Created starter files for the project.
This commit is contained in:
commit
73f0c0db42
1992 changed files with 769897 additions and 0 deletions
199
venv/Lib/site-packages/numpy/fft/__init__.py
Normal file
199
venv/Lib/site-packages/numpy/fft/__init__.py
Normal file
|
@ -0,0 +1,199 @@
|
|||
"""
|
||||
Discrete Fourier Transform (:mod:`numpy.fft`)
|
||||
=============================================
|
||||
|
||||
.. currentmodule:: numpy.fft
|
||||
|
||||
Standard FFTs
|
||||
-------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
fft Discrete Fourier transform.
|
||||
ifft Inverse discrete Fourier transform.
|
||||
fft2 Discrete Fourier transform in two dimensions.
|
||||
ifft2 Inverse discrete Fourier transform in two dimensions.
|
||||
fftn Discrete Fourier transform in N-dimensions.
|
||||
ifftn Inverse discrete Fourier transform in N dimensions.
|
||||
|
||||
Real FFTs
|
||||
---------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
rfft Real discrete Fourier transform.
|
||||
irfft Inverse real discrete Fourier transform.
|
||||
rfft2 Real discrete Fourier transform in two dimensions.
|
||||
irfft2 Inverse real discrete Fourier transform in two dimensions.
|
||||
rfftn Real discrete Fourier transform in N dimensions.
|
||||
irfftn Inverse real discrete Fourier transform in N dimensions.
|
||||
|
||||
Hermitian FFTs
|
||||
--------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
hfft Hermitian discrete Fourier transform.
|
||||
ihfft Inverse Hermitian discrete Fourier transform.
|
||||
|
||||
Helper routines
|
||||
---------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
fftfreq Discrete Fourier Transform sample frequencies.
|
||||
rfftfreq DFT sample frequencies (for usage with rfft, irfft).
|
||||
fftshift Shift zero-frequency component to center of spectrum.
|
||||
ifftshift Inverse of fftshift.
|
||||
|
||||
|
||||
Background information
|
||||
----------------------
|
||||
|
||||
Fourier analysis is fundamentally a method for expressing a function as a
|
||||
sum of periodic components, and for recovering the function from those
|
||||
components. When both the function and its Fourier transform are
|
||||
replaced with discretized counterparts, it is called the discrete Fourier
|
||||
transform (DFT). The DFT has become a mainstay of numerical computing in
|
||||
part because of a very fast algorithm for computing it, called the Fast
|
||||
Fourier Transform (FFT), which was known to Gauss (1805) and was brought
|
||||
to light in its current form by Cooley and Tukey [CT]_. Press et al. [NR]_
|
||||
provide an accessible introduction to Fourier analysis and its
|
||||
applications.
|
||||
|
||||
Because the discrete Fourier transform separates its input into
|
||||
components that contribute at discrete frequencies, it has a great number
|
||||
of applications in digital signal processing, e.g., for filtering, and in
|
||||
this context the discretized input to the transform is customarily
|
||||
referred to as a *signal*, which exists in the *time domain*. The output
|
||||
is called a *spectrum* or *transform* and exists in the *frequency
|
||||
domain*.
|
||||
|
||||
Implementation details
|
||||
----------------------
|
||||
|
||||
There are many ways to define the DFT, varying in the sign of the
|
||||
exponent, normalization, etc. In this implementation, the DFT is defined
|
||||
as
|
||||
|
||||
.. math::
|
||||
A_k = \\sum_{m=0}^{n-1} a_m \\exp\\left\\{-2\\pi i{mk \\over n}\\right\\}
|
||||
\\qquad k = 0,\\ldots,n-1.
|
||||
|
||||
The DFT is in general defined for complex inputs and outputs, and a
|
||||
single-frequency component at linear frequency :math:`f` is
|
||||
represented by a complex exponential
|
||||
:math:`a_m = \\exp\\{2\\pi i\\,f m\\Delta t\\}`, where :math:`\\Delta t`
|
||||
is the sampling interval.
|
||||
|
||||
The values in the result follow so-called "standard" order: If ``A =
|
||||
fft(a, n)``, then ``A[0]`` contains the zero-frequency term (the sum of
|
||||
the signal), which is always purely real for real inputs. Then ``A[1:n/2]``
|
||||
contains the positive-frequency terms, and ``A[n/2+1:]`` contains the
|
||||
negative-frequency terms, in order of decreasingly negative frequency.
|
||||
For an even number of input points, ``A[n/2]`` represents both positive and
|
||||
negative Nyquist frequency, and is also purely real for real input. For
|
||||
an odd number of input points, ``A[(n-1)/2]`` contains the largest positive
|
||||
frequency, while ``A[(n+1)/2]`` contains the largest negative frequency.
|
||||
The routine ``np.fft.fftfreq(n)`` returns an array giving the frequencies
|
||||
of corresponding elements in the output. The routine
|
||||
``np.fft.fftshift(A)`` shifts transforms and their frequencies to put the
|
||||
zero-frequency components in the middle, and ``np.fft.ifftshift(A)`` undoes
|
||||
that shift.
|
||||
|
||||
When the input `a` is a time-domain signal and ``A = fft(a)``, ``np.abs(A)``
|
||||
is its amplitude spectrum and ``np.abs(A)**2`` is its power spectrum.
|
||||
The phase spectrum is obtained by ``np.angle(A)``.
|
||||
|
||||
The inverse DFT is defined as
|
||||
|
||||
.. math::
|
||||
a_m = \\frac{1}{n}\\sum_{k=0}^{n-1}A_k\\exp\\left\\{2\\pi i{mk\\over n}\\right\\}
|
||||
\\qquad m = 0,\\ldots,n-1.
|
||||
|
||||
It differs from the forward transform by the sign of the exponential
|
||||
argument and the default normalization by :math:`1/n`.
|
||||
|
||||
Type Promotion
|
||||
--------------
|
||||
|
||||
`numpy.fft` promotes ``float32`` and ``complex64`` arrays to ``float64`` and
|
||||
``complex128`` arrays respectively. For an FFT implementation that does not
|
||||
promote input arrays, see `scipy.fftpack`.
|
||||
|
||||
Normalization
|
||||
-------------
|
||||
|
||||
The default normalization has the direct transforms unscaled and the inverse
|
||||
transforms are scaled by :math:`1/n`. It is possible to obtain unitary
|
||||
transforms by setting the keyword argument ``norm`` to ``"ortho"`` (default is
|
||||
`None`) so that both direct and inverse transforms will be scaled by
|
||||
:math:`1/\\sqrt{n}`.
|
||||
|
||||
Real and Hermitian transforms
|
||||
-----------------------------
|
||||
|
||||
When the input is purely real, its transform is Hermitian, i.e., the
|
||||
component at frequency :math:`f_k` is the complex conjugate of the
|
||||
component at frequency :math:`-f_k`, which means that for real
|
||||
inputs there is no information in the negative frequency components that
|
||||
is not already available from the positive frequency components.
|
||||
The family of `rfft` functions is
|
||||
designed to operate on real inputs, and exploits this symmetry by
|
||||
computing only the positive frequency components, up to and including the
|
||||
Nyquist frequency. Thus, ``n`` input points produce ``n/2+1`` complex
|
||||
output points. The inverses of this family assumes the same symmetry of
|
||||
its input, and for an output of ``n`` points uses ``n/2+1`` input points.
|
||||
|
||||
Correspondingly, when the spectrum is purely real, the signal is
|
||||
Hermitian. The `hfft` family of functions exploits this symmetry by
|
||||
using ``n/2+1`` complex points in the input (time) domain for ``n`` real
|
||||
points in the frequency domain.
|
||||
|
||||
In higher dimensions, FFTs are used, e.g., for image analysis and
|
||||
filtering. The computational efficiency of the FFT means that it can
|
||||
also be a faster way to compute large convolutions, using the property
|
||||
that a convolution in the time domain is equivalent to a point-by-point
|
||||
multiplication in the frequency domain.
|
||||
|
||||
Higher dimensions
|
||||
-----------------
|
||||
|
||||
In two dimensions, the DFT is defined as
|
||||
|
||||
.. math::
|
||||
A_{kl} = \\sum_{m=0}^{M-1} \\sum_{n=0}^{N-1}
|
||||
a_{mn}\\exp\\left\\{-2\\pi i \\left({mk\\over M}+{nl\\over N}\\right)\\right\\}
|
||||
\\qquad k = 0, \\ldots, M-1;\\quad l = 0, \\ldots, N-1,
|
||||
|
||||
which extends in the obvious way to higher dimensions, and the inverses
|
||||
in higher dimensions also extend in the same way.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
|
||||
machine calculation of complex Fourier series," *Math. Comput.*
|
||||
19: 297-301.
|
||||
|
||||
.. [NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P.,
|
||||
2007, *Numerical Recipes: The Art of Scientific Computing*, ch.
|
||||
12-13. Cambridge Univ. Press, Cambridge, UK.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
For examples, see the various functions.
|
||||
|
||||
"""
|
||||
|
||||
from ._pocketfft import *
|
||||
from .helper import *
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
1304
venv/Lib/site-packages/numpy/fft/_pocketfft.py
Normal file
1304
venv/Lib/site-packages/numpy/fft/_pocketfft.py
Normal file
File diff suppressed because it is too large
Load diff
Binary file not shown.
222
venv/Lib/site-packages/numpy/fft/helper.py
Normal file
222
venv/Lib/site-packages/numpy/fft/helper.py
Normal file
|
@ -0,0 +1,222 @@
|
|||
"""
|
||||
Discrete Fourier Transforms - helper.py
|
||||
|
||||
"""
|
||||
from numpy.compat import integer_types
|
||||
from numpy.core import integer, empty, arange, asarray, roll
|
||||
from numpy.core.overrides import array_function_dispatch, set_module
|
||||
|
||||
# Created by Pearu Peterson, September 2002
|
||||
|
||||
__all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq']
|
||||
|
||||
integer_types = integer_types + (integer,)
|
||||
|
||||
|
||||
def _fftshift_dispatcher(x, axes=None):
|
||||
return (x,)
|
||||
|
||||
|
||||
@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft')
|
||||
def fftshift(x, axes=None):
|
||||
"""
|
||||
Shift the zero-frequency component to the center of the spectrum.
|
||||
|
||||
This function swaps half-spaces for all axes listed (defaults to all).
|
||||
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
Input array.
|
||||
axes : int or shape tuple, optional
|
||||
Axes over which to shift. Default is None, which shifts all axes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : ndarray
|
||||
The shifted array.
|
||||
|
||||
See Also
|
||||
--------
|
||||
ifftshift : The inverse of `fftshift`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> freqs = np.fft.fftfreq(10, 0.1)
|
||||
>>> freqs
|
||||
array([ 0., 1., 2., ..., -3., -2., -1.])
|
||||
>>> np.fft.fftshift(freqs)
|
||||
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
|
||||
|
||||
Shift the zero-frequency component only along the second axis:
|
||||
|
||||
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
||||
>>> freqs
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
>>> np.fft.fftshift(freqs, axes=(1,))
|
||||
array([[ 2., 0., 1.],
|
||||
[-4., 3., 4.],
|
||||
[-1., -3., -2.]])
|
||||
|
||||
"""
|
||||
x = asarray(x)
|
||||
if axes is None:
|
||||
axes = tuple(range(x.ndim))
|
||||
shift = [dim // 2 for dim in x.shape]
|
||||
elif isinstance(axes, integer_types):
|
||||
shift = x.shape[axes] // 2
|
||||
else:
|
||||
shift = [x.shape[ax] // 2 for ax in axes]
|
||||
|
||||
return roll(x, shift, axes)
|
||||
|
||||
|
||||
@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft')
|
||||
def ifftshift(x, axes=None):
|
||||
"""
|
||||
The inverse of `fftshift`. Although identical for even-length `x`, the
|
||||
functions differ by one sample for odd-length `x`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
Input array.
|
||||
axes : int or shape tuple, optional
|
||||
Axes over which to calculate. Defaults to None, which shifts all axes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : ndarray
|
||||
The shifted array.
|
||||
|
||||
See Also
|
||||
--------
|
||||
fftshift : Shift zero-frequency component to the center of the spectrum.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
||||
>>> freqs
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
|
||||
"""
|
||||
x = asarray(x)
|
||||
if axes is None:
|
||||
axes = tuple(range(x.ndim))
|
||||
shift = [-(dim // 2) for dim in x.shape]
|
||||
elif isinstance(axes, integer_types):
|
||||
shift = -(x.shape[axes] // 2)
|
||||
else:
|
||||
shift = [-(x.shape[ax] // 2) for ax in axes]
|
||||
|
||||
return roll(x, shift, axes)
|
||||
|
||||
|
||||
@set_module('numpy.fft')
|
||||
def fftfreq(n, d=1.0):
|
||||
"""
|
||||
Return the Discrete Fourier Transform sample frequencies.
|
||||
|
||||
The returned float array `f` contains the frequency bin centers in cycles
|
||||
per unit of the sample spacing (with zero at the start). For instance, if
|
||||
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
||||
|
||||
Given a window length `n` and a sample spacing `d`::
|
||||
|
||||
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
|
||||
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Window length.
|
||||
d : scalar, optional
|
||||
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
f : ndarray
|
||||
Array of length `n` containing the sample frequencies.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
|
||||
>>> fourier = np.fft.fft(signal)
|
||||
>>> n = signal.size
|
||||
>>> timestep = 0.1
|
||||
>>> freq = np.fft.fftfreq(n, d=timestep)
|
||||
>>> freq
|
||||
array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])
|
||||
|
||||
"""
|
||||
if not isinstance(n, integer_types):
|
||||
raise ValueError("n should be an integer")
|
||||
val = 1.0 / (n * d)
|
||||
results = empty(n, int)
|
||||
N = (n-1)//2 + 1
|
||||
p1 = arange(0, N, dtype=int)
|
||||
results[:N] = p1
|
||||
p2 = arange(-(n//2), 0, dtype=int)
|
||||
results[N:] = p2
|
||||
return results * val
|
||||
|
||||
|
||||
@set_module('numpy.fft')
|
||||
def rfftfreq(n, d=1.0):
|
||||
"""
|
||||
Return the Discrete Fourier Transform sample frequencies
|
||||
(for usage with rfft, irfft).
|
||||
|
||||
The returned float array `f` contains the frequency bin centers in cycles
|
||||
per unit of the sample spacing (with zero at the start). For instance, if
|
||||
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
||||
|
||||
Given a window length `n` and a sample spacing `d`::
|
||||
|
||||
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
|
||||
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
|
||||
|
||||
Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
|
||||
the Nyquist frequency component is considered to be positive.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Window length.
|
||||
d : scalar, optional
|
||||
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
f : ndarray
|
||||
Array of length ``n//2 + 1`` containing the sample frequencies.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
|
||||
>>> fourier = np.fft.rfft(signal)
|
||||
>>> n = signal.size
|
||||
>>> sample_rate = 100
|
||||
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
|
||||
>>> freq
|
||||
array([ 0., 10., 20., ..., -30., -20., -10.])
|
||||
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
|
||||
>>> freq
|
||||
array([ 0., 10., 20., 30., 40., 50.])
|
||||
|
||||
"""
|
||||
if not isinstance(n, integer_types):
|
||||
raise ValueError("n should be an integer")
|
||||
val = 1.0/(n*d)
|
||||
N = n//2 + 1
|
||||
results = arange(0, N, dtype=int)
|
||||
return results * val
|
21
venv/Lib/site-packages/numpy/fft/setup.py
Normal file
21
venv/Lib/site-packages/numpy/fft/setup.py
Normal file
|
@ -0,0 +1,21 @@
|
|||
import sys
|
||||
|
||||
def configuration(parent_package='',top_path=None):
|
||||
from numpy.distutils.misc_util import Configuration
|
||||
config = Configuration('fft', parent_package, top_path)
|
||||
|
||||
config.add_subpackage('tests')
|
||||
|
||||
# AIX needs to be told to use large file support - at all times
|
||||
defs = [('_LARGE_FILES', None)] if sys.platform[:3] == "aix" else []
|
||||
# Configure pocketfft_internal
|
||||
config.add_extension('_pocketfft_internal',
|
||||
sources=['_pocketfft.c'],
|
||||
define_macros=defs,
|
||||
)
|
||||
|
||||
return config
|
||||
|
||||
if __name__ == '__main__':
|
||||
from numpy.distutils.core import setup
|
||||
setup(configuration=configuration)
|
0
venv/Lib/site-packages/numpy/fft/tests/__init__.py
Normal file
0
venv/Lib/site-packages/numpy/fft/tests/__init__.py
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
168
venv/Lib/site-packages/numpy/fft/tests/test_helper.py
Normal file
168
venv/Lib/site-packages/numpy/fft/tests/test_helper.py
Normal file
|
@ -0,0 +1,168 @@
|
|||
"""Test functions for fftpack.helper module
|
||||
|
||||
Copied from fftpack.helper by Pearu Peterson, October 2005
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_almost_equal
|
||||
from numpy import fft, pi
|
||||
|
||||
|
||||
class TestFFTShift:
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
|
||||
y = [-4, -3, -2, -1, 0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(fft.fftshift(x), y)
|
||||
assert_array_almost_equal(fft.ifftshift(y), x)
|
||||
x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
|
||||
y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(fft.fftshift(x), y)
|
||||
assert_array_almost_equal(fft.ifftshift(y), x)
|
||||
|
||||
def test_inverse(self):
|
||||
for n in [1, 4, 9, 100, 211]:
|
||||
x = np.random.random((n,))
|
||||
assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x)
|
||||
|
||||
def test_axes_keyword(self):
|
||||
freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]]
|
||||
shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted)
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=0),
|
||||
fft.fftshift(freqs, axes=(0,)))
|
||||
assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs)
|
||||
assert_array_almost_equal(fft.ifftshift(shifted, axes=0),
|
||||
fft.ifftshift(shifted, axes=(0,)))
|
||||
|
||||
assert_array_almost_equal(fft.fftshift(freqs), shifted)
|
||||
assert_array_almost_equal(fft.ifftshift(shifted), freqs)
|
||||
|
||||
def test_uneven_dims(self):
|
||||
""" Test 2D input, which has uneven dimension sizes """
|
||||
freqs = [
|
||||
[0, 1],
|
||||
[2, 3],
|
||||
[4, 5]
|
||||
]
|
||||
|
||||
# shift in dimension 0
|
||||
shift_dim0 = [
|
||||
[4, 5],
|
||||
[0, 1],
|
||||
[2, 3]
|
||||
]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs)
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs)
|
||||
|
||||
# shift in dimension 1
|
||||
shift_dim1 = [
|
||||
[1, 0],
|
||||
[3, 2],
|
||||
[5, 4]
|
||||
]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs)
|
||||
|
||||
# shift in both dimensions
|
||||
shift_dim_both = [
|
||||
[5, 4],
|
||||
[1, 0],
|
||||
[3, 2]
|
||||
]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs)
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs)
|
||||
|
||||
# axes=None (default) shift in all dimensions
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs)
|
||||
assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs)
|
||||
|
||||
def test_equal_to_original(self):
|
||||
""" Test that the new (>=v1.15) implementation (see #10073) is equal to the original (<=v1.14) """
|
||||
from numpy.compat import integer_types
|
||||
from numpy.core import asarray, concatenate, arange, take
|
||||
|
||||
def original_fftshift(x, axes=None):
|
||||
""" How fftshift was implemented in v1.14"""
|
||||
tmp = asarray(x)
|
||||
ndim = tmp.ndim
|
||||
if axes is None:
|
||||
axes = list(range(ndim))
|
||||
elif isinstance(axes, integer_types):
|
||||
axes = (axes,)
|
||||
y = tmp
|
||||
for k in axes:
|
||||
n = tmp.shape[k]
|
||||
p2 = (n + 1) // 2
|
||||
mylist = concatenate((arange(p2, n), arange(p2)))
|
||||
y = take(y, mylist, k)
|
||||
return y
|
||||
|
||||
def original_ifftshift(x, axes=None):
|
||||
""" How ifftshift was implemented in v1.14 """
|
||||
tmp = asarray(x)
|
||||
ndim = tmp.ndim
|
||||
if axes is None:
|
||||
axes = list(range(ndim))
|
||||
elif isinstance(axes, integer_types):
|
||||
axes = (axes,)
|
||||
y = tmp
|
||||
for k in axes:
|
||||
n = tmp.shape[k]
|
||||
p2 = n - (n + 1) // 2
|
||||
mylist = concatenate((arange(p2, n), arange(p2)))
|
||||
y = take(y, mylist, k)
|
||||
return y
|
||||
|
||||
# create possible 2d array combinations and try all possible keywords
|
||||
# compare output to original functions
|
||||
for i in range(16):
|
||||
for j in range(16):
|
||||
for axes_keyword in [0, 1, None, (0,), (0, 1)]:
|
||||
inp = np.random.rand(i, j)
|
||||
|
||||
assert_array_almost_equal(fft.fftshift(inp, axes_keyword),
|
||||
original_fftshift(inp, axes_keyword))
|
||||
|
||||
assert_array_almost_equal(fft.ifftshift(inp, axes_keyword),
|
||||
original_ifftshift(inp, axes_keyword))
|
||||
|
||||
|
||||
class TestFFTFreq:
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
|
||||
assert_array_almost_equal(9*fft.fftfreq(9), x)
|
||||
assert_array_almost_equal(9*pi*fft.fftfreq(9, pi), x)
|
||||
x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
|
||||
assert_array_almost_equal(10*fft.fftfreq(10), x)
|
||||
assert_array_almost_equal(10*pi*fft.fftfreq(10, pi), x)
|
||||
|
||||
|
||||
class TestRFFTFreq:
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(9*fft.rfftfreq(9), x)
|
||||
assert_array_almost_equal(9*pi*fft.rfftfreq(9, pi), x)
|
||||
x = [0, 1, 2, 3, 4, 5]
|
||||
assert_array_almost_equal(10*fft.rfftfreq(10), x)
|
||||
assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x)
|
||||
|
||||
|
||||
class TestIRFFTN:
|
||||
|
||||
def test_not_last_axis_success(self):
|
||||
ar, ai = np.random.random((2, 16, 8, 32))
|
||||
a = ar + 1j*ai
|
||||
|
||||
axes = (-2,)
|
||||
|
||||
# Should not raise error
|
||||
fft.irfftn(a, axes=axes)
|
255
venv/Lib/site-packages/numpy/fft/tests/test_pocketfft.py
Normal file
255
venv/Lib/site-packages/numpy/fft/tests/test_pocketfft.py
Normal file
|
@ -0,0 +1,255 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
from numpy.random import random
|
||||
from numpy.testing import (
|
||||
assert_array_equal, assert_raises, assert_allclose
|
||||
)
|
||||
import threading
|
||||
import queue
|
||||
|
||||
|
||||
def fft1(x):
|
||||
L = len(x)
|
||||
phase = -2j*np.pi*(np.arange(L)/float(L))
|
||||
phase = np.arange(L).reshape(-1, 1) * phase
|
||||
return np.sum(x*np.exp(phase), axis=1)
|
||||
|
||||
|
||||
class TestFFTShift:
|
||||
|
||||
def test_fft_n(self):
|
||||
assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)
|
||||
|
||||
|
||||
class TestFFT1D:
|
||||
|
||||
def test_identity(self):
|
||||
maxlen = 512
|
||||
x = random(maxlen) + 1j*random(maxlen)
|
||||
xr = random(maxlen)
|
||||
for i in range(1,maxlen):
|
||||
assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
|
||||
atol=1e-12)
|
||||
assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]),i),
|
||||
xr[0:i], atol=1e-12)
|
||||
|
||||
def test_fft(self):
|
||||
x = random(30) + 1j*random(30)
|
||||
assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
|
||||
assert_allclose(fft1(x) / np.sqrt(30),
|
||||
np.fft.fft(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
@pytest.mark.parametrize('norm', (None, 'ortho'))
|
||||
def test_ifft(self, norm):
|
||||
x = random(30) + 1j*random(30)
|
||||
assert_allclose(
|
||||
x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
|
||||
atol=1e-6)
|
||||
# Ensure we get the correct error message
|
||||
with pytest.raises(ValueError,
|
||||
match='Invalid number of FFT data points'):
|
||||
np.fft.ifft([], norm=norm)
|
||||
|
||||
def test_fft2(self):
|
||||
x = random((30, 20)) + 1j*random((30, 20))
|
||||
assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
|
||||
np.fft.fft2(x), atol=1e-6)
|
||||
assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
|
||||
np.fft.fft2(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_ifft2(self):
|
||||
x = random((30, 20)) + 1j*random((30, 20))
|
||||
assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
|
||||
np.fft.ifft2(x), atol=1e-6)
|
||||
assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
|
||||
np.fft.ifft2(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_fftn(self):
|
||||
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
|
||||
assert_allclose(
|
||||
np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
|
||||
np.fft.fftn(x), atol=1e-6)
|
||||
assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
|
||||
np.fft.fftn(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_ifftn(self):
|
||||
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
|
||||
assert_allclose(
|
||||
np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
|
||||
np.fft.ifftn(x), atol=1e-6)
|
||||
assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
|
||||
np.fft.ifftn(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_rfft(self):
|
||||
x = random(30)
|
||||
for n in [x.size, 2*x.size]:
|
||||
for norm in [None, 'ortho']:
|
||||
assert_allclose(
|
||||
np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
|
||||
np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
|
||||
assert_allclose(
|
||||
np.fft.rfft(x, n=n) / np.sqrt(n),
|
||||
np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_irfft(self):
|
||||
x = random(30)
|
||||
assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
|
||||
assert_allclose(
|
||||
x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_rfft2(self):
|
||||
x = random((30, 20))
|
||||
assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
|
||||
assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
|
||||
np.fft.rfft2(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_irfft2(self):
|
||||
x = random((30, 20))
|
||||
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
|
||||
assert_allclose(
|
||||
x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_rfftn(self):
|
||||
x = random((30, 20, 10))
|
||||
assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
|
||||
assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
|
||||
np.fft.rfftn(x, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_irfftn(self):
|
||||
x = random((30, 20, 10))
|
||||
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
|
||||
assert_allclose(
|
||||
x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_hfft(self):
|
||||
x = random(14) + 1j*random(14)
|
||||
x_herm = np.concatenate((random(1), x, random(1)))
|
||||
x = np.concatenate((x_herm, x[::-1].conj()))
|
||||
assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
|
||||
assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
|
||||
np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)
|
||||
|
||||
def test_ihttf(self):
|
||||
x = random(14) + 1j*random(14)
|
||||
x_herm = np.concatenate((random(1), x, random(1)))
|
||||
x = np.concatenate((x_herm, x[::-1].conj()))
|
||||
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
|
||||
assert_allclose(
|
||||
x_herm, np.fft.ihfft(np.fft.hfft(x_herm, norm="ortho"),
|
||||
norm="ortho"), atol=1e-6)
|
||||
|
||||
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
|
||||
np.fft.rfftn, np.fft.irfftn])
|
||||
def test_axes(self, op):
|
||||
x = random((30, 20, 10))
|
||||
axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
|
||||
for a in axes:
|
||||
op_tr = op(np.transpose(x, a))
|
||||
tr_op = np.transpose(op(x, axes=a), a)
|
||||
assert_allclose(op_tr, tr_op, atol=1e-6)
|
||||
|
||||
def test_all_1d_norm_preserving(self):
|
||||
# verify that round-trip transforms are norm-preserving
|
||||
x = random(30)
|
||||
x_norm = np.linalg.norm(x)
|
||||
n = x.size * 2
|
||||
func_pairs = [(np.fft.fft, np.fft.ifft),
|
||||
(np.fft.rfft, np.fft.irfft),
|
||||
# hfft: order so the first function takes x.size samples
|
||||
# (necessary for comparison to x_norm above)
|
||||
(np.fft.ihfft, np.fft.hfft),
|
||||
]
|
||||
for forw, back in func_pairs:
|
||||
for n in [x.size, 2*x.size]:
|
||||
for norm in [None, 'ortho']:
|
||||
tmp = forw(x, n=n, norm=norm)
|
||||
tmp = back(tmp, n=n, norm=norm)
|
||||
assert_allclose(x_norm,
|
||||
np.linalg.norm(tmp), atol=1e-6)
|
||||
|
||||
@pytest.mark.parametrize("dtype", [np.half, np.single, np.double,
|
||||
np.longdouble])
|
||||
def test_dtypes(self, dtype):
|
||||
# make sure that all input precisions are accepted and internally
|
||||
# converted to 64bit
|
||||
x = random(30).astype(dtype)
|
||||
assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6)
|
||||
assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype",
|
||||
[np.float32, np.float64, np.complex64, np.complex128])
|
||||
@pytest.mark.parametrize("order", ["F", 'non-contiguous'])
|
||||
@pytest.mark.parametrize(
|
||||
"fft",
|
||||
[np.fft.fft, np.fft.fft2, np.fft.fftn,
|
||||
np.fft.ifft, np.fft.ifft2, np.fft.ifftn])
|
||||
def test_fft_with_order(dtype, order, fft):
|
||||
# Check that FFT/IFFT produces identical results for C, Fortran and
|
||||
# non contiguous arrays
|
||||
rng = np.random.RandomState(42)
|
||||
X = rng.rand(8, 7, 13).astype(dtype, copy=False)
|
||||
# See discussion in pull/14178
|
||||
_tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
|
||||
if order == 'F':
|
||||
Y = np.asfortranarray(X)
|
||||
else:
|
||||
# Make a non contiguous array
|
||||
Y = X[::-1]
|
||||
X = np.ascontiguousarray(X[::-1])
|
||||
|
||||
if fft.__name__.endswith('fft'):
|
||||
for axis in range(3):
|
||||
X_res = fft(X, axis=axis)
|
||||
Y_res = fft(Y, axis=axis)
|
||||
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
|
||||
elif fft.__name__.endswith(('fft2', 'fftn')):
|
||||
axes = [(0, 1), (1, 2), (0, 2)]
|
||||
if fft.__name__.endswith('fftn'):
|
||||
axes.extend([(0,), (1,), (2,), None])
|
||||
for ax in axes:
|
||||
X_res = fft(X, axes=ax)
|
||||
Y_res = fft(Y, axes=ax)
|
||||
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
|
||||
class TestFFTThreadSafe:
|
||||
threads = 16
|
||||
input_shape = (800, 200)
|
||||
|
||||
def _test_mtsame(self, func, *args):
|
||||
def worker(args, q):
|
||||
q.put(func(*args))
|
||||
|
||||
q = queue.Queue()
|
||||
expected = func(*args)
|
||||
|
||||
# Spin off a bunch of threads to call the same function simultaneously
|
||||
t = [threading.Thread(target=worker, args=(args, q))
|
||||
for i in range(self.threads)]
|
||||
[x.start() for x in t]
|
||||
|
||||
[x.join() for x in t]
|
||||
# Make sure all threads returned the correct value
|
||||
for i in range(self.threads):
|
||||
assert_array_equal(q.get(timeout=5), expected,
|
||||
'Function returned wrong value in multithreaded context')
|
||||
|
||||
def test_fft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.fft, a)
|
||||
|
||||
def test_ifft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.ifft, a)
|
||||
|
||||
def test_rfft(self):
|
||||
a = np.ones(self.input_shape)
|
||||
self._test_mtsame(np.fft.rfft, a)
|
||||
|
||||
def test_irfft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.irfft, a)
|
Loading…
Add table
Add a link
Reference in a new issue