size=d.size // 5)
d.ravel()[w] = np.nan
d[:,0] = 1. # ensure at least one good value
# use normal median without nans to compare
tgt = []
for x in d:
nonan = np.compress(~np.isnan(x), x)
tgt.append(np.median(nonan, overwrite_input=True))
assert_array_equal(np.nanmedian(d, axis=-1), tgt)
def test_result_values(self):
tgt = [np.median(d) for d in _rdat]
res = np.nanmedian(_ndat, axis=1)
assert_almost_equal(res, tgt)
def test_allnans(self):
mat = np.array([np.nan]*9).reshape(3, 3)
for axis in [None, 0, 1]:
with suppress_warnings() as sup:
sup.record(RuntimeWarning)
assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
if axis is None:
assert_(len(sup.log) == 1)
else:
assert_(len(sup.log) == 3)
# Check scalar
assert_(np.isnan(np.nanmedian(np.nan)))
if axis is None:
assert_(len(sup.log) == 2)
else:
assert_(len(sup.log) == 4)
def test_empty(self):
mat = np.zeros((0, 3))
for axis in [0, None]:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
assert_(len(w) == 1)
assert_(issubclass(w[0].category, RuntimeWarning))
for axis in [1]:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_equal(np.nanmedian(mat, axis=axis), np.zeros([]))
assert_(len(w) == 0)
def test_scalar(self):
assert_(np.nanmedian(0.) == 0.)
def test_extended_axis_invalid(self):
d = np.ones((3, 5, 7, 11))
assert_raises(np.AxisError, np.nanmedian, d, axis=-5)
assert_raises(np.AxisError, np.nanmedian, d, axis=(0, -5))
assert_raises(np.AxisError, np.nanmedian, d, axis=4)
assert_raises(np.AxisError, np.nanmedian, d, axis=(0, 4))
assert_raises(ValueError, np.nanmedian, d, axis=(1, 1))
def test_float_special(self):
with suppress_warnings() as sup:
sup.filter(RuntimeWarning)
for inf in [np.inf, -np.inf]:
a = np.array([[inf, np.nan], [np.nan, np.nan]])
assert_equal(np.nanmedian(a, axis=0), [inf, np.nan])
assert_equal(np.nanmedian(a, axis=1), [inf, np.nan])
assert_equal(np.nanmedian(a), inf)
# minimum fill value check
a = np.array([[np.nan, np.nan, inf],
[np.nan, np.nan, inf]])
assert_equal(np.nanmedian(a), inf)
assert_equal(np.nanmedian(a, axis=0), [np.nan, np.nan, inf])
assert_equal(np.nanmedian(a, axis=1), inf)
# no mask path
a = np.array([[inf, inf], [inf, inf]])
assert_equal(np.nanmedian(a, axis=1), inf)
a = np.array([[inf, 7, -inf, -9],
[-10, np.nan, np.nan, 5],
[4, np.nan, np.nan, inf]],
dtype=np.float32)
if inf > 0:
assert_equal(np.nanmedian(a, axis=0), [4., 7., -inf, 5.])
assert_equal(np.nanmedian(a), 4.5)
else:
assert_equal(np.nanmedian(a, axis=0), [-10., 7., -inf, -9.])
assert_equal(np.nanmedian(a), -2.5)
assert_equal(np.nanmedian(a, axis=-1), [-1., -2.5, inf])
for i in range(0, 10):
for j in range(1, 10):
a = np.array([([np.nan] * i) + ([inf] * j)] * 2)
assert_equal(np.nanmedian(a), inf)
assert_equal(np.nanmedian(a, axis=1), inf)
assert_equal(np.nanmedian(a, axis=0),
([np.nan] * i) + [inf] * j)
a = np.array([([np.nan] * i) + ([-inf] * j)] * 2)
assert_equal(np.nanmedian(a), -inf)
assert_equal(np.nanmedian(a, axis=1), -inf)
assert_equal(np.nanmedian(a, axis=0),
([np.nan] * i) + [-inf] * j)
class TestNanFunctions_Percentile:
def test_mutation(self):
# Check that passed array is not modified.
ndat = _ndat.copy()
np.nanpercentile(ndat, 30)
assert_equal(ndat, _ndat)
def test_keepdims(self):
mat = np.eye(3)
for axis in [None, 0, 1]:
tgt = np.percentile(mat, 70, axis=axis, out=None,
overwrite_input=False)
res = np.nanpercentile(mat, 70, axis=axis, out=None,
overwrite_input=False)
assert_(res.ndim == tgt.ndim)
d = np.ones((3, 5, 7, 11))
# Randomly set some elements to NaN:
w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
w = w.astype(np.intp)
d[tuple(w)] = np.nan
with suppress_warnings() as sup:
sup.filter(RuntimeWarning)
res = np.nanpercentile(d, 90, axis=None, keepdims=True)
assert_equal(res.shape, (1, 1, 1, 1))
res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True)
assert_equal(res.shape, (1, 1, 7, 11))
res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True)
assert_equal(res.shape, (1, 5, 7, 1))
res = np.nanpercentile(d, 90, axis=(1,), keepdims=True)
assert_equal(res.shape, (3, 1, 7, 11))
res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True)
assert_equal(res.shape, (1, 1, 1, 1))
res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True)
assert_equal(res.shape, (1, 1, 7, 1))
def test_out(self):
mat = np.random.rand(3, 3)
nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
resout = np.zeros(3)
tgt = np.percentile(mat, 42, axis=1)
res = np.nanpercentile(nan_mat, 42, axis=1, out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
# 0-d output:
resout = np.zeros(())
tgt = np.percentile(mat, 42, axis=None)
res = np.nanpercentile(nan_mat, 42, axis=None, out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
def test_result_values(self):
tgt = [np.percentile(d, 28) for d in _rdat]
res = np.nanpercentile(_ndat, 28, axis=1)
assert_almost_equal(res, tgt)
# Transpose the array to fit the output convention of numpy.percentile
tgt = np.transpose([np.percentile(d, (28, 98)) for d in _rdat])
res = np.nanpercentile(_ndat, (28, 98), axis=1)
assert_almost_equal(res, tgt)
def test_allnans(self):
mat = np.array([np.nan]*9).reshape(3, 3)
for axis in [None, 0, 1]:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_(np.isnan(np.nanpercentile(mat, 60, axis=axis)).all())
if axis is None:
assert_(len(w) == 1)
else:
assert_(len(w) == 3)
assert_(issubclass(w[0].category, RuntimeWarning))
# Check scalar
assert_(np.isnan(np.nanpercentile(np.nan, 60)))
if axis is None:
assert_(len(w) == 2)
else:
assert_(len(w) == 4)
assert_(issubclass(w[0].category, RuntimeWarning))
def test_empty(self):
mat = np.zeros((0, 3))
for axis in [0, None]:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all())
assert_(len(w) == 1)
assert_(issubclass(w[0].category, RuntimeWarning))
for axis in [1]:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([]))
assert_(len(w) == 0)
def test_scalar(self):
assert_equal(np.nanpercentile(0., 100), 0.)
a = np.arange(6)
r = np.nanpercentile(a, 50, axis=0)
assert_equal(r, 2.5)
assert_(np.isscalar(r))
def test_extended_axis_invalid(self):
d = np.ones((3, 5, 7, 11))
assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=-5)
assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, -5))
assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=4)
assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, 4))
assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1))
def test_multiple_percentiles(self):
perc = [50, 100]
mat = np.ones((4, 3))
nan_mat = np.nan * mat
# For checking consistency in higher dimensional case
large_mat = np.ones((3, 4, 5))
large_mat[:, 0:2:4, :] = 0
large_mat[:, :, 3:] *= 2
for axis in [None, 0, 1]:
for keepdim in [False, True]:
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "All-NaN slice encountered")
val = np.percentile(mat, perc, axis=axis, keepdims=keepdim)
nan_val = np.nanpercentile(nan_mat, perc, axis=axis,
keepdims=keepdim)
assert_equal(nan_val.shape, val.shape)
val = np.percentile(large_mat, perc, axis=axis,
keepdims=keepdim)
nan_val = np.nanpercentile(large_mat, perc, axis=axis,
keepdims=keepdim)
assert_equal(nan_val, val)
megamat = np.ones((3, 4, 5, 6))
assert_equal(np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6))
class TestNanFunctions_Quantile:
# most of this is already tested by TestPercentile
def test_regression(self):
ar = np.arange(24).reshape(2, 3, 4).astype(float)
ar[0][1] = np.nan
assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50))
assert_equal(np.nanquantile(ar, q=0.5, axis=0),
np.nanpercentile(ar, q=50, axis=0))
assert_equal(np.nanquantile(ar, q=0.5, axis=1),
np.nanpercentile(ar, q=50, axis=1))
assert_equal(np.nanquantile(ar, q=[0.5], axis=1),
np.nanpercentile(ar, q=[50], axis=1))
assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1),
np.nanpercentile(ar, q=[25, 50, 75], axis=1))
def test_basic(self):
x = np.arange(8) * 0.5
assert_equal(np.nanquantile(x, 0), 0.)
assert_equal(np.nanquantile(x, 1), 3.5)
assert_equal(np.nanquantile(x, 0.5), 1.75)
def test_no_p_overwrite(self):
# this is worth retesting, because quantile does not make a copy
p0 = np.array([0, 0.75, 0.25, 0.5, 1.0])
p = p0.copy()
np.nanquantile(np.arange(100.), p, interpolation="midpoint")
assert_array_equal(p, p0)
p0 = p0.tolist()
p = p.tolist()
np.nanquantile(np.arange(100.), p, interpolation="midpoint")
assert_array_equal(p, p0)
@pytest.mark.parametrize("arr, expected", [
# array of floats with some nans
(np.array([np.nan, 5.0, np.nan, np.inf]),
np.array([False, True, False, True])),
# int64 array that can't possibly have nans
(np.array([1, 5, 7, 9], dtype=np.int64),
True),
# bool array that can't possibly have nans
(np.array([False, True, False, True]),
True),
# 2-D complex array with nans
(np.array([[np.nan, 5.0],
[np.nan, np.inf]], dtype=np.complex64),
np.array([[False, True],
[False, True]])),
])
def test__nan_mask(arr, expected):
for out in [None, np.empty(arr.shape, dtype=np.bool_)]:
actual = _nan_mask(arr, out=out)
assert_equal(actual, expected)
# the above won't distinguish between True proper
# and an array of True values; we want True proper
# for types that can't possibly contain NaN
if type(expected) is not np.ndarray:
assert actual is True
def test__replace_nan():
""" Test that _replace_nan returns the original array if there are no
NaNs, not a copy.
"""
for dtype in [np.bool, np.int32, np.int64]:
arr = np.array([0, 1], dtype=dtype)
result, mask = _replace_nan(arr, 0)
assert mask is None
# do not make a copy if there are no nans
assert result is arr
for dtype in [np.float32, np.float64]:
arr = np.array([0, 1], dtype=dtype)
result, mask = _replace_nan(arr, 2)
assert (mask == False).all()
# mask is not None, so we make a copy
assert result is not arr
assert_equal(result, arr)
arr_nan = np.array([0, 1, np.nan], dtype=dtype)
result_nan, mask_nan = _replace_nan(arr_nan, 2)
assert_equal(mask_nan, np.array([False, False, True]))
assert result_nan is not arr_nan
assert_equal(result_nan, np.array([0, 1, 2]))
assert np.isnan(arr_nan[-1])

View file

@ -0,0 +1,376 @@
import numpy as np
from numpy.testing import assert_array_equal, assert_equal, assert_raises
import pytest
from itertools import chain
def test_packbits():
# Copied from the docstring.
a = [[[1, 0, 1], [0, 1, 0]],
[[1, 1, 0], [0, 0, 1]]]
for dt in '?bBhHiIlLqQ':
arr = np.array(a, dtype=dt)
b = np.packbits(arr, axis=-1)
assert_equal(b.dtype, np.uint8)
assert_array_equal(b, np.array([[[160], [64]], [[192], [32]]]))
assert_raises(TypeError, np.packbits, np.array(a, dtype=float))
def test_packbits_empty():
shapes = [
(0,), (10, 20, 0), (10, 0, 20), (0, 10, 20), (20, 0, 0), (0, 20, 0),
(0, 0, 20), (0, 0, 0),
]
for dt in '?bBhHiIlLqQ':
for shape in shapes:
a = np.empty(shape, dtype=dt)
b = np.packbits(a)
assert_equal(b.dtype, np.uint8)
assert_equal(b.shape, (0,))
def test_packbits_empty_with_axis():
# Original shapes and lists of packed shapes for different axes.
shapes = [
((0,), [(0,)]),
((10, 20, 0), [(2, 20, 0), (10, 3, 0), (10, 20, 0)]),
((10, 0, 20), [(2, 0, 20), (10, 0, 20), (10, 0, 3)]),
((0, 10, 20), [(0, 10, 20), (0, 2, 20), (0, 10, 3)]),
((20, 0, 0), [(3, 0, 0), (20, 0, 0), (20, 0, 0)]),
((0, 20, 0), [(0, 20, 0), (0, 3, 0), (0, 20, 0)]),
((0, 0, 20), [(0, 0, 20), (0, 0, 20), (0, 0, 3)]),
((0, 0, 0), [(0, 0, 0), (0, 0, 0), (0, 0, 0)]),
]
for dt in '?bBhHiIlLqQ':
for in_shape, out_shapes in shapes:
for ax, out_shape in enumerate(out_shapes):
a = np.empty(in_shape, dtype=dt)
b = np.packbits(a, axis=ax)
assert_equal(b.dtype, np.uint8)
assert_equal(b.shape, out_shape)
@pytest.mark.parametrize('bitorder', ('little', 'big'))
def test_packbits_large(bitorder):
# test data large enough for 16 byte vectorization
a = np.array([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0,
1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1,
1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1,
1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1,
1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1,
1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0,
0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,
1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0,
1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0])
a = a.repeat(3)
for dtype in '?bBhHiIlLqQ':
arr = np.array(a, dtype=dtype)
b = np.packbits(arr, axis=None, bitorder=bitorder)
assert_equal(b.dtype, np.uint8)
r = [252, 127, 192, 3, 254, 7, 252, 0, 7, 31, 240, 0, 28, 1, 255, 252,
113, 248, 3, 255, 192, 28, 15, 192, 28, 126, 0, 224, 127, 255,
227, 142, 7, 31, 142, 63, 28, 126, 56, 227, 240, 0, 227, 128, 63,
224, 14, 56, 252, 112, 56, 255, 241, 248, 3, 240, 56, 224, 112,
63, 255, 255, 199, 224, 14, 0, 31, 143, 192, 3, 255, 199, 0, 1,
255, 224, 1, 255, 252, 126, 63, 0, 1, 192, 252, 14, 63, 0, 15,
199, 252, 113, 255, 3, 128, 56, 252, 14, 7, 0, 113, 255, 255, 142, 56, 227,
129, 248, 227, 129, 199, 31, 128]
if bitorder == 'big':
assert_array_equal(b, r)
# equal for size being multiple of 8
assert_array_equal(np.unpackbits(b, bitorder=bitorder)[:-4], a)
# check last byte of different remainders (16 byte vectorization)
b = [np.packbits(arr[:-i], axis=None)[-1] for i in range(1, 16)]
assert_array_equal(b, [128, 128, 128, 31, 30, 28, 24, 16, 0, 0, 0, 199,
198, 196, 192])
arr = arr.reshape(36, 25)
b = np.packbits(arr, axis=0)
assert_equal(b.dtype, np.uint8)
assert_array_equal(b, [[190, 186, 178, 178, 150, 215, 87, 83, 83, 195,
199, 206, 204, 204, 140, 140, 136, 136, 8, 40, 105,
107, 75, 74, 88],
[72, 216, 248, 241, 227, 195, 202, 90, 90, 83,
83, 119, 127, 109, 73, 64, 208, 244, 189, 45,
41, 104, 122, 90, 18],
[113, 120, 248, 216, 152, 24, 60, 52, 182, 150,
150, 150, 146, 210, 210, 246, 255, 255, 223,
151, 21, 17, 17, 131, 163],
[214, 210, 210, 64, 68, 5, 5, 1, 72, 88, 92,
92, 78, 110, 39, 181, 149, 220, 222, 218, 218,
202, 234, 170, 168],
[0, 128, 128, 192, 80, 112, 48, 160, 160, 224,
240, 208, 144, 128, 160, 224, 240, 208, 144,
144, 176, 240, 224, 192, 128]])
b = np.packbits(arr, axis=1)
assert_equal(b.dtype, np.uint8)
assert_array_equal(b, [[252, 127, 192, 0],
[ 7, 252, 15, 128],
[240, 0, 28, 0],
[255, 128, 0, 128],
[192, 31, 255, 128],
[142, 63, 0, 0],
[255, 240, 7, 0],
[ 7, 224, 14, 0],
[126, 0, 224, 0],
[255, 255, 199, 0],
[ 56, 28, 126, 0],
[113, 248, 227, 128],
[227, 142, 63, 0],
[ 0, 28, 112, 0],
[ 15, 248, 3, 128],
[ 28, 126, 56, 0],
[ 56, 255, 241, 128],
[240, 7, 224, 0],
[227, 129, 192, 128],
[255, 255, 254, 0],
[126, 0, 224, 0],
[ 3, 241, 248, 0],
[ 0, 255, 241, 128],
[128, 0, 255, 128],
[224, 1, 255, 128],
[248, 252, 126, 0],
[ 0, 7, 3, 128],
[224, 113, 248, 0],
[ 0, 252, 127, 128],
[142, 63, 224, 0],
[224, 14, 63, 0],
[ 7, 3, 128, 0],
[113, 255, 255, 128],
[ 28, 113, 199, 0],
[ 7, 227, 142, 0],
[ 14, 56, 252, 0]])
arr = arr.T.copy()
b = np.packbits(arr, axis=0)
assert_equal(b.dtype, np.uint8)
assert_array_equal(b, [[252, 7, 240, 255, 192, 142, 255, 7, 126, 255,
56, 113, 227, 0, 15, 28, 56, 240, 227, 255,
126, 3, 0, 128, 224, 248, 0, 224, 0, 142, 224,
7, 113, 28, 7, 14],
[127, 252, 0, 128, 31, 63, 240, 224, 0, 255,
28, 248, 142, 28, 248, 126, 255, 7, 129, 255,
0, 241, 255, 0, 1, 252, 7, 113, 252, 63, 14,
3, 255, 113, 227, 56],
[192, 15, 28, 0, 255, 0, 7, 14, 224, 199, 126,
227, 63, 112, 3, 56, 241, 224, 192, 254, 224,
248, 241, 255, 255, 126, 3, 248, 127, 224, 63,
128, 255, 199, 142, 252],
[0, 128, 0, 128, 128, 0, 0, 0, 0, 0, 0, 128, 0,
0, 128, 0, 128, 0, 128, 0, 0, 0, 128, 128,
128, 0, 128, 0, 128, 0, 0, 0, 128, 0, 0, 0]])
b = np.packbits(arr, axis=1)
assert_equal(b.dtype, np.uint8)
assert_array_equal(b, [[190, 72, 113, 214, 0],
[186, 216, 120, 210, 128],
[178, 248, 248, 210, 128],
[178, 241, 216, 64, 192],
[150, 227, 152, 68, 80],
[215, 195, 24, 5, 112],
[ 87, 202, 60, 5, 48],
[ 83, 90, 52, 1, 160],
[ 83, 90, 182, 72, 160],
[195, 83, 150, 88, 224],
[199, 83, 150, 92, 240],
[206, 119, 150, 92, 208],
[204, 127, 146, 78, 144],
[204, 109, 210, 110, 128],
[140, 73, 210, 39, 160],
[140, 64, 246, 181, 224],
[136, 208, 255, 149, 240],
[136, 244, 255, 220, 208],
[ 8, 189, 223, 222, 144],
[ 40, 45, 151, 218, 144],
[105, 41, 21, 218, 176],
[107, 104, 17, 202, 240],
[ 75, 122, 17, 234, 224],
[ 74, 90, 131, 170, 192],
[ 88, 18, 163, 168, 128]])
# result is the same if input is multiplied with a nonzero value
for dtype in 'bBhHiIlLqQ':
arr = np.array(a, dtype=dtype)
rnd = np.random.randint(low=np.iinfo(dtype).min,
high=np.iinfo(dtype).max, size=arr.size,
dtype=dtype)
rnd[rnd == 0] = 1
arr *= rnd.astype(dtype)
b = np.packbits(arr, axis=-1)
assert_array_equal(np.unpackbits(b)[:-4], a)
assert_raises(TypeError, np.packbits, np.array(a, dtype=float))
def test_packbits_very_large():
# test some with a larger arrays gh-8637
# code is covered earlier but larger array makes crash on bug more likely
for s in range(950, 1050):
for dt in '?bBhHiIlLqQ':
x = np.ones((200, s), dtype=bool)
np.packbits(x, axis=1)
def test_unpackbits():
# Copied from the docstring.
a = np.array([[2], [7], [23]], dtype=np.uint8)
b = np.unpackbits(a, axis=1)
assert_equal(b.dtype, np.uint8)
assert_array_equal(b, np.array([[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 1, 1]]))
def test_pack_unpack_order():
a = np.array([[2], [7], [23]], dtype=np.uint8)
b = np.unpackbits(a, axis=1)
assert_equal(b.dtype, np.uint8)
b_little = np.unpackbits(a, axis=1, bitorder='little')
b_big = np.unpackbits(a, axis=1, bitorder='big')
assert_array_equal(b, b_big)
assert_array_equal(a, np.packbits(b_little, axis=1, bitorder='little'))
assert_array_equal(b[:,::-1], b_little)
assert_array_equal(a, np.packbits(b_big, axis=1, bitorder='big'))
assert_raises(ValueError, np.unpackbits, a, bitorder='r')
assert_raises(TypeError, np.unpackbits, a, bitorder=10)
def test_unpackbits_empty():
a = np.empty((0,), dtype=np.uint8)
b = np.unpackbits(a)
assert_equal(b.dtype, np.uint8)
assert_array_equal(b, np.empty((0,)))
def test_unpackbits_empty_with_axis():
# Lists of packed shapes for different axes and unpacked shapes.
shapes = [
([(0,)], (0,)),
([(2, 24, 0), (16, 3, 0), (16, 24, 0)], (16, 24, 0)),
([(2, 0, 24), (16, 0, 24), (16, 0, 3)], (16, 0, 24)),
([(0, 16, 24), (0, 2, 24), (0, 16, 3)], (0, 16, 24)),
([(3, 0, 0), (24, 0, 0), (24, 0, 0)], (24, 0, 0)),
([(0, 24, 0), (0, 3, 0), (0, 24, 0)], (0, 24, 0)),
([(0, 0, 24), (0, 0, 24), (0, 0, 3)], (0, 0, 24)),
([(0, 0, 0), (0, 0, 0), (0, 0, 0)], (0, 0, 0)),
]
for in_shapes, out_shape in shapes:
for ax, in_shape in enumerate(in_shapes):
a = np.empty(in_shape, dtype=np.uint8)
b = np.unpackbits(a, axis=ax)
assert_equal(b.dtype, np.uint8)
assert_equal(b.shape, out_shape)
def test_unpackbits_large():
# test all possible numbers via comparison to already tested packbits
d = np.arange(277, dtype=np.uint8)
assert_array_equal(np.packbits(np.unpackbits(d)), d)
assert_array_equal(np.packbits(np.unpackbits(d[::2])), d[::2])
d = np.tile(d, (3, 1))
assert_array_equal(np.packbits(np.unpackbits(d, axis=1), axis=1), d)
d = d.T.copy()
assert_array_equal(np.packbits(np.unpackbits(d, axis=0), axis=0), d)
class TestCount():
x = np.array([
[1, 0, 1, 0, 0, 1, 0],
[0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 1],
[1, 1, 0, 0, 0, 1, 1],
[1, 0, 1, 0, 1, 0, 1],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 0, 1, 0, 1, 0],
], dtype=np.uint8)
padded1 = np.zeros(57, dtype=np.uint8)
padded1[:49] = x.ravel()
padded1b = np.zeros(57, dtype=np.uint8)
padded1b[:49] = x[::-1].copy().ravel()
padded2 = np.zeros((9, 9), dtype=np.uint8)
padded2[:7, :7] = x
@pytest.mark.parametrize('bitorder', ('little', 'big'))
@pytest.mark.parametrize('count', chain(range(58), range(-1, -57, -1)))
def test_roundtrip(self, bitorder, count):
if count < 0:
# one extra zero of padding
cutoff = count - 1
else:
cutoff = count
# test complete invertibility of packbits and unpackbits with count
packed = np.packbits(self.x, bitorder=bitorder)
unpacked = np.unpackbits(packed, count=count, bitorder=bitorder)
assert_equal(unpacked.dtype, np.uint8)
assert_array_equal(unpacked, self.padded1[:cutoff])
@pytest.mark.parametrize('kwargs', [
{}, {'count': None},
])
def test_count(self, kwargs):
packed = np.packbits(self.x)
unpacked = np.unpackbits(packed, **kwargs)
assert_equal(unpacked.dtype, np.uint8)
assert_array_equal(unpacked, self.padded1[:-1])
@pytest.mark.parametrize('bitorder', ('little', 'big'))
# delta==-1 when count<0 because one extra zero of padding
@pytest.mark.parametrize('count', chain(range(8), range(-1, -9, -1)))
def test_roundtrip_axis(self, bitorder, count):
if count < 0:
# one extra zero of padding
cutoff = count - 1
else:
cutoff = count
packed0 = np.packbits(self.x, axis=0, bitorder=bitorder)
unpacked0 = np.unpackbits(packed0, axis=0, count=count,
bitorder=bitorder)
assert_equal(unpacked0.dtype, np.uint8)
assert_array_equal(unpacked0, self.padded2[:cutoff, :self.x.shape[1]])
packed1 = np.packbits(self.x, axis=1, bitorder=bitorder)
unpacked1 = np.unpackbits(packed1, axis=1, count=count,
bitorder=bitorder)
assert_equal(unpacked1.dtype, np.uint8)
assert_array_equal(unpacked1, self.padded2[:self.x.shape[0], :cutoff])
@pytest.mark.parametrize('kwargs', [
{}, {'count': None},
{'bitorder' : 'little'},
{'bitorder': 'little', 'count': None},
{'bitorder' : 'big'},
{'bitorder': 'big', 'count': None},
])
def test_axis_count(self, kwargs):
packed0 = np.packbits(self.x, axis=0)
unpacked0 = np.unpackbits(packed0, axis=0, **kwargs)
assert_equal(unpacked0.dtype, np.uint8)
if kwargs.get('bitorder', 'big') == 'big':
assert_array_equal(unpacked0, self.padded2[:-1, :self.x.shape[1]])
else:
assert_array_equal(unpacked0[::-1, :], self.padded2[:-1, :self.x.shape[1]])
packed1 = np.packbits(self.x, axis=1)
unpacked1 = np.unpackbits(packed1, axis=1, **kwargs)
assert_equal(unpacked1.dtype, np.uint8)
if kwargs.get('bitorder', 'big') == 'big':
assert_array_equal(unpacked1, self.padded2[:self.x.shape[0], :-1])
else:
assert_array_equal(unpacked1[:, ::-1], self.padded2[:self.x.shape[0], :-1])
def test_bad_count(self):
packed0 = np.packbits(self.x, axis=0)
assert_raises(ValueError, np.unpackbits, packed0, axis=0, count=-9)
packed1 = np.packbits(self.x, axis=1)
assert_raises(ValueError, np.unpackbits, packed1, axis=1, count=-9)
packed = np.packbits(self.x)
assert_raises(ValueError, np.unpackbits, packed, count=-57)

View file

@ -0,0 +1,259 @@
import numpy as np
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_almost_equal,
assert_array_almost_equal, assert_raises, assert_allclose
)
class TestPolynomial:
def test_poly1d_str_and_repr(self):
p = np.poly1d([1., 2, 3])
assert_equal(repr(p), 'poly1d([1., 2., 3.])')
assert_equal(str(p),
' 2\n'
'1 x + 2 x + 3')
q = np.poly1d([3., 2, 1])
assert_equal(repr(q), 'poly1d([3., 2., 1.])')
assert_equal(str(q),
' 2\n'
'3 x + 2 x + 1')
r = np.poly1d([1.89999 + 2j, -3j, -5.12345678, 2 + 1j])
assert_equal(str(r),
' 3 2\n'
'(1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j)')
assert_equal(str(np.poly1d([-3, -2, -1])),
' 2\n'
'-3 x - 2 x - 1')
def test_poly1d_resolution(self):
p = np.poly1d([1., 2, 3])
q = np.poly1d([3., 2, 1])
assert_equal(p(0), 3.0)
assert_equal(p(5), 38.0)
assert_equal(q(0), 1.0)
assert_equal(q(5), 86.0)
def test_poly1d_math(self):
# here we use some simple coeffs to make calculations easier
p = np.poly1d([1., 2, 4])
q = np.poly1d([4., 2, 1])
assert_equal(p/q, (np.poly1d([0.25]), np.poly1d([1.5, 3.75])))
assert_equal(p.integ(), np.poly1d([1/3, 1., 4., 0.]))
assert_equal(p.integ(1), np.poly1d([1/3, 1., 4., 0.]))
p = np.poly1d([1., 2, 3])
q = np.poly1d([3., 2, 1])
assert_equal(p * q, np.poly1d([3., 8., 14., 8., 3.]))
assert_equal(p + q, np.poly1d([4., 4., 4.]))
assert_equal(p - q, np.poly1d([-2., 0., 2.]))
assert_equal(p ** 4, np.poly1d([1., 8., 36., 104., 214., 312., 324., 216., 81.]))
assert_equal(p(q), np.poly1d([9., 12., 16., 8., 6.]))
assert_equal(q(p), np.poly1d([3., 12., 32., 40., 34.]))
assert_equal(p.deriv(), np.poly1d([2., 2.]))
assert_equal(p.deriv(2), np.poly1d([2.]))
assert_equal(np.polydiv(np.poly1d([1, 0, -1]), np.poly1d([1, 1])),
(np.poly1d([1., -1.]), np.poly1d([0.])))
def test_poly1d_misc(self):
p = np.poly1d([1., 2, 3])
assert_equal(np.asarray(p), np.array([1., 2., 3.]))
assert_equal(len(p), 2)
assert_equal((p[0], p[1], p[2], p[3]), (3.0, 2.0, 1.0, 0))
def test_poly1d_variable_arg(self):
q = np.poly1d([1., 2, 3], variable='y')
assert_equal(str(q),
' 2\n'
'1 y + 2 y + 3')
q = np.poly1d([1., 2, 3], variable='lambda')
assert_equal(str(q),
' 2\n'
'1 lambda + 2 lambda + 3')
def test_poly(self):
assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]),
[1, -3, -2, 6])
# From matlab docs
A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
assert_array_almost_equal(np.poly(A), [1, -6, -72, -27])
# Should produce real output for perfect conjugates
assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j])))
assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
1-2j, 1.+3.5j, 1-3.5j])))
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j])))
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j])))
assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j])))
assert_(np.isrealobj(np.poly([1j, -1j])))
assert_(np.isrealobj(np.poly([1, -1])))
assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))
np.random.seed(42)
a = np.random.randn(100) + 1j*np.random.randn(100)
assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a))))))
def test_roots(self):
assert_array_equal(np.roots([1, 0, 0]), [0, 0])
def test_str_leading_zeros(self):
p = np.poly1d([4, 3, 2, 1])
p[3] = 0
assert_equal(str(p),
" 2\n"
"3 x + 2 x + 1")
p = np.poly1d([1, 2])
p[0] = 0
p[1] = 0
assert_equal(str(p), " \n0")
def test_polyfit(self):
c = np.array([3., 2., 1.])
x = np.linspace(0, 2, 7)
y = np.polyval(c, x)
err = [1, -1, 1, -1, 1, -1, 1]
weights = np.arange(8, 1, -1)**2/7.0
# Check exception when too few points for variance estimate. Note that
# the estimate requires the number of data points to exceed
# degree + 1
assert_raises(ValueError, np.polyfit,
[1], [1], deg=0, cov=True)
# check 1D case
m, cov = np.polyfit(x, y+err, 2, cov=True)
est = [3.8571, 0.2857, 1.619]
assert_almost_equal(est, m, decimal=4)
val0 = [[ 1.4694, -2.9388, 0.8163],
[-2.9388, 6.3673, -2.1224],
[ 0.8163, -2.1224, 1.161 ]]
assert_almost_equal(val0, cov, decimal=4)
m2, cov2 = np.polyfit(x, y+err, 2, w=weights, cov=True)
assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4)
val = [[ 4.3964, -5.0052, 0.4878],
[-5.0052, 6.8067, -0.9089],
[ 0.4878, -0.9089, 0.3337]]
assert_almost_equal(val, cov2, decimal=4)
m3, cov3 = np.polyfit(x, y+err, 2, w=weights, cov="unscaled")
assert_almost_equal([4.8927, -1.0177, 1.7768], m3, decimal=4)
val = [[ 0.1473, -0.1677, 0.0163],
[-0.1677, 0.228 , -0.0304],
[ 0.0163, -0.0304, 0.0112]]
assert_almost_equal(val, cov3, decimal=4)
# check 2D (n,1) case
y = y[:, np.newaxis]
c = c[:, np.newaxis]
assert_almost_equal(c, np.polyfit(x, y, 2))
# check 2D (n,2) case
yy = np.concatenate((y, y), axis=1)
cc = np.concatenate((c, c), axis=1)
assert_almost_equal(cc, np.polyfit(x, yy, 2))
m, cov = np.polyfit(x, yy + np.array(err)[:, np.newaxis], 2, cov=True)
assert_almost_equal(est, m[:, 0], decimal=4)
assert_almost_equal(est, m[:, 1], decimal=4)
assert_almost_equal(val0, cov[:, :, 0], decimal=4)
assert_almost_equal(val0, cov[:, :, 1], decimal=4)
# check order 1 (deg=0) case, were the analytic results are simple
np.random.seed(123)
y = np.random.normal(size=(4, 10000))
mean, cov = np.polyfit(np.zeros(y.shape[0]), y, deg=0, cov=True)
# Should get sigma_mean = sigma/sqrt(N) = 1./sqrt(4) = 0.5.
assert_allclose(mean.std(), 0.5, atol=0.01)
assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
# Without scaling, since reduced chi2 is 1, the result should be the same.
mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=np.ones(y.shape[0]),
deg=0, cov="unscaled")
assert_allclose(mean.std(), 0.5, atol=0.01)
assert_almost_equal(np.sqrt(cov.mean()), 0.5)
# If we estimate our errors wrong, no change with scaling:
w = np.full(y.shape[0], 1./0.5)
mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov=True)
assert_allclose(mean.std(), 0.5, atol=0.01)
assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
# But if we do not scale, our estimate for the error in the mean will
# differ.
mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov="unscaled")
assert_allclose(mean.std(), 0.5, atol=0.01)
assert_almost_equal(np.sqrt(cov.mean()), 0.25)
def test_objects(self):
from decimal import Decimal
p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
p2 = p * Decimal('1.333333333333333')
assert_(p2[1] == Decimal("3.9999999999999990"))
p2 = p.deriv()
assert_(p2[1] == Decimal('8.0'))
p2 = p.integ()
assert_(p2[3] == Decimal("1.333333333333333333333333333"))
assert_(p2[2] == Decimal('1.5'))
assert_(np.issubdtype(p2.coeffs.dtype, np.object_))
p = np.poly([Decimal(1), Decimal(2)])
assert_equal(np.poly([Decimal(1), Decimal(2)]),
[1, Decimal(-3), Decimal(2)])
def test_complex(self):
p = np.poly1d([3j, 2j, 1j])
p2 = p.integ()
assert_((p2.coeffs == [1j, 1j, 1j, 0]).all())
p2 = p.deriv()
assert_((p2.coeffs == [6j, 2j]).all())
def test_integ_coeffs(self):
p = np.poly1d([3, 2, 1])
p2 = p.integ(3, k=[9, 7, 6])
assert_(
(p2.coeffs == [1/4./5., 1/3./4., 1/2./3., 9/1./2., 7, 6]).all())
def test_zero_dims(self):
try:
np.poly(np.zeros((0, 0)))
except ValueError:
pass
def test_poly_int_overflow(self):
"""
Regression test for gh-5096.
"""
v = np.arange(1, 21)
assert_almost_equal(np.poly(v), np.poly(np.diag(v)))
def test_poly_eq(self):
p = np.poly1d([1, 2, 3])
p2 = np.poly1d([1, 2, 4])
assert_equal(p == None, False)
assert_equal(p != None, True)
assert_equal(p == p, True)
assert_equal(p == p2, False)
assert_equal(p != p2, True)
def test_polydiv(self):
b = np.poly1d([2, 6, 6, 1])
a = np.poly1d([-1j, (1+2j), -(2+1j), 1])
q, r = np.polydiv(b, a)
assert_equal(q.coeffs.dtype, np.complex128)
assert_equal(r.coeffs.dtype, np.complex128)
assert_equal(q*a + r, b)
def test_poly_coeffs_mutable(self):
""" Coefficients should be modifiable """
p = np.poly1d([1, 2, 3])
p.coeffs += 1
assert_equal(p.coeffs, [2, 3, 4])
p.coeffs[2] += 10
assert_equal(p.coeffs, [2, 3, 14])
# this never used to be allowed - let's not add features to deprecated
# APIs
assert_raises(AttributeError, setattr, p, 'coeffs', np.array(1))

View file

@ -0,0 +1,979 @@
import pytest
import numpy as np
import numpy.ma as ma
from numpy.ma.mrecords import MaskedRecords
from numpy.ma.testutils import assert_equal
from numpy.testing import assert_, assert_raises
from numpy.lib.recfunctions import (
drop_fields, rename_fields, get_fieldstructure, recursive_fill_fields,
find_duplicates, merge_arrays, append_fields, stack_arrays, join_by,
repack_fields, unstructured_to_structured, structured_to_unstructured,
apply_along_fields, require_fields, assign_fields_by_name)
get_fieldspec = np.lib.recfunctions._get_fieldspec
get_names = np.lib.recfunctions.get_names
get_names_flat = np.lib.recfunctions.get_names_flat
zip_descr = np.lib.recfunctions._zip_descr
zip_dtype = np.lib.recfunctions._zip_dtype
class TestRecFunctions:
# Misc tests
def setup(self):
x = np.array([1, 2, ])
y = np.array([10, 20, 30])
z = np.array([('A', 1.), ('B', 2.)],
dtype=[('A', '|S3'), ('B', float)])
w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
self.data = (w, x, y, z)
def test_zip_descr(self):
# Test zip_descr
(w, x, y, z) = self.data
# Std array
test = zip_descr((x, x), flatten=True)
assert_equal(test,
np.dtype([('', int), ('', int)]))
test = zip_descr((x, x), flatten=False)
assert_equal(test,
np.dtype([('', int), ('', int)]))
# Std & flexible-dtype
test = zip_descr((x, z), flatten=True)
assert_equal(test,
np.dtype([('', int), ('A', '|S3'), ('B', float)]))
test = zip_descr((x, z), flatten=False)
assert_equal(test,
np.dtype([('', int),
('', [('A', '|S3'), ('B', float)])]))
# Standard & nested dtype
test = zip_descr((x, w), flatten=True)
assert_equal(test,
np.dtype([('', int),
('a', int),
('ba', float), ('bb', int)]))
test = zip_descr((x, w), flatten=False)
assert_equal(test,
np.dtype([('', int),
('', [('a', int),
('b', [('ba', float), ('bb', int)])])]))
def test_drop_fields(self):
# Test drop_fields
a = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
# A basic field
test = drop_fields(a, 'a')
control = np.array([((2, 3.0),), ((5, 6.0),)],
dtype=[('b', [('ba', float), ('bb', int)])])
assert_equal(test, control)
# Another basic field (but nesting two fields)
test = drop_fields(a, 'b')
control = np.array([(1,), (4,)], dtype=[('a', int)])
assert_equal(test, control)
# A nested sub-field
test = drop_fields(a, ['ba', ])
control = np.array([(1, (3.0,)), (4, (6.0,))],
dtype=[('a', int), ('b', [('bb', int)])])
assert_equal(test, control)
# All the nested sub-field from a field: zap that field
test = drop_fields(a, ['ba', 'bb'])
control = np.array([(1,), (4,)], dtype=[('a', int)])
assert_equal(test, control)
# dropping all fields results in an array with no fields
test = drop_fields(a, ['a', 'b'])
control = np.array([(), ()], dtype=[])
assert_equal(test, control)
def test_rename_fields(self):
# Test rename fields
a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))],
dtype=[('a', int),
('b', [('ba', float), ('bb', (float, 2))])])
test = rename_fields(a, {'a': 'A', 'bb': 'BB'})
newdtype = [('A', int), ('b', [('ba', float), ('BB', (float, 2))])]
control = a.view(newdtype)
assert_equal(test.dtype, newdtype)
assert_equal(test, control)
def test_get_names(self):
# Test get_names
ndtype = np.dtype([('A', '|S3'), ('B', float)])
test = get_names(ndtype)
assert_equal(test, ('A', 'B'))
ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])])
test = get_names(ndtype)
assert_equal(test, ('a', ('b', ('ba', 'bb'))))
ndtype = np.dtype([('a', int), ('b', [])])
test = get_names(ndtype)
assert_equal(test, ('a', ('b', ())))
ndtype = np.dtype([])
test = get_names(ndtype)
assert_equal(test, ())
def test_get_names_flat(self):
# Test get_names_flat
ndtype = np.dtype([('A', '|S3'), ('B', float)])
test = get_names_flat(ndtype)
assert_equal(test, ('A', 'B'))
ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])])
test = get_names_flat(ndtype)
assert_equal(test, ('a', 'b', 'ba', 'bb'))
ndtype = np.dtype([('a', int), ('b', [])])
test = get_names_flat(ndtype)
assert_equal(test, ('a', 'b'))
ndtype = np.dtype([])
test = get_names_flat(ndtype)
assert_equal(test, ())
def test_get_fieldstructure(self):
# Test get_fieldstructure
# No nested fields
ndtype = np.dtype([('A', '|S3'), ('B', float)])
test = get_fieldstructure(ndtype)
assert_equal(test, {'A': [], 'B': []})
# One 1-nested field
ndtype = np.dtype([('A', int), ('B', [('BA', float), ('BB', '|S1')])])
test = get_fieldstructure(ndtype)
assert_equal(test, {'A': [], 'B': [], 'BA': ['B', ], 'BB': ['B']})
# One 2-nested fields
ndtype = np.dtype([('A', int),
('B', [('BA', int),
('BB', [('BBA', int), ('BBB', int)])])])
test = get_fieldstructure(ndtype)
control = {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'],
'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']}
assert_equal(test, control)
# 0 fields
ndtype = np.dtype([])
test = get_fieldstructure(ndtype)
assert_equal(test, {})
def test_find_duplicates(self):
# Test find_duplicates
a = ma.array([(2, (2., 'B')), (1, (2., 'B')), (2, (2., 'B')),
(1, (1., 'B')), (2, (2., 'B')), (2, (2., 'C'))],
mask=[(0, (0, 0)), (0, (0, 0)), (0, (0, 0)),
(0, (0, 0)), (1, (0, 0)), (0, (1, 0))],
dtype=[('A', int), ('B', [('BA', float), ('BB', '|S1')])])
test = find_duplicates(a, ignoremask=False, return_index=True)
control = [0, 2]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
test = find_duplicates(a, key='A', return_index=True)
control = [0, 1, 2, 3, 5]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
test = find_duplicates(a, key='B', return_index=True)
control = [0, 1, 2, 4]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
test = find_duplicates(a, key='BA', return_index=True)
control = [0, 1, 2, 4]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
test = find_duplicates(a, key='BB', return_index=True)
control = [0, 1, 2, 3, 4]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
def test_find_duplicates_ignoremask(self):
# Test the ignoremask option of find_duplicates
ndtype = [('a', int)]
a = ma.array([1, 1, 1, 2, 2, 3, 3],
mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype)
test = find_duplicates(a, ignoremask=True, return_index=True)
control = [0, 1, 3, 4]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
test = find_duplicates(a, ignoremask=False, return_index=True)
control = [0, 1, 2, 3, 4, 6]
assert_equal(sorted(test[-1]), control)
assert_equal(test[0], a[test[-1]])
def test_repack_fields(self):
dt = np.dtype('u1,f4,i8', align=True)
a = np.zeros(2, dtype=dt)
assert_equal(repack_fields(dt), np.dtype('u1,f4,i8'))
assert_equal(repack_fields(a).itemsize, 13)
assert_equal(repack_fields(repack_fields(dt), align=True), dt)
# make sure type is preserved
dt = np.dtype((np.record, dt))
assert_(repack_fields(dt).type is np.record)
def test_structured_to_unstructured(self):
a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
out = structured_to_unstructured(a)
assert_equal(out, np.zeros((4,5), dtype='f8'))
b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
out = np.mean(structured_to_unstructured(b[['x', 'z']]), axis=-1)
assert_equal(out, np.array([ 3. , 5.5, 9. , 11. ]))
out = np.mean(structured_to_unstructured(b[['x']]), axis=-1)
assert_equal(out, np.array([ 1. , 4. , 7. , 10. ]))
c = np.arange(20).reshape((4,5))
out = unstructured_to_structured(c, a.dtype)
want = np.array([( 0, ( 1., 2), [ 3., 4.]),
( 5, ( 6., 7), [ 8., 9.]),
(10, (11., 12), [13., 14.]),
(15, (16., 17), [18., 19.])],
dtype=[('a', 'i4'),
('b', [('f0', 'f4'), ('f1', 'u2')]),
('c', 'f4', (2,))])
assert_equal(out, want)
d = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
assert_equal(apply_along_fields(np.mean, d),
np.array([ 8.0/3, 16.0/3, 26.0/3, 11. ]))
assert_equal(apply_along_fields(np.mean, d[['x', 'z']]),
np.array([ 3. , 5.5, 9. , 11. ]))
# check that for uniform field dtypes we get a view, not a copy:
d = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'i4')])
dd = structured_to_unstructured(d)
ddd = unstructured_to_structured(dd, d.dtype)
assert_(dd.base is d)
assert_(ddd.base is d)
# including uniform fields with subarrays unpacked
d = np.array([(1, [2, 3], [[ 4, 5], [ 6, 7]]),
(8, [9, 10], [[11, 12], [13, 14]])],
dtype=[('x0', 'i4'), ('x1', ('i4', 2)),
('x2', ('i4', (2, 2)))])
dd = structured_to_unstructured(d)
ddd = unstructured_to_structured(dd, d.dtype)
assert_(dd.base is d)
assert_(ddd.base is d)
# test that nested fields with identical names don't break anything
point = np.dtype([('x', int), ('y', int)])
triangle = np.dtype([('a', point), ('b', point), ('c', point)])
arr = np.zeros(10, triangle)
res = structured_to_unstructured(arr, dtype=int)
assert_equal(res, np.zeros((10, 6), dtype=int))
# test nested combinations of subarrays and structured arrays, gh-13333
def subarray(dt, shape):
return np.dtype((dt, shape))
def structured(*dts):
return np.dtype([('x{}'.format(i), dt) for i, dt in enumerate(dts)])
def inspect(dt, dtype=None):
arr = np.zeros((), dt)
ret = structured_to_unstructured(arr, dtype=dtype)
backarr = unstructured_to_structured(ret, dt)
return ret.shape, ret.dtype, backarr.dtype
dt = structured(subarray(structured(np.int32, np.int32), 3))
assert_equal(inspect(dt), ((6,), np.int32, dt))
dt = structured(subarray(subarray(np.int32, 2), 2))
assert_equal(inspect(dt), ((4,), np.int32, dt))
dt = structured(np.int32)
assert_equal(inspect(dt), ((1,), np.int32, dt))
dt = structured(np.int32, subarray(subarray(np.int32, 2), 2))
assert_equal(inspect(dt), ((5,), np.int32, dt))
dt = structured()
assert_raises(ValueError, structured_to_unstructured, np.zeros(3, dt))
# these currently don't work, but we may make it work in the future
assert_raises(NotImplementedError, structured_to_unstructured,
np.zeros(3, dt), dtype=np.int32)
assert_raises(NotImplementedError, unstructured_to_structured,
np.zeros((3,0), dtype=np.int32))
def test_field_assignment_by_name(self):
a = np.ones(2, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')])
newdt = [('b', 'f4'), ('c', 'u1')]
assert_equal(require_fields(a, newdt), np.ones(2, newdt))
b = np.array([(1,2), (3,4)], dtype=newdt)
assign_fields_by_name(a, b, zero_unassigned=False)
assert_equal(a, np.array([(1,1,2),(1,3,4)], dtype=a.dtype))
assign_fields_by_name(a, b)
assert_equal(a, np.array([(0,1,2),(0,3,4)], dtype=a.dtype))
# test nested fields
a = np.ones(2, dtype=[('a', [('b', 'f8'), ('c', 'u1')])])
newdt = [('a', [('c', 'u1')])]
assert_equal(require_fields(a, newdt), np.ones(2, newdt))
b = np.array([((2,),), ((3,),)], dtype=newdt)
assign_fields_by_name(a, b, zero_unassigned=False)
assert_equal(a, np.array([((1,2),), ((1,3),)], dtype=a.dtype))
assign_fields_by_name(a, b)
assert_equal(a, np.array([((0,2),), ((0,3),)], dtype=a.dtype))
# test unstructured code path for 0d arrays
a, b = np.array(3), np.array(0)
assign_fields_by_name(b, a)
assert_equal(b[()], 3)
class TestRecursiveFillFields:
# Test recursive_fill_fields.
def test_simple_flexible(self):
# Test recursive_fill_fields on flexible-array
a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)])
b = np.zeros((3,), dtype=a.dtype)
test = recursive_fill_fields(a, b)
control = np.array([(1, 10.), (2, 20.), (0, 0.)],
dtype=[('A', int), ('B', float)])
assert_equal(test, control)
def test_masked_flexible(self):
# Test recursive_fill_fields on masked flexible-array
a = ma.array([(1, 10.), (2, 20.)], mask=[(0, 1), (1, 0)],
dtype=[('A', int), ('B', float)])
b = ma.zeros((3,), dtype=a.dtype)
test = recursive_fill_fields(a, b)
control = ma.array([(1, 10.), (2, 20.), (0, 0.)],
mask=[(0, 1), (1, 0), (0, 0)],
dtype=[('A', int), ('B', float)])
assert_equal(test, control)
class TestMergeArrays:
# Test merge_arrays
def setup(self):
x = np.array([1, 2, ])
y = np.array([10, 20, 30])
z = np.array(
[('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
w = np.array(
[(1, (2, 3.0, ())), (4, (5, 6.0, ()))],
dtype=[('a', int), ('b', [('ba', float), ('bb', int), ('bc', [])])])
self.data = (w, x, y, z)
def test_solo(self):
# Test merge_arrays on a single array.
(_, x, _, z) = self.data
test = merge_arrays(x)
control = np.array([(1,), (2,)], dtype=[('f0', int)])
assert_equal(test, control)
test = merge_arrays((x,))
assert_equal(test, control)
test = merge_arrays(z, flatten=False)
assert_equal(test, z)
test = merge_arrays(z, flatten=True)
assert_equal(test, z)
def test_solo_w_flatten(self):
# Test merge_arrays on a single array w & w/o flattening
w = self.data[0]
test = merge_arrays(w, flatten=False)
assert_equal(test, w)
test = merge_arrays(w, flatten=True)
control = np.array([(1, 2, 3.0), (4, 5, 6.0)],
dtype=[('a', int), ('ba', float), ('bb', int)])
assert_equal(test, control)
def test_standard(self):
# Test standard & standard
# Test merge arrays
(_, x, y, _) = self.data
test = merge_arrays((x, y), usemask=False)
control = np.array([(1, 10), (2, 20), (-1, 30)],
dtype=[('f0', int), ('f1', int)])
assert_equal(test, control)
test = merge_arrays((x, y), usemask=True)
control = ma.array([(1, 10), (2, 20), (-1, 30)],
mask=[(0, 0), (0, 0), (1, 0)],
dtype=[('f0', int), ('f1', int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
def test_flatten(self):
# Test standard & flexible
(_, x, _, z) = self.data
test = merge_arrays((x, z), flatten=True)
control = np.array([(1, 'A', 1.), (2, 'B', 2.)],
dtype=[('f0', int), ('A', '|S3'), ('B', float)])
assert_equal(test, control)
test = merge_arrays((x, z), flatten=False)
control = np.array([(1, ('A', 1.)), (2, ('B', 2.))],
dtype=[('f0', int),
('f1', [('A', '|S3'), ('B', float)])])
assert_equal(test, control)
def test_flatten_wflexible(self):
# Test flatten standard & nested
(w, x, _, _) = self.data
test = merge_arrays((x, w), flatten=True)
control = np.array([(1, 1, 2, 3.0), (2, 4, 5, 6.0)],
dtype=[('f0', int),
('a', int), ('ba', float), ('bb', int)])
assert_equal(test, control)
test = merge_arrays((x, w), flatten=False)
controldtype = [('f0', int),
('f1', [('a', int),
('b', [('ba', float), ('bb', int), ('bc', [])])])]
control = np.array([(1., (1, (2, 3.0, ()))), (2, (4, (5, 6.0, ())))],
dtype=controldtype)
assert_equal(test, control)
def test_wmasked_arrays(self):
# Test merge_arrays masked arrays
(_, x, _, _) = self.data
mx = ma.array([1, 2, 3], mask=[1, 0, 0])
test = merge_arrays((x, mx), usemask=True)
control = ma.array([(1, 1), (2, 2), (-1, 3)],
mask=[(0, 1), (0, 0), (1, 0)],
dtype=[('f0', int), ('f1', int)])
assert_equal(test, control)
test = merge_arrays((x, mx), usemask=True, asrecarray=True)
assert_equal(test, control)
assert_(isinstance(test, MaskedRecords))
def test_w_singlefield(self):
# Test single field
test = merge_arrays((np.array([1, 2]).view([('a', int)]),
np.array([10., 20., 30.])),)
control = ma.array([(1, 10.), (2, 20.), (-1, 30.)],
mask=[(0, 0), (0, 0), (1, 0)],
dtype=[('a', int), ('f1', float)])
assert_equal(test, control)
def test_w_shorter_flex(self):
# Test merge_arrays w/ a shorter flexndarray.
z = self.data[-1]
# Fixme, this test looks incomplete and broken
#test = merge_arrays((z, np.array([10, 20, 30]).view([('C', int)])))
#control = np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)],
# dtype=[('A', '|S3'), ('B', float), ('C', int)])
#assert_equal(test, control)
# Hack to avoid pyflakes warnings about unused variables
merge_arrays((z, np.array([10, 20, 30]).view([('C', int)])))
np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)],
dtype=[('A', '|S3'), ('B', float), ('C', int)])
def test_singlerecord(self):
(_, x, y, z) = self.data
test = merge_arrays((x[0], y[0], z[0]), usemask=False)
control = np.array([(1, 10, ('A', 1))],
dtype=[('f0', int),
('f1', int),
('f2', [('A', '|S3'), ('B', float)])])
assert_equal(test, control)
class TestAppendFields:
# Test append_fields
def setup(self):
x = np.array([1, 2, ])
y = np.array([10, 20, 30])
z = np.array(
[('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
self.data = (w, x, y, z)
def test_append_single(self):
# Test simple case
(_, x, _, _) = self.data
test = append_fields(x, 'A', data=[10, 20, 30])
control = ma.array([(1, 10), (2, 20), (-1, 30)],
mask=[(0, 0), (0, 0), (1, 0)],
dtype=[('f0', int), ('A', int)],)
assert_equal(test, control)
def test_append_double(self):
# Test simple case
(_, x, _, _) = self.data
test = append_fields(x, ('A', 'B'), data=[[10, 20, 30], [100, 200]])
control = ma.array([(1, 10, 100), (2, 20, 200), (-1, 30, -1)],
mask=[(0, 0, 0), (0, 0, 0), (1, 0, 1)],
dtype=[('f0', int), ('A', int), ('B', int)],)
assert_equal(test, control)
def test_append_on_flex(self):
# Test append_fields on flexible type arrays
z = self.data[-1]
test = append_fields(z, 'C', data=[10, 20, 30])
control = ma.array([('A', 1., 10), ('B', 2., 20), (-1, -1., 30)],
mask=[(0, 0, 0), (0, 0, 0), (1, 1, 0)],
dtype=[('A', '|S3'), ('B', float), ('C', int)],)
assert_equal(test, control)
def test_append_on_nested(self):
# Test append_fields on nested fields
w = self.data[0]
test = append_fields(w, 'C', data=[10, 20, 30])
control = ma.array([(1, (2, 3.0), 10),
(4, (5, 6.0), 20),
(-1, (-1, -1.), 30)],
mask=[(
0, (0, 0), 0), (0, (0, 0), 0), (1, (1, 1), 0)],
dtype=[('a', int),
('b', [('ba', float), ('bb', int)]),
('C', int)],)
assert_equal(test, control)
class TestStackArrays:
# Test stack_arrays
def setup(self):
x = np.array([1, 2, ])
y = np.array([10, 20, 30])
z = np.array(
[('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
self.data = (w, x, y, z)
def test_solo(self):
# Test stack_arrays on single arrays
(_, x, _, _) = self.data
test = stack_arrays((x,))
assert_equal(test, x)
assert_(test is x)
test = stack_arrays(x)
assert_equal(test, x)
assert_(test is x)
def test_unnamed_fields(self):
# Tests combinations of arrays w/o named fields
(_, x, y, _) = self.data
test = stack_arrays((x, x), usemask=False)
control = np.array([1, 2, 1, 2])
assert_equal(test, control)
test = stack_arrays((x, y), usemask=False)
control = np.array([1, 2, 10, 20, 30])
assert_equal(test, control)
test = stack_arrays((y, x), usemask=False)
control = np.array([10, 20, 30, 1, 2])
assert_equal(test, control)
def test_unnamed_and_named_fields(self):
# Test combination of arrays w/ & w/o named fields
(_, x, _, z) = self.data
test = stack_arrays((x, z))
control = ma.array([(1, -1, -1), (2, -1, -1),
(-1, 'A', 1), (-1, 'B', 2)],
mask=[(0, 1, 1), (0, 1, 1),
(1, 0, 0), (1, 0, 0)],
dtype=[('f0', int), ('A', '|S3'), ('B', float)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
test = stack_arrays((z, x))
control = ma.array([('A', 1, -1), ('B', 2, -1),
(-1, -1, 1), (-1, -1, 2), ],
mask=[(0, 0, 1), (0, 0, 1),
(1, 1, 0), (1, 1, 0)],
dtype=[('A', '|S3'), ('B', float), ('f2', int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
test = stack_arrays((z, z, x))
control = ma.array([('A', 1, -1), ('B', 2, -1),
('A', 1, -1), ('B', 2, -1),
(-1, -1, 1), (-1, -1, 2), ],
mask=[(0, 0, 1), (0, 0, 1),
(0, 0, 1), (0, 0, 1),
(1, 1, 0), (1, 1, 0)],
dtype=[('A', '|S3'), ('B', float), ('f2', int)])
assert_equal(test, control)
def test_matching_named_fields(self):
# Test combination of arrays w/ matching field names
(_, x, _, z) = self.data
zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
dtype=[('A', '|S3'), ('B', float), ('C', float)])
test = stack_arrays((z, zz))
control = ma.array([('A', 1, -1), ('B', 2, -1),
(
'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
dtype=[('A', '|S3'), ('B', float), ('C', float)],
mask=[(0, 0, 1), (0, 0, 1),
(0, 0, 0), (0, 0, 0), (0, 0, 0)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
test = stack_arrays((z, zz, x))
ndtype = [('A', '|S3'), ('B', float), ('C', float), ('f3', int)]
control = ma.array([('A', 1, -1, -1), ('B', 2, -1, -1),
('a', 10., 100., -1), ('b', 20., 200., -1),
('c', 30., 300., -1),
(-1, -1, -1, 1), (-1, -1, -1, 2)],
dtype=ndtype,
mask=[(0, 0, 1, 1), (0, 0, 1, 1),
(0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1),
(1, 1, 1, 0), (1, 1, 1, 0)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
def test_defaults(self):
# Test defaults: no exception raised if keys of defaults are not fields.
(_, _, _, z) = self.data
zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
dtype=[('A', '|S3'), ('B', float), ('C', float)])
defaults = {'A': '???', 'B': -999., 'C': -9999., 'D': -99999.}
test = stack_arrays((z, zz), defaults=defaults)
control = ma.array([('A', 1, -9999.), ('B', 2, -9999.),
(
'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
dtype=[('A', '|S3'), ('B', float), ('C', float)],
mask=[(0, 0, 1), (0, 0, 1),
(0, 0, 0), (0, 0, 0), (0, 0, 0)])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
def test_autoconversion(self):
# Tests autoconversion
adtype = [('A', int), ('B', bool), ('C', float)]
a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype)
bdtype = [('A', int), ('B', float), ('C', float)]
b = ma.array([(4, 5, 6)], dtype=bdtype)
control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)],
dtype=bdtype)
test = stack_arrays((a, b), autoconvert=True)
assert_equal(test, control)
assert_equal(test.mask, control.mask)
with assert_raises(TypeError):
stack_arrays((a, b), autoconvert=False)
def test_checktitles(self):
# Test using titles in the field names
adtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)]
a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype)
bdtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)]
b = ma.array([(4, 5, 6)], dtype=bdtype)
test = stack_arrays((a, b))
control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)],
dtype=bdtype)
assert_equal(test, control)
assert_equal(test.mask, control.mask)
def test_subdtype(self):
z = np.array([
('A', 1), ('B', 2)
], dtype=[('A', '|S3'), ('B', float, (1,))])
zz = np.array([
('a', [10.], 100.), ('b', [20.], 200.), ('c', [30.], 300.)
], dtype=[('A', '|S3'), ('B', float, (1,)), ('C', float)])
res = stack_arrays((z, zz))
expected = ma.array(
data=[
(b'A', [1.0], 0),
(b'B', [2.0], 0),
(b'a', [10.0], 100.0),
(b'b', [20.0], 200.0),
(b'c', [30.0], 300.0)],
mask=[
(False, [False], True),
(False, [False], True),
(False, [False], False),
(False, [False], False),
(False, [False], False)
],
dtype=zz.dtype
)
assert_equal(res.dtype, expected.dtype)
assert_equal(res, expected)
assert_equal(res.mask, expected.mask)
class TestJoinBy:
def setup(self):
self.a = np.array(list(zip(np.arange(10), np.arange(50, 60),
np.arange(100, 110))),
dtype=[('a', int), ('b', int), ('c', int)])
self.b = np.array(list(zip(np.arange(5, 15), np.arange(65, 75),
np.arange(100, 110))),
dtype=[('a', int), ('b', int), ('d', int)])
def test_inner_join(self):
# Basic test of join_by
a, b = self.a, self.b
test = join_by('a', a, b, jointype='inner')
control = np.array([(5, 55, 65, 105, 100), (6, 56, 66, 106, 101),
(7, 57, 67, 107, 102), (8, 58, 68, 108, 103),
(9, 59, 69, 109, 104)],
dtype=[('a', int), ('b1', int), ('b2', int),
('c', int), ('d', int)])
assert_equal(test, control)
def test_join(self):
a, b = self.a, self.b
# Fixme, this test is broken
#test = join_by(('a', 'b'), a, b)
#control = np.array([(5, 55, 105, 100), (6, 56, 106, 101),
# (7, 57, 107, 102), (8, 58, 108, 103),
# (9, 59, 109, 104)],
# dtype=[('a', int), ('b', int),
# ('c', int), ('d', int)])
#assert_equal(test, control)
# Hack to avoid pyflakes unused variable warnings
join_by(('a', 'b'), a, b)
np.array([(5, 55, 105, 100), (6, 56, 106, 101),
(7, 57, 107, 102), (8, 58, 108, 103),
(9, 59, 109, 104)],
dtype=[('a', int), ('b', int),
('c', int), ('d', int)])
def test_join_subdtype(self):
# tests the bug in https://stackoverflow.com/q/44769632/102441
foo = np.array([(1,)],
dtype=[('key', int)])
bar = np.array([(1, np.array([1,2,3]))],
dtype=[('key', int), ('value', 'uint16', 3)])
res = join_by('key', foo, bar)
assert_equal(res, bar.view(ma.MaskedArray))
def test_outer_join(self):
a, b = self.a, self.b
test = join_by(('a', 'b'), a, b, 'outer')
control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1),
(2, 52, 102, -1), (3, 53, 103, -1),
(4, 54, 104, -1), (5, 55, 105, -1),
(5, 65, -1, 100), (6, 56, 106, -1),
(6, 66, -1, 101), (7, 57, 107, -1),
(7, 67, -1, 102), (8, 58, 108, -1),
(8, 68, -1, 103), (9, 59, 109, -1),
(9, 69, -1, 104), (10, 70, -1, 105),
(11, 71, -1, 106), (12, 72, -1, 107),
(13, 73, -1, 108), (14, 74, -1, 109)],
mask=[(0, 0, 0, 1), (0, 0, 0, 1),
(0, 0, 0, 1), (0, 0, 0, 1),
(0, 0, 0, 1), (0, 0, 0, 1),
(0, 0, 1, 0), (0, 0, 0, 1),
(0, 0, 1, 0), (0, 0, 0, 1),
(0, 0, 1, 0), (0, 0, 0, 1),
(0, 0, 1, 0), (0, 0, 0, 1),
(0, 0, 1, 0), (0, 0, 1, 0),
(0, 0, 1, 0), (0, 0, 1, 0),
(0, 0, 1, 0), (0, 0, 1, 0)],
dtype=[('a', int), ('b', int),
('c', int), ('d', int)])
assert_equal(test, control)
def test_leftouter_join(self):
a, b = self.a, self.b
test = join_by(('a', 'b'), a, b, 'leftouter')
control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1),
(2, 52, 102, -1), (3, 53, 103, -1),
(4, 54, 104, -1), (5, 55, 105, -1),
(6, 56, 106, -1), (7, 57, 107, -1),
(8, 58, 108, -1), (9, 59, 109, -1)],
mask=[(0, 0, 0, 1), (0, 0, 0, 1),
(0, 0, 0, 1), (0, 0, 0, 1),
(0, 0, 0, 1), (0, 0, 0, 1),
(0, 0, 0, 1), (0, 0, 0, 1),
(0, 0, 0, 1), (0, 0, 0, 1)],
dtype=[('a', int), ('b', int), ('c', int), ('d', int)])
assert_equal(test, control)
def test_different_field_order(self):
# gh-8940
a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')])
b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')])
# this should not give a FutureWarning:
j = join_by(['c', 'b'], a, b, jointype='inner', usemask=False)
assert_equal(j.dtype.names, ['b', 'c', 'a1', 'a2'])
def test_duplicate_keys(self):
a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')])
b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')])
assert_raises(ValueError, join_by, ['a', 'b', 'b'], a, b)
@pytest.mark.xfail(reason="See comment at gh-9343")
def test_same_name_different_dtypes_key(self):
a_dtype = np.dtype([('key', 'S5'), ('value', '<f4')])
b_dtype = np.dtype([('key', 'S10'), ('value', '<f4')])
expected_dtype = np.dtype([
('key', 'S10'), ('value1', '<f4'), ('value2', '<f4')])
a = np.array([('Sarah', 8.0), ('John', 6.0)], dtype=a_dtype)
b = np.array([('Sarah', 10.0), ('John', 7.0)], dtype=b_dtype)
res = join_by('key', a, b)
assert_equal(res.dtype, expected_dtype)
def test_same_name_different_dtypes(self):
# gh-9338
a_dtype = np.dtype([('key', 'S10'), ('value', '<f4')])
b_dtype = np.dtype([('key', 'S10'), ('value', '<f8')])
expected_dtype = np.dtype([
('key', '|S10'), ('value1', '<f4'), ('value2', '<f8')])
a = np.array([('Sarah', 8.0), ('John', 6.0)], dtype=a_dtype)
b = np.array([('Sarah', 10.0), ('John', 7.0)], dtype=b_dtype)
res = join_by('key', a, b)
assert_equal(res.dtype, expected_dtype)
def test_subarray_key(self):
a_dtype = np.dtype([('pos', int, 3), ('f', '<f4')])
a = np.array([([1, 1, 1], np.pi), ([1, 2, 3], 0.0)], dtype=a_dtype)
b_dtype = np.dtype([('pos', int, 3), ('g', '<f4')])
b = np.array([([1, 1, 1], 3), ([3, 2, 1], 0.0)], dtype=b_dtype)
expected_dtype = np.dtype([('pos', int, 3), ('f', '<f4'), ('g', '<f4')])
expected = np.array([([1, 1, 1], np.pi, 3)], dtype=expected_dtype)
res = join_by('pos', a, b)
assert_equal(res.dtype, expected_dtype)
assert_equal(res, expected)
def test_padded_dtype(self):
dt = np.dtype('i1,f4', align=True)
dt.names = ('k', 'v')
assert_(len(dt.descr), 3) # padding field is inserted
a = np.array([(1, 3), (3, 2)], dt)
b = np.array([(1, 1), (2, 2)], dt)
res = join_by('k', a, b)
# no padding fields remain
expected_dtype = np.dtype([
('k', 'i1'), ('v1', 'f4'), ('v2', 'f4')
])
assert_equal(res.dtype, expected_dtype)
class TestJoinBy2:
@classmethod
def setup(cls):
cls.a = np.array(list(zip(np.arange(10), np.arange(50, 60),
np.arange(100, 110))),
dtype=[('a', int), ('b', int), ('c', int)])
cls.b = np.array(list(zip(np.arange(10), np.arange(65, 75),
np.arange(100, 110))),
dtype=[('a', int), ('b', int), ('d', int)])
def test_no_r1postfix(self):
# Basic test of join_by no_r1postfix
a, b = self.a, self.b
test = join_by(
'a', a, b, r1postfix='', r2postfix='2', jointype='inner')
control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101),
(2, 52, 67, 102, 102), (3, 53, 68, 103, 103),
(4, 54, 69, 104, 104), (5, 55, 70, 105, 105),
(6, 56, 71, 106, 106), (7, 57, 72, 107, 107),
(8, 58, 73, 108, 108), (9, 59, 74, 109, 109)],
dtype=[('a', int), ('b', int), ('b2', int),
('c', int), ('d', int)])
assert_equal(test, control)
def test_no_postfix(self):
assert_raises(ValueError, join_by, 'a', self.a, self.b,
r1postfix='', r2postfix='')
def test_no_r2postfix(self):
# Basic test of join_by no_r2postfix
a, b = self.a, self.b
test = join_by(
'a', a, b, r1postfix='1', r2postfix='', jointype='inner')
control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101),
(2, 52, 67, 102, 102), (3, 53, 68, 103, 103),
(4, 54, 69, 104, 104), (5, 55, 70, 105, 105),
(6, 56, 71, 106, 106), (7, 57, 72, 107, 107),
(8, 58, 73, 108, 108), (9, 59, 74, 109, 109)],
dtype=[('a', int), ('b1', int), ('b', int),
('c', int), ('d', int)])
assert_equal(test, control)
def test_two_keys_two_vars(self):
a = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2),
np.arange(50, 60), np.arange(10, 20))),
dtype=[('k', int), ('a', int), ('b', int), ('c', int)])
b = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2),
np.arange(65, 75), np.arange(0, 10))),
dtype=[('k', int), ('a', int), ('b', int), ('c', int)])
control = np.array([(10, 0, 50, 65, 10, 0), (11, 0, 51, 66, 11, 1),
(10, 1, 52, 67, 12, 2), (11, 1, 53, 68, 13, 3),
(10, 2, 54, 69, 14, 4), (11, 2, 55, 70, 15, 5),
(10, 3, 56, 71, 16, 6), (11, 3, 57, 72, 17, 7),
(10, 4, 58, 73, 18, 8), (11, 4, 59, 74, 19, 9)],
dtype=[('k', int), ('a', int), ('b1', int),
('b2', int), ('c1', int), ('c2', int)])
test = join_by(
['a', 'k'], a, b, r1postfix='1', r2postfix='2', jointype='inner')
assert_equal(test.dtype, control.dtype)
assert_equal(test, control)
class TestAppendFieldsObj:
"""
Test append_fields with arrays containing objects
"""
# https://github.com/numpy/numpy/issues/2346
def setup(self):
from datetime import date
self.data = dict(obj=date(2000, 1, 1))
def test_append_to_objects(self):
"Test append_fields when the base array contains objects"
obj = self.data['obj']
x = np.array([(obj, 1.), (obj, 2.)],
dtype=[('A', object), ('B', float)])
y = np.array([10, 20], dtype=int)
test = append_fields(x, 'C', data=y, usemask=False)
control = np.array([(obj, 1.0, 10), (obj, 2.0, 20)],
dtype=[('A', object), ('B', float), ('C', int)])
assert_equal(test, control)

View file

@ -0,0 +1,247 @@
import os
import numpy as np
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_array_almost_equal,
assert_raises, _assert_valid_refcount,
)
class TestRegression:
def test_poly1d(self):
# Ticket #28
assert_equal(np.poly1d([1]) - np.poly1d([1, 0]),
np.poly1d([-1, 1]))
def test_cov_parameters(self):
# Ticket #91
x = np.random.random((3, 3))
y = x.copy()
np.cov(x, rowvar=True)
np.cov(y, rowvar=False)
assert_array_equal(x, y)
def test_mem_digitize(self):
# Ticket #95
for i in range(100):
np.digitize([1, 2, 3, 4], [1, 3])
np.digitize([0, 1, 2, 3, 4], [1, 3])
def test_unique_zero_sized(self):
# Ticket #205
assert_array_equal([], np.unique(np.array([])))
def test_mem_vectorise(self):
# Ticket #325
vt = np.vectorize(lambda *args: args)
vt(np.zeros((1, 2, 1)), np.zeros((2, 1, 1)), np.zeros((1, 1, 2)))
vt(np.zeros((1, 2, 1)), np.zeros((2, 1, 1)), np.zeros((1,
1, 2)), np.zeros((2, 2)))
def test_mgrid_single_element(self):
# Ticket #339
assert_array_equal(np.mgrid[0:0:1j], [0])
assert_array_equal(np.mgrid[0:0], [])
def test_refcount_vectorize(self):
# Ticket #378
def p(x, y):
return 123
v = np.vectorize(p)
_assert_valid_refcount(v)
def test_poly1d_nan_roots(self):
# Ticket #396
p = np.poly1d([np.nan, np.nan, 1], r=False)
assert_raises(np.linalg.LinAlgError, getattr, p, "r")
def test_mem_polymul(self):
# Ticket #448
np.polymul([], [1.])
def test_mem_string_concat(self):
# Ticket #469
x = np.array([])
np.append(x, 'asdasd\tasdasd')
def test_poly_div(self):
# Ticket #553
u = np.poly1d([1, 2, 3])
v = np.poly1d([1, 2, 3, 4, 5])
q, r = np.polydiv(u, v)
assert_equal(q*v + r, u)
def test_poly_eq(self):
# Ticket #554
x = np.poly1d([1, 2, 3])
y = np.poly1d([3, 4])
assert_(x != y)
assert_(x == x)
def test_polyfit_build(self):
# Ticket #628
ref = [-1.06123820e-06, 5.70886914e-04, -1.13822012e-01,
9.95368241e+00, -3.14526520e+02]
x = [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176]
y = [9.0, 3.0, 7.0, 4.0, 4.0, 8.0, 6.0, 11.0, 9.0, 8.0, 11.0, 5.0,
6.0, 5.0, 9.0, 8.0, 6.0, 10.0, 6.0, 10.0, 7.0, 6.0, 6.0, 6.0,
13.0, 4.0, 9.0, 11.0, 4.0, 5.0, 8.0, 5.0, 7.0, 7.0, 6.0, 12.0,
7.0, 7.0, 9.0, 4.0, 12.0, 6.0, 6.0, 4.0, 3.0, 9.0, 8.0, 8.0,
6.0, 7.0, 9.0, 10.0, 6.0, 8.0, 4.0, 7.0, 7.0, 10.0, 8.0, 8.0,
6.0, 3.0, 8.0, 4.0, 5.0, 7.0, 8.0, 6.0, 6.0, 4.0, 12.0, 9.0,
8.0, 8.0, 8.0, 6.0, 7.0, 4.0, 4.0, 5.0, 7.0]
tested = np.polyfit(x, y, 4)
assert_array_almost_equal(ref, tested)
def test_polydiv_type(self):
# Make polydiv work for complex types
msg = "Wrong type, should be complex"
x = np.ones(3, dtype=complex)
q, r = np.polydiv(x, x)
assert_(q.dtype == complex, msg)
msg = "Wrong type, should be float"
x = np.ones(3, dtype=int)
q, r = np.polydiv(x, x)
assert_(q.dtype == float, msg)
def test_histogramdd_too_many_bins(self):
# Ticket 928.
assert_raises(ValueError, np.histogramdd, np.ones((1, 10)), bins=2**10)
def test_polyint_type(self):
# Ticket #944
msg = "Wrong type, should be complex"
x = np.ones(3, dtype=complex)
assert_(np.polyint(x).dtype == complex, msg)
msg = "Wrong type, should be float"
x = np.ones(3, dtype=int)
assert_(np.polyint(x).dtype == float, msg)
def test_ndenumerate_crash(self):
# Ticket 1140
# Shouldn't crash:
list(np.ndenumerate(np.array([[]])))
def test_asfarray_none(self):
# Test for changeset r5065
assert_array_equal(np.array([np.nan]), np.asfarray([None]))
def test_large_fancy_indexing(self):
# Large enough to fail on 64-bit.
nbits = np.dtype(np.intp).itemsize * 8
thesize = int((2**nbits)**(1.0/5.0)+1)
def dp():
n = 3
a = np.ones((n,)*5)
i = np.random.randint(0, n, size=thesize)
a[np.ix_(i, i, i, i, i)] = 0
def dp2():
n = 3
a = np.ones((n,)*5)
i = np.random.randint(0, n, size=thesize)
a[np.ix_(i, i, i, i, i)]
assert_raises(ValueError, dp)
assert_raises(ValueError, dp2)
def test_void_coercion(self):
dt = np.dtype([('a', 'f4'), ('b', 'i4')])
x = np.zeros((1,), dt)
assert_(np.r_[x, x].dtype == dt)
def test_who_with_0dim_array(self):
# ticket #1243
import os
import sys
oldstdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
try:
try:
np.who({'foo': np.array(1)})
except Exception:
raise AssertionError("ticket #1243")
finally:
sys.stdout.close()
sys.stdout = oldstdout
def test_include_dirs(self):
# As a sanity check, just test that get_include
# includes something reasonable. Somewhat
# related to ticket #1405.
include_dirs = [np.get_include()]
for path in include_dirs:
assert_(isinstance(path, str))
assert_(path != '')
def test_polyder_return_type(self):
# Ticket #1249
assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
assert_(isinstance(np.polyder([1], 0), np.ndarray))
assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
assert_(isinstance(np.polyder([1], 1), np.ndarray))
def test_append_fields_dtype_list(self):
# Ticket #1676
from numpy.lib.recfunctions import append_fields
base = np.array([1, 2, 3], dtype=np.int32)
names = ['a', 'b', 'c']
data = np.eye(3).astype(np.int32)
dlist = [np.float64, np.int32, np.int32]
try:
append_fields(base, names, data, dlist)
except Exception:
raise AssertionError()
def test_loadtxt_fields_subarrays(self):
# For ticket #1936
from io import StringIO
dt = [("a", 'u1', 2), ("b", 'u1', 2)]
x = np.loadtxt(StringIO("0 1 2 3"), dtype=dt)
assert_equal(x, np.array([((0, 1), (2, 3))], dtype=dt))
dt = [("a", [("a", 'u1', (1, 3)), ("b", 'u1')])]
x = np.loadtxt(StringIO("0 1 2 3"), dtype=dt)
assert_equal(x, np.array([(((0, 1, 2), 3),)], dtype=dt))
dt = [("a", 'u1', (2, 2))]
x = np.loadtxt(StringIO("0 1 2 3"), dtype=dt)
assert_equal(x, np.array([(((0, 1), (2, 3)),)], dtype=dt))
dt = [("a", 'u1', (2, 3, 2))]
x = np.loadtxt(StringIO("0 1 2 3 4 5 6 7 8 9 10 11"), dtype=dt)
data = [((((0, 1), (2, 3), (4, 5)), ((6, 7), (8, 9), (10, 11))),)]
assert_equal(x, np.array(data, dtype=dt))
def test_nansum_with_boolean(self):
# gh-2978
a = np.zeros(2, dtype=bool)
try:
np.nansum(a)
except Exception:
raise AssertionError()
def test_py3_compat(self):
# gh-2561
# Test if the oldstyle class test is bypassed in python3
class C():
"""Old-style class in python2, normal class in python3"""
pass
out = open(os.devnull, 'w')
try:
np.info(C(), output=out)
except AttributeError:
raise AssertionError()
finally:
out.close()

View file

@ -0,0 +1,717 @@
import numpy as np
import functools
import sys
import pytest
from numpy.lib.shape_base import (
apply_along_axis, apply_over_axes, array_split, split, hsplit, dsplit,
vsplit, dstack, column_stack, kron, tile, expand_dims, take_along_axis,
put_along_axis
)
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_raises, assert_warns
)
IS_64BIT = sys.maxsize > 2**32
def _add_keepdims(func):
""" hack in keepdims behavior into a function taking an axis """
@functools.wraps(func)
def wrapped(a, axis, **kwargs):
res = func(a, axis=axis, **kwargs)
if axis is None:
axis = 0 # res is now a scalar, so we can insert this anywhere
return np.expand_dims(res, axis=axis)
return wrapped
class TestTakeAlongAxis:
def test_argequivalent(self):
""" Test it translates from arg<func> to <func> """
from numpy.random import rand
a = rand(3, 4, 5)
funcs = [
(np.sort, np.argsort, dict()),
(_add_keepdims(np.min), _add_keepdims(np.argmin), dict()),
(_add_keepdims(np.max), _add_keepdims(np.argmax), dict()),
(np.partition, np.argpartition, dict(kth=2)),
]
for func, argfunc, kwargs in funcs:
for axis in list(range(a.ndim)) + [None]:
a_func = func(a, axis=axis, **kwargs)
ai_func = argfunc(a, axis=axis, **kwargs)
assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
def test_invalid(self):
""" Test it errors when indices has too few dimensions """
a = np.ones((10, 10))
ai = np.ones((10, 2), dtype=np.intp)
# sanity check
take_along_axis(a, ai, axis=1)
# not enough indices
assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1)
# bool arrays not allowed
assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1)
# float arrays not allowed
assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1)
# invalid axis
assert_raises(np.AxisError, take_along_axis, a, ai, axis=10)
def test_empty(self):
""" Test everything is ok with empty results, even with inserted dims """
a = np.ones((3, 4, 5))
ai = np.ones((3, 0, 5), dtype=np.intp)
actual = take_along_axis(a, ai, axis=1)
assert_equal(actual.shape, ai.shape)
def test_broadcast(self):
""" Test that non-indexing dimensions are broadcast in both directions """
a = np.ones((3, 4, 1))
ai = np.ones((1, 2, 5), dtype=np.intp)
actual = take_along_axis(a, ai, axis=1)
assert_equal(actual.shape, (3, 2, 5))
class TestPutAlongAxis:
def test_replace_max(self):
a_base = np.array([[10, 30, 20], [60, 40, 50]])
for axis in list(range(a_base.ndim)) + [None]:
# we mutate this in the loop
a = a_base.copy()
# replace the max with a small value
i_max = _add_keepdims(np.argmax)(a, axis=axis)
put_along_axis(a, i_max, -99, axis=axis)
# find the new minimum, which should max
i_min = _add_keepdims(np.argmin)(a, axis=axis)
assert_equal(i_min, i_max)
def test_broadcast(self):
""" Test that non-indexing dimensions are broadcast in both directions """
a = np.ones((3, 4, 1))
ai = np.arange(10, dtype=np.intp).reshape((1, 2, 5)) % 4
put_along_axis(a, ai, 20, axis=1)
assert_equal(take_along_axis(a, ai, axis=1), 20)
class TestApplyAlongAxis:
def test_simple(self):
a = np.ones((20, 10), 'd')
assert_array_equal(
apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1]))
def test_simple101(self):
a = np.ones((10, 101), 'd')
assert_array_equal(
apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1]))
def test_3d(self):
a = np.arange(27).reshape((3, 3, 3))
assert_array_equal(apply_along_axis(np.sum, 0, a),
[[27, 30, 33], [36, 39, 42], [45, 48, 51]])
def test_preserve_subclass(self):
def double(row):
return row * 2
class MyNDArray(np.ndarray):
pass
m = np.array([[0, 1], [2, 3]]).view(MyNDArray)
expected = np.array([[0, 2], [4, 6]]).view(MyNDArray)
result = apply_along_axis(double, 0, m)
assert_(isinstance(result, MyNDArray))
assert_array_equal(result, expected)
result = apply_along_axis(double, 1, m)
assert_(isinstance(result, MyNDArray))
assert_array_equal(result, expected)
def test_subclass(self):
class MinimalSubclass(np.ndarray):
data = 1
def minimal_function(array):
return array.data
a = np.zeros((6, 3)).view(MinimalSubclass)
assert_array_equal(
apply_along_axis(minimal_function, 0, a), np.array([1, 1, 1])
)
def test_scalar_array(self, cls=np.ndarray):
a = np.ones((6, 3)).view(cls)
res = apply_along_axis(np.sum, 0, a)
assert_(isinstance(res, cls))
assert_array_equal(res, np.array([6, 6, 6]).view(cls))
def test_0d_array(self, cls=np.ndarray):
def sum_to_0d(x):
""" Sum x, returning a 0d array of the same class """
assert_equal(x.ndim, 1)
return np.squeeze(np.sum(x, keepdims=True))
a = np.ones((6, 3)).view(cls)
res = apply_along_axis(sum_to_0d, 0, a)
assert_(isinstance(res, cls))
assert_array_equal(res, np.array([6, 6, 6]).view(cls))
res = apply_along_axis(sum_to_0d, 1, a)
assert_(isinstance(res, cls))
assert_array_equal(res, np.array([3, 3, 3, 3, 3, 3]).view(cls))
def test_axis_insertion(self, cls=np.ndarray):
def f1to2(x):
"""produces an asymmetric non-square matrix from x"""
assert_equal(x.ndim, 1)
return (x[::-1] * x[1:,None]).view(cls)
a2d = np.arange(6*3).reshape((6, 3))
# 2d insertion along first axis
actual = apply_along_axis(f1to2, 0, a2d)
expected = np.stack([
f1to2(a2d[:,i]) for i in range(a2d.shape[1])
], axis=-1).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
# 2d insertion along last axis
actual = apply_along_axis(f1to2, 1, a2d)
expected = np.stack([
f1to2(a2d[i,:]) for i in range(a2d.shape[0])
], axis=0).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
# 3d insertion along middle axis
a3d = np.arange(6*5*3).reshape((6, 5, 3))
actual = apply_along_axis(f1to2, 1, a3d)
expected = np.stack([
np.stack([
f1to2(a3d[i,:,j]) for i in range(a3d.shape[0])
], axis=0)
for j in range(a3d.shape[2])
], axis=-1).view(cls)
assert_equal(type(actual), type(expected))
assert_equal(actual, expected)
def test_subclass_preservation(self):
class MinimalSubclass(np.ndarray):
pass
self.test_scalar_array(MinimalSubclass)
self.test_0d_array(MinimalSubclass)
self.test_axis_insertion(MinimalSubclass)
def test_axis_insertion_ma(self):
def f1to2(x):
"""produces an asymmetric non-square matrix from x"""
assert_equal(x.ndim, 1)
res = x[::-1] * x[1:,None]
return np.ma.masked_where(res%5==0, res)
a = np.arange(6*3).reshape((6, 3))
res = apply_along_axis(f1to2, 0, a)
assert_(isinstance(res, np.ma.masked_array))
assert_equal(res.ndim, 3)
assert_array_equal(res[:,:,0].mask, f1to2(a[:,0]).mask)
assert_array_equal(res[:,:,1].mask, f1to2(a[:,1]).mask)
assert_array_equal(res[:,:,2].mask, f1to2(a[:,2]).mask)
def test_tuple_func1d(self):
def sample_1d(x):
return x[1], x[0]
res = np.apply_along_axis(sample_1d, 1, np.array([[1, 2], [3, 4]]))
assert_array_equal(res, np.array([[2, 1], [4, 3]]))
def test_empty(self):
# can't apply_along_axis when there's no chance to call the function
def never_call(x):
assert_(False) # should never be reached
a = np.empty((0, 0))
assert_raises(ValueError, np.apply_along_axis, never_call, 0, a)
assert_raises(ValueError, np.apply_along_axis, never_call, 1, a)
# but it's sometimes ok with some non-zero dimensions
def empty_to_1(x):
assert_(len(x) == 0)
return 1
a = np.empty((10, 0))
actual = np.apply_along_axis(empty_to_1, 1, a)
assert_equal(actual, np.ones(10))
assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a)
def test_with_iterable_object(self):
# from issue 5248
d = np.array([
[{1, 11}, {2, 22}, {3, 33}],
[{4, 44}, {5, 55}, {6, 66}]
])
actual = np.apply_along_axis(lambda a: set.union(*a), 0, d)
expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}])
assert_equal(actual, expected)
# issue 8642 - assert_equal doesn't detect this!
for i in np.ndindex(actual.shape):
assert_equal(type(actual[i]), type(expected[i]))
class TestApplyOverAxes:
def test_simple(self):
a = np.arange(24).reshape(2, 3, 4)
aoa_a = apply_over_axes(np.sum, a, [0, 2])
assert_array_equal(aoa_a, np.array([[[60], [92], [124]]]))
class TestExpandDims:
def test_functionality(self):
s = (2, 3, 4, 5)
a = np.empty(s)
for axis in range(-5, 4):
b = expand_dims(a, axis)
assert_(b.shape[axis] == 1)
assert_(np.squeeze(b).shape == s)
def test_axis_tuple(self):
a = np.empty((3, 3, 3))
assert np.expand_dims(a, axis=(0, 1, 2)).shape == (1, 1, 1, 3, 3, 3)
assert np.expand_dims(a, axis=(0, -1, -2)).shape == (1, 3, 3, 3, 1, 1)
assert np.expand_dims(a, axis=(0, 3, 5)).shape == (1, 3, 3, 1, 3, 1)
assert np.expand_dims(a, axis=(0, -3, -5)).shape == (1, 1, 3, 1, 3, 3)
def test_axis_out_of_range(self):
s = (2, 3, 4, 5)
a = np.empty(s)
assert_raises(np.AxisError, expand_dims, a, -6)
assert_raises(np.AxisError, expand_dims, a, 5)
a = np.empty((3, 3, 3))
assert_raises(np.AxisError, expand_dims, a, (0, -6))
assert_raises(np.AxisError, expand_dims, a, (0, 5))
def test_repeated_axis(self):
a = np.empty((3, 3, 3))
assert_raises(ValueError, expand_dims, a, axis=(1, 1))
def test_subclasses(self):
a = np.arange(10).reshape((2, 5))
a = np.ma.array(a, mask=a%3 == 0)
expanded = np.expand_dims(a, axis=1)
assert_(isinstance(expanded, np.ma.MaskedArray))
assert_equal(expanded.shape, (2, 1, 5))
assert_equal(expanded.mask.shape, (2, 1, 5))
class TestArraySplit:
def test_integer_0_split(self):
a = np.arange(10)
assert_raises(ValueError, array_split, a, 0)
def test_integer_split(self):
a = np.arange(10)
res = array_split(a, 1)
desired = [np.arange(10)]
compare_results(res, desired)
res = array_split(a, 2)
desired = [np.arange(5), np.arange(5, 10)]
compare_results(res, desired)
res = array_split(a, 3)
desired = [np.arange(4), np.arange(4, 7), np.arange(7, 10)]
compare_results(res, desired)
res = array_split(a, 4)
desired = [np.arange(3), np.arange(3, 6), np.arange(6, 8),
np.arange(8, 10)]
compare_results(res, desired)
res = array_split(a, 5)
desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
np.arange(6, 8), np.arange(8, 10)]
compare_results(res, desired)
res = array_split(a, 6)
desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
np.arange(6, 8), np.arange(8, 9), np.arange(9, 10)]
compare_results(res, desired)
res = array_split(a, 7)
desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
np.arange(9, 10)]
compare_results(res, desired)
res = array_split(a, 8)
desired = [np.arange(2), np.arange(2, 4), np.arange(4, 5),
np.arange(5, 6), np.arange(6, 7), np.arange(7, 8),
np.arange(8, 9), np.arange(9, 10)]
compare_results(res, desired)
res = array_split(a, 9)
desired = [np.arange(2), np.arange(2, 3), np.arange(3, 4),
np.arange(4, 5), np.arange(5, 6), np.arange(6, 7),
np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)]
compare_results(res, desired)
res = array_split(a, 10)
desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3),
np.arange(3, 4), np.arange(4, 5), np.arange(5, 6),
np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
np.arange(9, 10)]
compare_results(res, desired)
res = array_split(a, 11)
desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3),
np.arange(3, 4), np.arange(4, 5), np.arange(5, 6),
np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
np.arange(9, 10), np.array([])]
compare_results(res, desired)
def test_integer_split_2D_rows(self):
a = np.array([np.arange(10), np.arange(10)])
res = array_split(a, 3, axis=0)
tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]),
np.zeros((0, 10))]
compare_results(res, tgt)
assert_(a.dtype.type is res[-1].dtype.type)
# Same thing for manual splits:
res = array_split(a, [0, 1, 2], axis=0)
tgt = [np.zeros((0, 10)), np.array([np.arange(10)]),
np.array([np.arange(10)])]
compare_results(res, tgt)
assert_(a.dtype.type is res[-1].dtype.type)
def test_integer_split_2D_cols(self):
a = np.array([np.arange(10), np.arange(10)])
res = array_split(a, 3, axis=-1)
desired = [np.array([np.arange(4), np.arange(4)]),
np.array([np.arange(4, 7), np.arange(4, 7)]),
np.array([np.arange(7, 10), np.arange(7, 10)])]
compare_results(res, desired)
def test_integer_split_2D_default(self):
""" This will fail if we change default axis
"""
a = np.array([np.arange(10), np.arange(10)])
res = array_split(a, 3)
tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]),
np.zeros((0, 10))]
compare_results(res, tgt)
assert_(a.dtype.type is res[-1].dtype.type)
# perhaps should check higher dimensions
@pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform")
def test_integer_split_2D_rows_greater_max_int32(self):
a = np.broadcast_to([0], (1 << 32, 2))
res = array_split(a, 4)
chunk = np.broadcast_to([0], (1 << 30, 2))
tgt = [chunk] * 4
for i in range(len(tgt)):
assert_equal(res[i].shape, tgt[i].shape)
def test_index_split_simple(self):
a = np.arange(10)
indices = [1, 5, 7]
res = array_split(a, indices, axis=-1)
desired = [np.arange(0, 1), np.arange(1, 5), np.arange(5, 7),
np.arange(7, 10)]
compare_results(res, desired)
def test_index_split_low_bound(self):
a = np.arange(10)
indices = [0, 5, 7]
res = array_split(a, indices, axis=-1)
desired = [np.array([]), np.arange(0, 5), np.arange(5, 7),
np.arange(7, 10)]
compare_results(res, desired)
def test_index_split_high_bound(self):
a = np.arange(10)
indices = [0, 5, 7, 10, 12]
res = array_split(a, indices, axis=-1)
desired = [np.array([]), np.arange(0, 5), np.arange(5, 7),
np.arange(7, 10), np.array([]), np.array([])]
compare_results(res, desired)
class TestSplit:
# The split function is essentially the same as array_split,
# except that it test if splitting will result in an
# equal split. Only test for this case.
def test_equal_split(self):
a = np.arange(10)
res = split(a, 2)
desired = [np.arange(5), np.arange(5, 10)]
compare_results(res, desired)
def test_unequal_split(self):
a = np.arange(10)
assert_raises(ValueError, split, a, 3)
class TestColumnStack:
def test_non_iterable(self):
assert_raises(TypeError, column_stack, 1)
def test_1D_arrays(self):
# example from docstring
a = np.array((1, 2, 3))
b = np.array((2, 3, 4))
expected = np.array([[1, 2],
[2, 3],
[3, 4]])
actual = np.column_stack((a, b))
assert_equal(actual, expected)
def test_2D_arrays(self):
# same as hstack 2D docstring example
a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
expected = np.array([[1, 2],
[2, 3],
[3, 4]])
actual = np.column_stack((a, b))
assert_equal(actual, expected)
def test_generator(self):
with assert_warns(FutureWarning):
column_stack((np.arange(3) for _ in range(2)))
class TestDstack:
def test_non_iterable(self):
assert_raises(TypeError, dstack, 1)
def test_0D_array(self):
a = np.array(1)
b = np.array(2)
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
def test_1D_array(self):
a = np.array([1])
b = np.array([2])
res = dstack([a, b])
desired = np.array([[[1, 2]]])
assert_array_equal(res, desired)
def test_2D_array(self):
a = np.array([[1], [2]])
b = np.array([[1], [2]])
res = dstack([a, b])
desired = np.array([[[1, 1]], [[2, 2, ]]])
assert_array_equal(res, desired)
def test_2D_array2(self):
a = np.array([1, 2])
b = np.array([1, 2])
res = dstack([a, b])
desired = np.array([[[1, 1], [2, 2]]])
assert_array_equal(res, desired)
def test_generator(self):
with assert_warns(FutureWarning):
dstack((np.arange(3) for _ in range(2)))
# array_split has more comprehensive test of splitting.
# only do simple test on hsplit, vsplit, and dsplit
class TestHsplit:
"""Only testing for integer splits.
"""
def test_non_iterable(self):
assert_raises(ValueError, hsplit, 1, 1)
def test_0D_array(self):
a = np.array(1)
try:
hsplit(a, 2)
assert_(0)
except ValueError:
pass
def test_1D_array(self):
a = np.array([1, 2, 3, 4])
res = hsplit(a, 2)
desired = [np.array([1, 2]), np.array([3, 4])]
compare_results(res, desired)
def test_2D_array(self):
a = np.array([[1, 2, 3, 4],
[1, 2, 3, 4]])
res = hsplit(a, 2)
desired = [np.array([[1, 2], [1, 2]]), np.array([[3, 4], [3, 4]])]
compare_results(res, desired)
class TestVsplit:
"""Only testing for integer splits.
"""
def test_non_iterable(self):
assert_raises(ValueError, vsplit, 1, 1)
def test_0D_array(self):
a = np.array(1)
assert_raises(ValueError, vsplit, a, 2)
def test_1D_array(self):
a = np.array([1, 2, 3, 4])
try:
vsplit(a, 2)
assert_(0)
except ValueError:
pass
def test_2D_array(self):
a = np.array([[1, 2, 3, 4],
[1, 2, 3, 4]])
res = vsplit(a, 2)
desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])]
compare_results(res, desired)
class TestDsplit:
# Only testing for integer splits.
def test_non_iterable(self):
assert_raises(ValueError, dsplit, 1, 1)
def test_0D_array(self):
a = np.array(1)
assert_raises(ValueError, dsplit, a, 2)
def test_1D_array(self):
a = np.array([1, 2, 3, 4])
assert_raises(ValueError, dsplit, a, 2)
def test_2D_array(self):
a = np.array([[1, 2, 3, 4],
[1, 2, 3, 4]])
try:
dsplit(a, 2)
assert_(0)
except ValueError:
pass
def test_3D_array(self):
a = np.array([[[1, 2, 3, 4],
[1, 2, 3, 4]],
[[1, 2, 3, 4],
[1, 2, 3, 4]]])
res = dsplit(a, 2)
desired = [np.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]]),
np.array([[[3, 4], [3, 4]], [[3, 4], [3, 4]]])]
compare_results(res, desired)
class TestSqueeze:
def test_basic(self):
from numpy.random import rand
a = rand(20, 10, 10, 1, 1)
b = rand(20, 1, 10, 1, 20)
c = rand(1, 1, 20, 10)
assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10)))
assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20)))
assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10)))
# Squeezing to 0-dim should still give an ndarray
a = [[[1.5]]]
res = np.squeeze(a)
assert_equal(res, 1.5)
assert_equal(res.ndim, 0)
assert_equal(type(res), np.ndarray)
class TestKron:
def test_return_type(self):
class myarray(np.ndarray):
__array_priority__ = 0.0
a = np.ones([2, 2])
ma = myarray(a.shape, a.dtype, a.data)
assert_equal(type(kron(a, a)), np.ndarray)
assert_equal(type(kron(ma, ma)), myarray)
assert_equal(type(kron(a, ma)), np.ndarray)
assert_equal(type(kron(ma, a)), myarray)
class TestTile:
def test_basic(self):
a = np.array([0, 1, 2])
b = [[1, 2], [3, 4]]
assert_equal(tile(a, 2), [0, 1, 2, 0, 1, 2])
assert_equal(tile(a, (2, 2)), [[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]])
assert_equal(tile(a, (1, 2)), [[0, 1, 2, 0, 1, 2]])
assert_equal(tile(b, 2), [[1, 2, 1, 2], [3, 4, 3, 4]])
assert_equal(tile(b, (2, 1)), [[1, 2], [3, 4], [1, 2], [3, 4]])
assert_equal(tile(b, (2, 2)), [[1, 2, 1, 2], [3, 4, 3, 4],
[1, 2, 1, 2], [3, 4, 3, 4]])
def test_tile_one_repetition_on_array_gh4679(self):
a = np.arange(5)
b = tile(a, 1)
b += 2
assert_equal(a, np.arange(5))
def test_empty(self):
a = np.array([[[]]])
b = np.array([[], []])
c = tile(b, 2).shape
d = tile(a, (3, 2, 5)).shape
assert_equal(c, (2, 0))
assert_equal(d, (3, 2, 0))
def test_kroncompare(self):
from numpy.random import randint
reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)]
shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)]
for s in shape:
b = randint(0, 10, size=s)
for r in reps:
a = np.ones(r, b.dtype)
large = tile(b, r)
klarge = kron(a, b)
assert_equal(large, klarge)
class TestMayShareMemory:
def test_basic(self):
d = np.ones((50, 60))
d2 = np.ones((30, 60, 6))
assert_(np.may_share_memory(d, d))
assert_(np.may_share_memory(d, d[::-1]))
assert_(np.may_share_memory(d, d[::2]))
assert_(np.may_share_memory(d, d[1:, ::-1]))
assert_(not np.may_share_memory(d[::-1], d2))
assert_(not np.may_share_memory(d[::2], d2))
assert_(not np.may_share_memory(d[1:, ::-1], d2))
assert_(np.may_share_memory(d2[1:, ::-1], d2))
# Utility
def compare_results(res, desired):
for i in range(len(desired)):
assert_array_equal(res[i], desired[i])

View file

@ -0,0 +1,479 @@
import numpy as np
from numpy.core._rational_tests import rational
from numpy.testing import (
assert_equal, assert_array_equal, assert_raises, assert_,
assert_raises_regex, assert_warns,
)
from numpy.lib.stride_tricks import (
as_strided, broadcast_arrays, _broadcast_shape, broadcast_to
)
def assert_shapes_correct(input_shapes, expected_shape):
# Broadcast a list of arrays with the given input shapes and check the
# common output shape.
inarrays = [np.zeros(s) for s in input_shapes]
outarrays = broadcast_arrays(*inarrays)
outshapes = [a.shape for a in outarrays]
expected = [expected_shape] * len(inarrays)
assert_equal(outshapes, expected)
def assert_incompatible_shapes_raise(input_shapes):
# Broadcast a list of arrays with the given (incompatible) input shapes
# and check that they raise a ValueError.
inarrays = [np.zeros(s) for s in input_shapes]
assert_raises(ValueError, broadcast_arrays, *inarrays)
def assert_same_as_ufunc(shape0, shape1, transposed=False, flipped=False):
# Broadcast two shapes against each other and check that the data layout
# is the same as if a ufunc did the broadcasting.
x0 = np.zeros(shape0, dtype=int)
# Note that multiply.reduce's identity element is 1.0, so when shape1==(),
# this gives the desired n==1.
n = int(np.multiply.reduce(shape1))
x1 = np.arange(n).reshape(shape1)
if transposed:
x0 = x0.T
x1 = x1.T
if flipped:
x0 = x0[::-1]
x1 = x1[::-1]
# Use the add ufunc to do the broadcasting. Since we're adding 0s to x1, the
# result should be exactly the same as the broadcasted view of x1.
y = x0 + x1
b0, b1 = broadcast_arrays(x0, x1)
assert_array_equal(y, b1)
def test_same():
x = np.arange(10)
y = np.arange(10)
bx, by = broadcast_arrays(x, y)
assert_array_equal(x, bx)
assert_array_equal(y, by)
def test_broadcast_kwargs():
# ensure that a TypeError is appropriately raised when
# np.broadcast_arrays() is called with any keyword
# argument other than 'subok'
x = np.arange(10)
y = np.arange(10)
with assert_raises_regex(TypeError, 'got an unexpected keyword'):
broadcast_arrays(x, y, dtype='float64')
def test_one_off():
x = np.array([[1, 2, 3]])
y = np.array([[1], [2], [3]])
bx, by = broadcast_arrays(x, y)
bx0 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
by0 = bx0.T
assert_array_equal(bx0, bx)
assert_array_equal(by0, by)
def test_same_input_shapes():
# Check that the final shape is just the input shape.
data = [
(),
(1,),
(3,),
(0, 1),
(0, 3),
(1, 0),
(3, 0),
(1, 3),
(3, 1),
(3, 3),
]
for shape in data:
input_shapes = [shape]
# Single input.
assert_shapes_correct(input_shapes, shape)
# Double input.
input_shapes2 = [shape, shape]
assert_shapes_correct(input_shapes2, shape)
# Triple input.
input_shapes3 = [shape, shape, shape]
assert_shapes_correct(input_shapes3, shape)
def test_two_compatible_by_ones_input_shapes():
# Check that two different input shapes of the same length, but some have
# ones, broadcast to the correct shape.
data = [
[[(1,), (3,)], (3,)],
[[(1, 3), (3, 3)], (3, 3)],
[[(3, 1), (3, 3)], (3, 3)],
[[(1, 3), (3, 1)], (3, 3)],
[[(1, 1), (3, 3)], (3, 3)],
[[(1, 1), (1, 3)], (1, 3)],
[[(1, 1), (3, 1)], (3, 1)],
[[(1, 0), (0, 0)], (0, 0)],
[[(0, 1), (0, 0)], (0, 0)],
[[(1, 0), (0, 1)], (0, 0)],
[[(1, 1), (0, 0)], (0, 0)],
[[(1, 1), (1, 0)], (1, 0)],
[[(1, 1), (0, 1)], (0, 1)],
]
for input_shapes, expected_shape in data:
assert_shapes_correct(input_shapes, expected_shape)
# Reverse the input shapes since broadcasting should be symmetric.
assert_shapes_correct(input_shapes[::-1], expected_shape)
def test_two_compatible_by_prepending_ones_input_shapes():
# Check that two different input shapes (of different lengths) broadcast
# to the correct shape.
data = [
[[(), (3,)], (3,)],
[[(3,), (3, 3)], (3, 3)],
[[(3,), (3, 1)], (3, 3)],
[[(1,), (3, 3)], (3, 3)],
[[(), (3, 3)], (3, 3)],
[[(1, 1), (3,)], (1, 3)],
[[(1,), (3, 1)], (3, 1)],
[[(1,), (1, 3)], (1, 3)],
[[(), (1, 3)], (1, 3)],
[[(), (3, 1)], (3, 1)],
[[(), (0,)], (0,)],
[[(0,), (0, 0)], (0, 0)],
[[(0,), (0, 1)], (0, 0)],
[[(1,), (0, 0)], (0, 0)],
[[(), (0, 0)], (0, 0)],
[[(1, 1), (0,)], (1, 0)],
[[(1,), (0, 1)], (0, 1)],
[[(1,), (1, 0)], (1, 0)],
[[(), (1, 0)], (1, 0)],
[[(), (0, 1)], (0, 1)],
]
for input_shapes, expected_shape in data:
assert_shapes_correct(input_shapes, expected_shape)
# Reverse the input shapes since broadcasting should be symmetric.
assert_shapes_correct(input_shapes[::-1], expected_shape)
def test_incompatible_shapes_raise_valueerror():
# Check that a ValueError is raised for incompatible shapes.
data = [
[(3,), (4,)],
[(2, 3), (2,)],
[(3,), (3,), (4,)],
[(1, 3, 4), (2, 3, 3)],
]
for input_shapes in data:
assert_incompatible_shapes_raise(input_shapes)
# Reverse the input shapes since broadcasting should be symmetric.
assert_incompatible_shapes_raise(input_shapes[::-1])
def test_same_as_ufunc():
# Check that the data layout is the same as if a ufunc did the operation.
data = [
[[(1,), (3,)], (3,)],
[[(1, 3), (3, 3)], (3, 3)],
[[(3, 1), (3, 3)], (3, 3)],
[[(1, 3), (3, 1)], (3, 3)],
[[(1, 1), (3, 3)], (3, 3)],
[[(1, 1), (1, 3)], (1, 3)],
[[(1, 1), (3, 1)], (3, 1)],
[[(1, 0), (0, 0)], (0, 0)],
[[(0, 1), (0, 0)], (0, 0)],
[[(1, 0), (0, 1)], (0, 0)],
[[(1, 1), (0, 0)], (0, 0)],
[[(1, 1), (1, 0)], (1, 0)],
[[(1, 1), (0, 1)], (0, 1)],
[[(), (3,)], (3,)],
[[(3,), (3, 3)], (3, 3)],
[[(3,), (3, 1)], (3, 3)],
[[(1,), (3, 3)], (3, 3)],
[[(), (3, 3)], (3, 3)],
[[(1, 1), (3,)], (1, 3)],
[[(1,), (3, 1)], (3, 1)],
[[(1,), (1, 3)], (1, 3)],
[[(), (1, 3)], (1, 3)],
[[(), (3, 1)], (3, 1)],
[[(), (0,)], (0,)],
[[(0,), (0, 0)], (0, 0)],
[[(0,), (0, 1)], (0, 0)],
[[(1,), (0, 0)], (0, 0)],
[[(), (0, 0)], (0, 0)],
[[(1, 1), (0,)], (1, 0)],
[[(1,), (0, 1)], (0, 1)],
[[(1,), (1, 0)], (1, 0)],
[[(), (1, 0)], (1, 0)],
[[(), (0, 1)], (0, 1)],
]
for input_shapes, expected_shape in data:
assert_same_as_ufunc(input_shapes[0], input_shapes[1],
"Shapes: %s %s" % (input_shapes[0], input_shapes[1]))
# Reverse the input shapes since broadcasting should be symmetric.
assert_same_as_ufunc(input_shapes[1], input_shapes[0])
# Try them transposed, too.
assert_same_as_ufunc(input_shapes[0], input_shapes[1], True)
# ... and flipped for non-rank-0 inputs in order to test negative
# strides.
if () not in input_shapes:
assert_same_as_ufunc(input_shapes[0], input_shapes[1], False, True)
assert_same_as_ufunc(input_shapes[0], input_shapes[1], True, True)
def test_broadcast_to_succeeds():
data = [
[np.array(0), (0,), np.array(0)],
[np.array(0), (1,), np.zeros(1)],
[np.array(0), (3,), np.zeros(3)],
[np.ones(1), (1,), np.ones(1)],
[np.ones(1), (2,), np.ones(2)],
[np.ones(1), (1, 2, 3), np.ones((1, 2, 3))],
[np.arange(3), (3,), np.arange(3)],
[np.arange(3), (1, 3), np.arange(3).reshape(1, -1)],
[np.arange(3), (2, 3), np.array([[0, 1, 2], [0, 1, 2]])],
# test if shape is not a tuple
[np.ones(0), 0, np.ones(0)],
[np.ones(1), 1, np.ones(1)],
[np.ones(1), 2, np.ones(2)],
# these cases with size 0 are strange, but they reproduce the behavior
# of broadcasting with ufuncs (see test_same_as_ufunc above)
[np.ones(1), (0,), np.ones(0)],
[np.ones((1, 2)), (0, 2), np.ones((0, 2))],
[np.ones((2, 1)), (2, 0), np.ones((2, 0))],
]
for input_array, shape, expected in data:
actual = broadcast_to(input_array, shape)
assert_array_equal(expected, actual)
def test_broadcast_to_raises():
data = [
[(0,), ()],
[(1,), ()],
[(3,), ()],
[(3,), (1,)],
[(3,), (2,)],
[(3,), (4,)],
[(1, 2), (2, 1)],
[(1, 1), (1,)],
[(1,), -1],
[(1,), (-1,)],
[(1, 2), (-1, 2)],
]
for orig_shape, target_shape in data:
arr = np.zeros(orig_shape)
assert_raises(ValueError, lambda: broadcast_to(arr, target_shape))
def test_broadcast_shape():
# broadcast_shape is already exercized indirectly by broadcast_arrays
assert_equal(_broadcast_shape(), ())
assert_equal(_broadcast_shape([1, 2]), (2,))
assert_equal(_broadcast_shape(np.ones((1, 1))), (1, 1))
assert_equal(_broadcast_shape(np.ones((1, 1)), np.ones((3, 4))), (3, 4))
assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 32)), (1, 2))
assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 100)), (1, 2))
# regression tests for gh-5862
assert_equal(_broadcast_shape(*([np.ones(2)] * 32 + [1])), (2,))
bad_args = [np.ones(2)] * 32 + [np.ones(3)] * 32
assert_raises(ValueError, lambda: _broadcast_shape(*bad_args))
def test_as_strided():
a = np.array([None])
a_view = as_strided(a)
expected = np.array([None])
assert_array_equal(a_view, np.array([None]))
a = np.array([1, 2, 3, 4])
a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
expected = np.array([1, 3])
assert_array_equal(a_view, expected)
a = np.array([1, 2, 3, 4])
a_view = as_strided(a, shape=(3, 4), strides=(0, 1 * a.itemsize))
expected = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
assert_array_equal(a_view, expected)
# Regression test for gh-5081
dt = np.dtype([('num', 'i4'), ('obj', 'O')])
a = np.empty((4,), dtype=dt)
a['num'] = np.arange(1, 5)
a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
expected_num = [[1, 2, 3, 4]] * 3
expected_obj = [[None]*4]*3
assert_equal(a_view.dtype, dt)
assert_array_equal(expected_num, a_view['num'])
assert_array_equal(expected_obj, a_view['obj'])
# Make sure that void types without fields are kept unchanged
a = np.empty((4,), dtype='V4')
a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
assert_equal(a.dtype, a_view.dtype)
# Make sure that the only type that could fail is properly handled
dt = np.dtype({'names': [''], 'formats': ['V4']})
a = np.empty((4,), dtype=dt)
a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
assert_equal(a.dtype, a_view.dtype)
# Custom dtypes should not be lost (gh-9161)
r = [rational(i) for i in range(4)]
a = np.array(r, dtype=rational)
a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
assert_equal(a.dtype, a_view.dtype)
assert_array_equal([r] * 3, a_view)
def as_strided_writeable():
arr = np.ones(10)
view = as_strided(arr, writeable=False)
assert_(not view.flags.writeable)
# Check that writeable also is fine:
view = as_strided(arr, writeable=True)
assert_(view.flags.writeable)
view[...] = 3
assert_array_equal(arr, np.full_like(arr, 3))
# Test that things do not break down for readonly:
arr.flags.writeable = False
view = as_strided(arr, writeable=False)
view = as_strided(arr, writeable=True)
assert_(not view.flags.writeable)
class VerySimpleSubClass(np.ndarray):
def __new__(cls, *args, **kwargs):
return np.array(*args, subok=True, **kwargs).view(cls)
class SimpleSubClass(VerySimpleSubClass):
def __new__(cls, *args, **kwargs):
self = np.array(*args, subok=True, **kwargs).view(cls)
self.info = 'simple'
return self
def __array_finalize__(self, obj):
self.info = getattr(obj, 'info', '') + ' finalized'
def test_subclasses():
# test that subclass is preserved only if subok=True
a = VerySimpleSubClass([1, 2, 3, 4])
assert_(type(a) is VerySimpleSubClass)
a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
assert_(type(a_view) is np.ndarray)
a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
assert_(type(a_view) is VerySimpleSubClass)
# test that if a subclass has __array_finalize__, it is used
a = SimpleSubClass([1, 2, 3, 4])
a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
assert_(type(a_view) is SimpleSubClass)
assert_(a_view.info == 'simple finalized')
# similar tests for broadcast_arrays
b = np.arange(len(a)).reshape(-1, 1)
a_view, b_view = broadcast_arrays(a, b)
assert_(type(a_view) is np.ndarray)
assert_(type(b_view) is np.ndarray)
assert_(a_view.shape == b_view.shape)
a_view, b_view = broadcast_arrays(a, b, subok=True)
assert_(type(a_view) is SimpleSubClass)
assert_(a_view.info == 'simple finalized')
assert_(type(b_view) is np.ndarray)
assert_(a_view.shape == b_view.shape)
# and for broadcast_to
shape = (2, 4)
a_view = broadcast_to(a, shape)
assert_(type(a_view) is np.ndarray)
assert_(a_view.shape == shape)
a_view = broadcast_to(a, shape, subok=True)
assert_(type(a_view) is SimpleSubClass)
assert_(a_view.info == 'simple finalized')
assert_(a_view.shape == shape)
def test_writeable():
# broadcast_to should return a readonly array
original = np.array([1, 2, 3])
result = broadcast_to(original, (2, 3))
assert_equal(result.flags.writeable, False)
assert_raises(ValueError, result.__setitem__, slice(None), 0)
# but the result of broadcast_arrays needs to be writeable, to
# preserve backwards compatibility
for is_broadcast, results in [(False, broadcast_arrays(original,)),
(True, broadcast_arrays(0, original))]:
for result in results:
# This will change to False in a future version
if is_broadcast:
with assert_warns(FutureWarning):
assert_equal(result.flags.writeable, True)
with assert_warns(DeprecationWarning):
result[:] = 0
# Warning not emitted, writing to the array resets it
assert_equal(result.flags.writeable, True)
else:
# No warning:
assert_equal(result.flags.writeable, True)
for results in [broadcast_arrays(original),
broadcast_arrays(0, original)]:
for result in results:
# resets the warn_on_write DeprecationWarning
result.flags.writeable = True
# check: no warning emitted
assert_equal(result.flags.writeable, True)
result[:] = 0
# keep readonly input readonly
original.flags.writeable = False
_, result = broadcast_arrays(0, original)
assert_equal(result.flags.writeable, False)
# regression test for GH6491
shape = (2,)
strides = [0]
tricky_array = as_strided(np.array(0), shape, strides)
other = np.zeros((1,))
first, second = broadcast_arrays(tricky_array, other)
assert_(first.shape == second.shape)
def test_writeable_memoryview():
# The result of broadcast_arrays exports as a non-writeable memoryview
# because otherwise there is no good way to opt in to the new behaviour
# (i.e. you would need to set writeable to False explicitly).
# See gh-13929.
original = np.array([1, 2, 3])
for is_broadcast, results in [(False, broadcast_arrays(original,)),
(True, broadcast_arrays(0, original))]:
for result in results:
# This will change to False in a future version
if is_broadcast:
# memoryview(result, writable=True) will give warning but cannot
# be tested using the python API.
assert memoryview(result).readonly
else:
assert not memoryview(result).readonly
def test_reference_types():
input_array = np.array('a', dtype=object)
expected = np.array(['a'] * 3, dtype=object)
actual = broadcast_to(input_array, (3,))
assert_array_equal(expected, actual)
actual, _ = broadcast_arrays(input_array, np.ones(3))
assert_array_equal(expected, actual)

View file

@ -0,0 +1,532 @@
"""Test functions for matrix module
"""
from numpy.testing import (
assert_equal, assert_array_equal, assert_array_max_ulp,
assert_array_almost_equal, assert_raises, assert_
)
from numpy import (
arange, add, fliplr, flipud, zeros, ones, eye, array, diag, histogram2d,
tri, mask_indices, triu_indices, triu_indices_from, tril_indices,
tril_indices_from, vander,
)
import numpy as np
from numpy.core.tests.test_overrides import requires_array_function
def get_mat(n):
data = arange(n)
data = add.outer(data, data)
return data
class TestEye:
def test_basic(self):
assert_equal(eye(4),
array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]]))
assert_equal(eye(4, dtype='f'),
array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]], 'f'))
assert_equal(eye(3) == 1,
eye(3, dtype=bool))
def test_diag(self):
assert_equal(eye(4, k=1),
array([[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]]))
assert_equal(eye(4, k=-1),
array([[0, 0, 0, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0]]))
def test_2d(self):
assert_equal(eye(4, 3),
array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[0, 0, 0]]))
assert_equal(eye(3, 4),
array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0]]))
def test_diag2d(self):
assert_equal(eye(3, 4, k=2),
array([[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]]))
assert_equal(eye(4, 3, k=-2),
array([[0, 0, 0],
[0, 0, 0],
[1, 0, 0],
[0, 1, 0]]))
def test_eye_bounds(self):
assert_equal(eye(2, 2, 1), [[0, 1], [0, 0]])
assert_equal(eye(2, 2, -1), [[0, 0], [1, 0]])
assert_equal(eye(2, 2, 2), [[0, 0], [0, 0]])
assert_equal(eye(2, 2, -2), [[0, 0], [0, 0]])
assert_equal(eye(3, 2, 2), [[0, 0], [0, 0], [0, 0]])
assert_equal(eye(3, 2, 1), [[0, 1], [0, 0], [0, 0]])
assert_equal(eye(3, 2, -1), [[0, 0], [1, 0], [0, 1]])
assert_equal(eye(3, 2, -2), [[0, 0], [0, 0], [1, 0]])
assert_equal(eye(3, 2, -3), [[0, 0], [0, 0], [0, 0]])
def test_strings(self):
assert_equal(eye(2, 2, dtype='S3'),
[[b'1', b''], [b'', b'1']])
def test_bool(self):
assert_equal(eye(2, 2, dtype=bool), [[True, False], [False, True]])
def test_order(self):
mat_c = eye(4, 3, k=-1)
mat_f = eye(4, 3, k=-1, order='F')
assert_equal(mat_c, mat_f)
assert mat_c.flags.c_contiguous
assert not mat_c.flags.f_contiguous
assert not mat_f.flags.c_contiguous
assert mat_f.flags.f_contiguous
class TestDiag:
def test_vector(self):
vals = (100 * arange(5)).astype('l')
b = zeros((5, 5))
for k in range(5):
b[k, k] = vals[k]
assert_equal(diag(vals), b)
b = zeros((7, 7))
c = b.copy()
for k in range(5):
b[k, k + 2] = vals[k]
c[k + 2, k] = vals[k]
assert_equal(diag(vals, k=2), b)
assert_equal(diag(vals, k=-2), c)
def test_matrix(self, vals=None):
if vals is None:
vals = (100 * get_mat(5) + 1).astype('l')
b = zeros((5,))
for k in range(5):
b[k] = vals[k, k]
assert_equal(diag(vals), b)
b = b * 0
for k in range(3):
b[k] = vals[k, k + 2]
assert_equal(diag(vals, 2), b[:3])
for k in range(3):
b[k] = vals[k + 2, k]
assert_equal(diag(vals, -2), b[:3])
def test_fortran_order(self):
vals = array((100 * get_mat(5) + 1), order='F', dtype='l')
self.test_matrix(vals)
def test_diag_bounds(self):
A = [[1, 2], [3, 4], [5, 6]]
assert_equal(diag(A, k=2), [])
assert_equal(diag(A, k=1), [2])
assert_equal(diag(A, k=0), [1, 4])
assert_equal(diag(A, k=-1), [3, 6])
assert_equal(diag(A, k=-2), [5])
assert_equal(diag(A, k=-3), [])
def test_failure(self):
assert_raises(ValueError, diag, [[[1]]])
class TestFliplr:
def test_basic(self):
assert_raises(ValueError, fliplr, ones(4))
a = get_mat(4)
b = a[:, ::-1]
assert_equal(fliplr(a), b)
a = [[0, 1, 2],
[3, 4, 5]]
b = [[2, 1, 0],
[5, 4, 3]]
assert_equal(fliplr(a), b)
class TestFlipud:
def test_basic(self):
a = get_mat(4)
b = a[::-1, :]
assert_equal(flipud(a), b)
a = [[0, 1, 2],
[3, 4, 5]]
b = [[3, 4, 5],
[0, 1, 2]]
assert_equal(flipud(a), b)
class TestHistogram2d:
def test_simple(self):
x = array(
[0.41702200, 0.72032449, 1.1437481e-4, 0.302332573, 0.146755891])
y = array(
[0.09233859, 0.18626021, 0.34556073, 0.39676747, 0.53881673])
xedges = np.linspace(0, 1, 10)
yedges = np.linspace(0, 1, 10)
H = histogram2d(x, y, (xedges, yedges))[0]
answer = array(
[[0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]])
assert_array_equal(H.T, answer)
H = histogram2d(x, y, xedges)[0]
assert_array_equal(H.T, answer)
H, xedges, yedges = histogram2d(list(range(10)), list(range(10)))
assert_array_equal(H, eye(10, 10))
assert_array_equal(xedges, np.linspace(0, 9, 11))
assert_array_equal(yedges, np.linspace(0, 9, 11))
def test_asym(self):
x = array([1, 1, 2, 3, 4, 4, 4, 5])
y = array([1, 3, 2, 0, 1, 2, 3, 4])
H, xed, yed = histogram2d(
x, y, (6, 5), range=[[0, 6], [0, 5]], density=True)
answer = array(
[[0., 0, 0, 0, 0],
[0, 1, 0, 1, 0],
[0, 0, 1, 0, 0],
[1, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 1]])
assert_array_almost_equal(H, answer/8., 3)
assert_array_equal(xed, np.linspace(0, 6, 7))
assert_array_equal(yed, np.linspace(0, 5, 6))
def test_density(self):
x = array([1, 2, 3, 1, 2, 3, 1, 2, 3])
y = array([1, 1, 1, 2, 2, 2, 3, 3, 3])
H, xed, yed = histogram2d(
x, y, [[1, 2, 3, 5], [1, 2, 3, 5]], density=True)
answer = array([[1, 1, .5],
[1, 1, .5],
[.5, .5, .25]])/9.
assert_array_almost_equal(H, answer, 3)
def test_all_outliers(self):
r = np.random.rand(100) + 1. + 1e6 # histogramdd rounds by decimal=6
H, xed, yed = histogram2d(r, r, (4, 5), range=([0, 1], [0, 1]))
assert_array_equal(H, 0)
def test_empty(self):
a, edge1, edge2 = histogram2d([], [], bins=([0, 1], [0, 1]))
assert_array_max_ulp(a, array([[0.]]))
a, edge1, edge2 = histogram2d([], [], bins=4)
assert_array_max_ulp(a, np.zeros((4, 4)))
def test_binparameter_combination(self):
x = array(
[0, 0.09207008, 0.64575234, 0.12875982, 0.47390599,
0.59944483, 1])
y = array(
[0, 0.14344267, 0.48988575, 0.30558665, 0.44700682,
0.15886423, 1])
edges = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)
H, xe, ye = histogram2d(x, y, (edges, 4))
answer = array(
[[2., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 1., 0., 0.],
[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 1.]])
assert_array_equal(H, answer)
assert_array_equal(ye, array([0., 0.25, 0.5, 0.75, 1]))
H, xe, ye = histogram2d(x, y, (4, edges))
answer = array(
[[1., 1., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]])
assert_array_equal(H, answer)
assert_array_equal(xe, array([0., 0.25, 0.5, 0.75, 1]))
@requires_array_function
def test_dispatch(self):
class ShouldDispatch:
def __array_function__(self, function, types, args, kwargs):
return types, args, kwargs
xy = [1, 2]
s_d = ShouldDispatch()
r = histogram2d(s_d, xy)
# Cannot use assert_equal since that dispatches...
assert_(r == ((ShouldDispatch,), (s_d, xy), {}))
r = histogram2d(xy, s_d)
assert_(r == ((ShouldDispatch,), (xy, s_d), {}))
r = histogram2d(xy, xy, bins=s_d)
assert_(r, ((ShouldDispatch,), (xy, xy), dict(bins=s_d)))
r = histogram2d(xy, xy, bins=[s_d, 5])
assert_(r, ((ShouldDispatch,), (xy, xy), dict(bins=[s_d, 5])))
assert_raises(Exception, histogram2d, xy, xy, bins=[s_d])
r = histogram2d(xy, xy, weights=s_d)
assert_(r, ((ShouldDispatch,), (xy, xy), dict(weights=s_d)))
class TestTri:
def test_dtype(self):
out = array([[1, 0, 0],
[1, 1, 0],
[1, 1, 1]])
assert_array_equal(tri(3), out)
assert_array_equal(tri(3, dtype=bool), out.astype(bool))
def test_tril_triu_ndim2():
for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
a = np.ones((2, 2), dtype=dtype)
b = np.tril(a)
c = np.triu(a)
assert_array_equal(b, [[1, 0], [1, 1]])
assert_array_equal(c, b.T)
# should return the same dtype as the original array
assert_equal(b.dtype, a.dtype)
assert_equal(c.dtype, a.dtype)
def test_tril_triu_ndim3():
for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
a = np.array([
[[1, 1], [1, 1]],
[[1, 1], [1, 0]],
[[1, 1], [0, 0]],
], dtype=dtype)
a_tril_desired = np.array([
[[1, 0], [1, 1]],
[[1, 0], [1, 0]],
[[1, 0], [0, 0]],
], dtype=dtype)
a_triu_desired = np.array([
[[1, 1], [0, 1]],
[[1, 1], [0, 0]],
[[1, 1], [0, 0]],
], dtype=dtype)
a_triu_observed = np.triu(a)
a_tril_observed = np.tril(a)
assert_array_equal(a_triu_observed, a_triu_desired)
assert_array_equal(a_tril_observed, a_tril_desired)
assert_equal(a_triu_observed.dtype, a.dtype)
assert_equal(a_tril_observed.dtype, a.dtype)
def test_tril_triu_with_inf():
# Issue 4859
arr = np.array([[1, 1, np.inf],
[1, 1, 1],
[np.inf, 1, 1]])
out_tril = np.array([[1, 0, 0],
[1, 1, 0],
[np.inf, 1, 1]])
out_triu = out_tril.T
assert_array_equal(np.triu(arr), out_triu)
assert_array_equal(np.tril(arr), out_tril)
def test_tril_triu_dtype():
# Issue 4916
# tril and triu should return the same dtype as input
for c in np.typecodes['All']:
if c == 'V':
continue
arr = np.zeros((3, 3), dtype=c)
assert_equal(np.triu(arr).dtype, arr.dtype)
assert_equal(np.tril(arr).dtype, arr.dtype)
# check special cases
arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'],
['2004-01-01T12:00', '2003-01-03T13:45']],
dtype='datetime64')
assert_equal(np.triu(arr).dtype, arr.dtype)
assert_equal(np.tril(arr).dtype, arr.dtype)
arr = np.zeros((3,3), dtype='f4,f4')
assert_equal(np.triu(arr).dtype, arr.dtype)
assert_equal(np.tril(arr).dtype, arr.dtype)
def test_mask_indices():
# simple test without offset
iu = mask_indices(3, np.triu)
a = np.arange(9).reshape(3, 3)
assert_array_equal(a[iu], array([0, 1, 2, 4, 5, 8]))
# Now with an offset
iu1 = mask_indices(3, np.triu, 1)
assert_array_equal(a[iu1], array([1, 2, 5]))
def test_tril_indices():
# indices without and with offset
il1 = tril_indices(4)
il2 = tril_indices(4, k=2)
il3 = tril_indices(4, m=5)
il4 = tril_indices(4, k=2, m=5)
a = np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16]])
b = np.arange(1, 21).reshape(4, 5)
# indexing:
assert_array_equal(a[il1],
array([1, 5, 6, 9, 10, 11, 13, 14, 15, 16]))
assert_array_equal(b[il3],
array([1, 6, 7, 11, 12, 13, 16, 17, 18, 19]))
# And for assigning values:
a[il1] = -1
assert_array_equal(a,
array([[-1, 2, 3, 4],
[-1, -1, 7, 8],
[-1, -1, -1, 12],
[-1, -1, -1, -1]]))
b[il3] = -1
assert_array_equal(b,
array([[-1, 2, 3, 4, 5],
[-1, -1, 8, 9, 10],
[-1, -1, -1, 14, 15],
[-1, -1, -1, -1, 20]]))
# These cover almost the whole array (two diagonals right of the main one):
a[il2] = -10
assert_array_equal(a,
array([[-10, -10, -10, 4],
[-10, -10, -10, -10],
[-10, -10, -10, -10],
[-10, -10, -10, -10]]))
b[il4] = -10
assert_array_equal(b,
array([[-10, -10, -10, 4, 5],
[-10, -10, -10, -10, 10],
[-10, -10, -10, -10, -10],
[-10, -10, -10, -10, -10]]))
class TestTriuIndices:
def test_triu_indices(self):
iu1 = triu_indices(4)
iu2 = triu_indices(4, k=2)
iu3 = triu_indices(4, m=5)
iu4 = triu_indices(4, k=2, m=5)
a = np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16]])
b = np.arange(1, 21).reshape(4, 5)
# Both for indexing:
assert_array_equal(a[iu1],
array([1, 2, 3, 4, 6, 7, 8, 11, 12, 16]))
assert_array_equal(b[iu3],
array([1, 2, 3, 4, 5, 7, 8, 9,
10, 13, 14, 15, 19, 20]))
# And for assigning values:
a[iu1] = -1
assert_array_equal(a,
array([[-1, -1, -1, -1],
[5, -1, -1, -1],
[9, 10, -1, -1],
[13, 14, 15, -1]]))
b[iu3] = -1
assert_array_equal(b,
array([[-1, -1, -1, -1, -1],
[6, -1, -1, -1, -1],
[11, 12, -1, -1, -1],
[16, 17, 18, -1, -1]]))
# These cover almost the whole array (two diagonals right of the
# main one):
a[iu2] = -10
assert_array_equal(a,
array([[-1, -1, -10, -10],
[5, -1, -1, -10],
[9, 10, -1, -1],
[13, 14, 15, -1]]))
b[iu4] = -10
assert_array_equal(b,
array([[-1, -1, -10, -10, -10],
[6, -1, -1, -10, -10],
[11, 12, -1, -1, -10],
[16, 17, 18, -1, -1]]))
class TestTrilIndicesFrom:
def test_exceptions(self):
assert_raises(ValueError, tril_indices_from, np.ones((2,)))
assert_raises(ValueError, tril_indices_from, np.ones((2, 2, 2)))
# assert_raises(ValueError, tril_indices_from, np.ones((2, 3)))
class TestTriuIndicesFrom:
def test_exceptions(self):
assert_raises(ValueError, triu_indices_from, np.ones((2,)))
assert_raises(ValueError, triu_indices_from, np.ones((2, 2, 2)))
# assert_raises(ValueError, triu_indices_from, np.ones((2, 3)))
class TestVander:
def test_basic(self):
c = np.array([0, 1, -2, 3])
v = vander(c)
powers = np.array([[0, 0, 0, 0, 1],
[1, 1, 1, 1, 1],
[16, -8, 4, -2, 1],
[81, 27, 9, 3, 1]])
# Check default value of N:
assert_array_equal(v, powers[:, 1:])
# Check a range of N values, including 0 and 5 (greater than default)
m = powers.shape[1]
for n in range(6):
v = vander(c, N=n)
assert_array_equal(v, powers[:, m-n:m])
def test_dtypes(self):
c = array([11, -12, 13], dtype=np.int8)
v = vander(c)
expected = np.array([[121, 11, 1],
[144, -12, 1],
[169, 13, 1]])
assert_array_equal(v, expected)
c = array([1.0+1j, 1.0-1j])
v = vander(c, N=3)
expected = np.array([[2j, 1+1j, 1],
[-2j, 1-1j, 1]])
# The data is floating point, but the values are small integers,
# so assert_array_equal *should* be safe here (rather than, say,
# assert_array_almost_equal).
assert_array_equal(v, expected)

Some files were not shown because too many files have changed in this diff Show more