Created starter files for the project.
This commit is contained in:
commit
73f0c0db42
1992 changed files with 769897 additions and 0 deletions
0
venv/Lib/site-packages/numpy/fft/tests/__init__.py
Normal file
0
venv/Lib/site-packages/numpy/fft/tests/__init__.py
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
168
venv/Lib/site-packages/numpy/fft/tests/test_helper.py
Normal file
168
venv/Lib/site-packages/numpy/fft/tests/test_helper.py
Normal file
|
@ -0,0 +1,168 @@
|
|||
"""Test functions for fftpack.helper module
|
||||
|
||||
Copied from fftpack.helper by Pearu Peterson, October 2005
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_almost_equal
|
||||
from numpy import fft, pi
|
||||
|
||||
|
||||
class TestFFTShift:
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
|
||||
y = [-4, -3, -2, -1, 0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(fft.fftshift(x), y)
|
||||
assert_array_almost_equal(fft.ifftshift(y), x)
|
||||
x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
|
||||
y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(fft.fftshift(x), y)
|
||||
assert_array_almost_equal(fft.ifftshift(y), x)
|
||||
|
||||
def test_inverse(self):
|
||||
for n in [1, 4, 9, 100, 211]:
|
||||
x = np.random.random((n,))
|
||||
assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x)
|
||||
|
||||
def test_axes_keyword(self):
|
||||
freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]]
|
||||
shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted)
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=0),
|
||||
fft.fftshift(freqs, axes=(0,)))
|
||||
assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs)
|
||||
assert_array_almost_equal(fft.ifftshift(shifted, axes=0),
|
||||
fft.ifftshift(shifted, axes=(0,)))
|
||||
|
||||
assert_array_almost_equal(fft.fftshift(freqs), shifted)
|
||||
assert_array_almost_equal(fft.ifftshift(shifted), freqs)
|
||||
|
||||
def test_uneven_dims(self):
|
||||
""" Test 2D input, which has uneven dimension sizes """
|
||||
freqs = [
|
||||
[0, 1],
|
||||
[2, 3],
|
||||
[4, 5]
|
||||
]
|
||||
|
||||
# shift in dimension 0
|
||||
shift_dim0 = [
|
||||
[4, 5],
|
||||
[0, 1],
|
||||
[2, 3]
|
||||
]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs)
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs)
|
||||
|
||||
# shift in dimension 1
|
||||
shift_dim1 = [
|
||||
[1, 0],
|
||||
[3, 2],
|
||||
[5, 4]
|
||||
]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs)
|
||||
|
||||
# shift in both dimensions
|
||||
shift_dim_both = [
|
||||
[5, 4],
|
||||
[1, 0],
|
||||
[3, 2]
|
||||
]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs)
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs)
|
||||
|
||||
# axes=None (default) shift in all dimensions
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs)
|
||||
assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs)
|
||||
|
||||
def test_equal_to_original(self):
|
||||
""" Test that the new (>=v1.15) implementation (see #10073) is equal to the original (<=v1.14) """
|
||||
from numpy.compat import integer_types
|
||||
from numpy.core import asarray, concatenate, arange, take
|
||||
|
||||
def original_fftshift(x, axes=None):
|
||||
""" How fftshift was implemented in v1.14"""
|
||||
tmp = asarray(x)
|
||||
ndim = tmp.ndim
|
||||
if axes is None:
|
||||
axes = list(range(ndim))
|
||||
elif isinstance(axes, integer_types):
|
||||
axes = (axes,)
|
||||
y = tmp
|
||||
for k in axes:
|
||||
n = tmp.shape[k]
|
||||
p2 = (n + 1) // 2
|
||||
mylist = concatenate((arange(p2, n), arange(p2)))
|
||||
y = take(y, mylist, k)
|
||||
return y
|
||||
|
||||
def original_ifftshift(x, axes=None):
|
||||
""" How ifftshift was implemented in v1.14 """
|
||||
tmp = asarray(x)
|
||||
ndim = tmp.ndim
|
||||
if axes is None:
|
||||
axes = list(range(ndim))
|
||||
elif isinstance(axes, integer_types):
|
||||
axes = (axes,)
|
||||
y = tmp
|
||||
for k in axes:
|
||||
n = tmp.shape[k]
|
||||
p2 = n - (n + 1) // 2
|
||||
mylist = concatenate((arange(p2, n), arange(p2)))
|
||||
y = take(y, mylist, k)
|
||||
return y
|
||||
|
||||
# create possible 2d array combinations and try all possible keywords
|
||||
# compare output to original functions
|
||||
for i in range(16):
|
||||
for j in range(16):
|
||||
for axes_keyword in [0, 1, None, (0,), (0, 1)]:
|
||||
inp = np.random.rand(i, j)
|
||||
|
||||
assert_array_almost_equal(fft.fftshift(inp, axes_keyword),
|
||||
original_fftshift(inp, axes_keyword))
|
||||
|
||||
assert_array_almost_equal(fft.ifftshift(inp, axes_keyword),
|
||||
original_ifftshift(inp, axes_keyword))
|
||||
|
||||
|
||||
class TestFFTFreq:
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
|
||||
assert_array_almost_equal(9*fft.fftfreq(9), x)
|
||||
assert_array_almost_equal(9*pi*fft.fftfreq(9, pi), x)
|
||||
x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
|
||||
assert_array_almost_equal(10*fft.fftfreq(10), x)
|
||||
assert_array_almost_equal(10*pi*fft.fftfreq(10, pi), x)
|
||||
|
||||
|
||||
class TestRFFTFreq:
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(9*fft.rfftfreq(9), x)
|
||||
assert_array_almost_equal(9*pi*fft.rfftfreq(9, pi), x)
|
||||
x = [0, 1, 2, 3, 4, 5]
|
||||
assert_array_almost_equal(10*fft.rfftfreq(10), x)
|
||||
assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x)
|
||||
|
||||
|
||||
class TestIRFFTN:
|
||||
|
||||
def test_not_last_axis_success(self):
|
||||
ar, ai = np.random.random((2, 16, 8, 32))
|
||||
a = ar + 1j*ai
|
||||
|
||||
axes = (-2,)
|
||||
|
||||
# Should not raise error
|
||||
fft.irfftn(a, axes=axes)
|
255
venv/Lib/site-packages/numpy/fft/tests/test_pocketfft.py
Normal file
255
venv/Lib/site-packages/numpy/fft/tests/test_pocketfft.py
Normal file
|
@ -0,0 +1,255 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
from numpy.random import random
|
||||
from numpy.testing import (
|
||||
assert_array_equal, assert_raises, assert_allclose
|
||||
)
|
||||
import threading
|
||||
import queue
|
||||
|
||||
|
||||
def fft1(x):
|
||||
L = len(x)
|
||||
phase = -2j*np.pi*(np.arange(L)/float(L))
|
||||
phase = np.arange(L).reshape(-1, 1) * phase
|
||||
return np.sum(x*np.exp(phase), axis=1)
|
||||
|
||||
|
||||
class TestFFTShift:
|
||||
|
||||
def test_fft_n(self):
|
||||
assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)
|
||||
|
||||
|
||||
class TestFFT1D:
|
||||
|
||||
def test_identity(self):
|
||||
maxlen = 512
|
||||
x = random(maxlen) + 1j*random(maxlen)
|
||||
xr = random(maxlen)
|
||||
for i in range(1,maxlen):
|
||||
assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
|
||||
atol=1e-12)
|
||||
assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]),i),
|
||||
xr[0:i], atol=1e-12)
|
||||
|
||||
def test_fft(self):
|
||||
x = random(30) + 1j*random(30)
|
||||
assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
|
||||
assert_allclose(fft1(x) / np.sqrt(30),
|
||||
np.fft.fft(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
@pytest.mark.parametrize('norm', (None, 'ortho'))
|
||||
def test_ifft(self, norm):
|
||||
x = random(30) + 1j*random(30)
|
||||
assert_allclose(
|
||||
x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
|
||||
atol=1e-6)
|
||||
# Ensure we get the correct error message
|
||||
with pytest.raises(ValueError,
|
||||
match='Invalid number of FFT data points'):
|
||||
np.fft.ifft([], norm=norm)
|
||||
|
||||
def test_fft2(self):
|
||||
x = random((30, 20)) + 1j*random((30, 20))
|
||||
assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
|
||||
np.fft.fft2(x), atol=1e-6)
|
||||
assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
|
||||
np.fft.fft2(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_ifft2(self):
|
||||
x = random((30, 20)) + 1j*random((30, 20))
|
||||
assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
|
||||
np.fft.ifft2(x), atol=1e-6)
|
||||
assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
|
||||
np.fft.ifft2(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_fftn(self):
|
||||
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
|
||||
assert_allclose(
|
||||
np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
|
||||
np.fft.fftn(x), atol=1e-6)
|
||||
assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
|
||||
np.fft.fftn(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_ifftn(self):
|
||||
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
|
||||
assert_allclose(
|
||||
np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
|
||||
np.fft.ifftn(x), atol=1e-6)
|
||||
assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
|
||||
np.fft.ifftn(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_rfft(self):
|
||||
x = random(30)
|
||||
for n in [x.size, 2*x.size]:
|
||||
for norm in [None, 'ortho']:
|
||||
assert_allclose(
|
||||
np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
|
||||
np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
|
||||
assert_allclose(
|
||||
np.fft.rfft(x, n=n) / np.sqrt(n),
|
||||
np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_irfft(self):
|
||||
x = random(30)
|
||||
assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
|
||||
assert_allclose(
|
||||
x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_rfft2(self):
|
||||
x = random((30, 20))
|
||||
assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
|
||||
assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
|
||||
np.fft.rfft2(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_irfft2(self):
|
||||
x = random((30, 20))
|
||||
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
|
||||
assert_allclose(
|
||||
x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_rfftn(self):
|
||||
x = random((30, 20, 10))
|
||||
assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
|
||||
assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
|
||||
np.fft.rfftn(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_irfftn(self):
|
||||
x = random((30, 20, 10))
|
||||
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
|
||||
assert_allclose(
|
||||
x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_hfft(self):
|
||||
x = random(14) + 1j*random(14)
|
||||
x_herm = np.concatenate((random(1), x, random(1)))
|
||||
x = np.concatenate((x_herm, x[::-1].conj()))
|
||||
assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
|
||||
assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
|
||||
np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_ihttf(self):
|
||||
x = random(14) + 1j*random(14)
|
||||
x_herm = np.concatenate((random(1), x, random(1)))
|
||||
x = np.concatenate((x_herm, x[::-1].conj()))
|
||||
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
|
||||
assert_allclose(
|
||||
x_herm, np.fft.ihfft(np.fft.hfft(x_herm, norm="ortho"),
|
||||
norm="ortho"), atol=1e-6)
|
||||
|
||||
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
|
||||
np.fft.rfftn, np.fft.irfftn])
|
||||
def test_axes(self, op):
|
||||
x = random((30, 20, 10))
|
||||
axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
|
||||
for a in axes:
|
||||
op_tr = op(np.transpose(x, a))
|
||||
tr_op = np.transpose(op(x, axes=a), a)
|
||||
assert_allclose(op_tr, tr_op, atol=1e-6)
|
||||
|
||||
def test_all_1d_norm_preserving(self):
|
||||
# verify that round-trip transforms are norm-preserving
|
||||
x = random(30)
|
||||
x_norm = np.linalg.norm(x)
|
||||
n = x.size * 2
|
||||
func_pairs = [(np.fft.fft, np.fft.ifft),
|
||||
(np.fft.rfft, np.fft.irfft),
|
||||
# hfft: order so the first function takes x.size samples
|
||||
# (necessary for comparison to x_norm above)
|
||||
(np.fft.ihfft, np.fft.hfft),
|
||||
]
|
||||
for forw, back in func_pairs:
|
||||
for n in [x.size, 2*x.size]:
|
||||
for norm in [None, 'ortho']:
|
||||
tmp = forw(x, n=n, norm=norm)
|
||||
tmp = back(tmp, n=n, norm=norm)
|
||||
assert_allclose(x_norm,
|
||||
np.linalg.norm(tmp), atol=1e-6)
|
||||
|
||||
@pytest.mark.parametrize("dtype", [np.half, np.single, np.double,
|
||||
np.longdouble])
|
||||
def test_dtypes(self, dtype):
|
||||
# make sure that all input precisions are accepted and internally
|
||||
# converted to 64bit
|
||||
x = random(30).astype(dtype)
|
||||
assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6)
|
||||
assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype",
|
||||
[np.float32, np.float64, np.complex64, np.complex128])
|
||||
@pytest.mark.parametrize("order", ["F", 'non-contiguous'])
|
||||
@pytest.mark.parametrize(
|
||||
"fft",
|
||||
[np.fft.fft, np.fft.fft2, np.fft.fftn,
|
||||
np.fft.ifft, np.fft.ifft2, np.fft.ifftn])
|
||||
def test_fft_with_order(dtype, order, fft):
|
||||
# Check that FFT/IFFT produces identical results for C, Fortran and
|
||||
# non contiguous arrays
|
||||
rng = np.random.RandomState(42)
|
||||
X = rng.rand(8, 7, 13).astype(dtype, copy=False)
|
||||
# See discussion in pull/14178
|
||||
_tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
|
||||
if order == 'F':
|
||||
Y = np.asfortranarray(X)
|
||||
else:
|
||||
# Make a non contiguous array
|
||||
Y = X[::-1]
|
||||
X = np.ascontiguousarray(X[::-1])
|
||||
|
||||
if fft.__name__.endswith('fft'):
|
||||
for axis in range(3):
|
||||
X_res = fft(X, axis=axis)
|
||||
Y_res = fft(Y, axis=axis)
|
||||
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
|
||||
elif fft.__name__.endswith(('fft2', 'fftn')):
|
||||
axes = [(0, 1), (1, 2), (0, 2)]
|
||||
if fft.__name__.endswith('fftn'):
|
||||
axes.extend([(0,), (1,), (2,), None])
|
||||
for ax in axes:
|
||||
X_res = fft(X, axes=ax)
|
||||
Y_res = fft(Y, axes=ax)
|
||||
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
|
||||
class TestFFTThreadSafe:
|
||||
threads = 16
|
||||
input_shape = (800, 200)
|
||||
|
||||
def _test_mtsame(self, func, *args):
|
||||
def worker(args, q):
|
||||
q.put(func(*args))
|
||||
|
||||
q = queue.Queue()
|
||||
expected = func(*args)
|
||||
|
||||
# Spin off a bunch of threads to call the same function simultaneously
|
||||
t = [threading.Thread(target=worker, args=(args, q))
|
||||
for i in range(self.threads)]
|
||||
[x.start() for x in t]
|
||||
|
||||
[x.join() for x in t]
|
||||
# Make sure all threads returned the correct value
|
||||
for i in range(self.threads):
|
||||
assert_array_equal(q.get(timeout=5), expected,
|
||||
'Function returned wrong value in multithreaded context')
|
||||
|
||||
def test_fft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.fft, a)
|
||||
|
||||
def test_ifft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.ifft, a)
|
||||
|
||||
def test_rfft(self):
|
||||
a = np.ones(self.input_shape)
|
||||
self._test_mtsame(np.fft.rfft, a)
|
||||
|
||||
def test_irfft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.irfft, a)
|
Loading…
Add table
Add a link
Reference in a new issue