Created starter files for the project.
This commit is contained in:
commit
73f0c0db42
1992 changed files with 769897 additions and 0 deletions
271
venv/Lib/site-packages/numpy/doc/dispatch.py
Normal file
271
venv/Lib/site-packages/numpy/doc/dispatch.py
Normal file
|
@ -0,0 +1,271 @@
|
|||
""".. _dispatch_mechanism:
|
||||
|
||||
Numpy's dispatch mechanism, introduced in numpy version v1.16 is the
|
||||
recommended approach for writing custom N-dimensional array containers that are
|
||||
compatible with the numpy API and provide custom implementations of numpy
|
||||
functionality. Applications include `dask <http://dask.pydata.org>`_ arrays, an
|
||||
N-dimensional array distributed across multiple nodes, and `cupy
|
||||
<https://docs-cupy.chainer.org/en/stable/>`_ arrays, an N-dimensional array on
|
||||
a GPU.
|
||||
|
||||
To get a feel for writing custom array containers, we'll begin with a simple
|
||||
example that has rather narrow utility but illustrates the concepts involved.
|
||||
|
||||
>>> import numpy as np
|
||||
>>> class DiagonalArray:
|
||||
... def __init__(self, N, value):
|
||||
... self._N = N
|
||||
... self._i = value
|
||||
... def __repr__(self):
|
||||
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
|
||||
... def __array__(self):
|
||||
... return self._i * np.eye(self._N)
|
||||
...
|
||||
|
||||
Our custom array can be instantiated like:
|
||||
|
||||
>>> arr = DiagonalArray(5, 1)
|
||||
>>> arr
|
||||
DiagonalArray(N=5, value=1)
|
||||
|
||||
We can convert to a numpy array using :func:`numpy.array` or
|
||||
:func:`numpy.asarray`, which will call its ``__array__`` method to obtain a
|
||||
standard ``numpy.ndarray``.
|
||||
|
||||
>>> np.asarray(arr)
|
||||
array([[1., 0., 0., 0., 0.],
|
||||
[0., 1., 0., 0., 0.],
|
||||
[0., 0., 1., 0., 0.],
|
||||
[0., 0., 0., 1., 0.],
|
||||
[0., 0., 0., 0., 1.]])
|
||||
|
||||
If we operate on ``arr`` with a numpy function, numpy will again use the
|
||||
``__array__`` interface to convert it to an array and then apply the function
|
||||
in the usual way.
|
||||
|
||||
>>> np.multiply(arr, 2)
|
||||
array([[2., 0., 0., 0., 0.],
|
||||
[0., 2., 0., 0., 0.],
|
||||
[0., 0., 2., 0., 0.],
|
||||
[0., 0., 0., 2., 0.],
|
||||
[0., 0., 0., 0., 2.]])
|
||||
|
||||
|
||||
Notice that the return type is a standard ``numpy.ndarray``.
|
||||
|
||||
>>> type(arr)
|
||||
numpy.ndarray
|
||||
|
||||
How can we pass our custom array type through this function? Numpy allows a
|
||||
class to indicate that it would like to handle computations in a custom-defined
|
||||
way through the interfaces ``__array_ufunc__`` and ``__array_function__``. Let's
|
||||
take one at a time, starting with ``_array_ufunc__``. This method covers
|
||||
:ref:`ufuncs`, a class of functions that includes, for example,
|
||||
:func:`numpy.multiply` and :func:`numpy.sin`.
|
||||
|
||||
The ``__array_ufunc__`` receives:
|
||||
|
||||
- ``ufunc``, a function like ``numpy.multiply``
|
||||
- ``method``, a string, differentiating between ``numpy.multiply(...)`` and
|
||||
variants like ``numpy.multiply.outer``, ``numpy.multiply.accumulate``, and so
|
||||
on. For the common case, ``numpy.multiply(...)``, ``method == '__call__'``.
|
||||
- ``inputs``, which could be a mixture of different types
|
||||
- ``kwargs``, keyword arguments passed to the function
|
||||
|
||||
For this example we will only handle the method ``__call__``.
|
||||
|
||||
>>> from numbers import Number
|
||||
>>> class DiagonalArray:
|
||||
... def __init__(self, N, value):
|
||||
... self._N = N
|
||||
... self._i = value
|
||||
... def __repr__(self):
|
||||
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
|
||||
... def __array__(self):
|
||||
... return self._i * np.eye(self._N)
|
||||
... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
||||
... if method == '__call__':
|
||||
... N = None
|
||||
... scalars = []
|
||||
... for input in inputs:
|
||||
... if isinstance(input, Number):
|
||||
... scalars.append(input)
|
||||
... elif isinstance(input, self.__class__):
|
||||
... scalars.append(input._i)
|
||||
... if N is not None:
|
||||
... if N != self._N:
|
||||
... raise TypeError("inconsistent sizes")
|
||||
... else:
|
||||
... N = self._N
|
||||
... else:
|
||||
... return NotImplemented
|
||||
... return self.__class__(N, ufunc(*scalars, **kwargs))
|
||||
... else:
|
||||
... return NotImplemented
|
||||
...
|
||||
|
||||
Now our custom array type passes through numpy functions.
|
||||
|
||||
>>> arr = DiagonalArray(5, 1)
|
||||
>>> np.multiply(arr, 3)
|
||||
DiagonalArray(N=5, value=3)
|
||||
>>> np.add(arr, 3)
|
||||
DiagonalArray(N=5, value=4)
|
||||
>>> np.sin(arr)
|
||||
DiagonalArray(N=5, value=0.8414709848078965)
|
||||
|
||||
At this point ``arr + 3`` does not work.
|
||||
|
||||
>>> arr + 3
|
||||
TypeError: unsupported operand type(s) for *: 'DiagonalArray' and 'int'
|
||||
|
||||
To support it, we need to define the Python interfaces ``__add__``, ``__lt__``,
|
||||
and so on to dispatch to the corresponding ufunc. We can achieve this
|
||||
conveniently by inheriting from the mixin
|
||||
:class:`~numpy.lib.mixins.NDArrayOperatorsMixin`.
|
||||
|
||||
>>> import numpy.lib.mixins
|
||||
>>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin):
|
||||
... def __init__(self, N, value):
|
||||
... self._N = N
|
||||
... self._i = value
|
||||
... def __repr__(self):
|
||||
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
|
||||
... def __array__(self):
|
||||
... return self._i * np.eye(self._N)
|
||||
... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
||||
... if method == '__call__':
|
||||
... N = None
|
||||
... scalars = []
|
||||
... for input in inputs:
|
||||
... if isinstance(input, Number):
|
||||
... scalars.append(input)
|
||||
... elif isinstance(input, self.__class__):
|
||||
... scalars.append(input._i)
|
||||
... if N is not None:
|
||||
... if N != self._N:
|
||||
... raise TypeError("inconsistent sizes")
|
||||
... else:
|
||||
... N = self._N
|
||||
... else:
|
||||
... return NotImplemented
|
||||
... return self.__class__(N, ufunc(*scalars, **kwargs))
|
||||
... else:
|
||||
... return NotImplemented
|
||||
...
|
||||
|
||||
>>> arr = DiagonalArray(5, 1)
|
||||
>>> arr + 3
|
||||
DiagonalArray(N=5, value=4)
|
||||
>>> arr > 0
|
||||
DiagonalArray(N=5, value=True)
|
||||
|
||||
Now let's tackle ``__array_function__``. We'll create dict that maps numpy
|
||||
functions to our custom variants.
|
||||
|
||||
>>> HANDLED_FUNCTIONS = {}
|
||||
>>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin):
|
||||
... def __init__(self, N, value):
|
||||
... self._N = N
|
||||
... self._i = value
|
||||
... def __repr__(self):
|
||||
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
|
||||
... def __array__(self):
|
||||
... return self._i * np.eye(self._N)
|
||||
... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
||||
... if method == '__call__':
|
||||
... N = None
|
||||
... scalars = []
|
||||
... for input in inputs:
|
||||
... # In this case we accept only scalar numbers or DiagonalArrays.
|
||||
... if isinstance(input, Number):
|
||||
... scalars.append(input)
|
||||
... elif isinstance(input, self.__class__):
|
||||
... scalars.append(input._i)
|
||||
... if N is not None:
|
||||
... if N != self._N:
|
||||
... raise TypeError("inconsistent sizes")
|
||||
... else:
|
||||
... N = self._N
|
||||
... else:
|
||||
... return NotImplemented
|
||||
... return self.__class__(N, ufunc(*scalars, **kwargs))
|
||||
... else:
|
||||
... return NotImplemented
|
||||
... def __array_function__(self, func, types, args, kwargs):
|
||||
... if func not in HANDLED_FUNCTIONS:
|
||||
... return NotImplemented
|
||||
... # Note: this allows subclasses that don't override
|
||||
... # __array_function__ to handle DiagonalArray objects.
|
||||
... if not all(issubclass(t, self.__class__) for t in types):
|
||||
... return NotImplemented
|
||||
... return HANDLED_FUNCTIONS[func](*args, **kwargs)
|
||||
...
|
||||
|
||||
A convenient pattern is to define a decorator ``implements`` that can be used
|
||||
to add functions to ``HANDLED_FUNCTIONS``.
|
||||
|
||||
>>> def implements(np_function):
|
||||
... "Register an __array_function__ implementation for DiagonalArray objects."
|
||||
... def decorator(func):
|
||||
... HANDLED_FUNCTIONS[np_function] = func
|
||||
... return func
|
||||
... return decorator
|
||||
...
|
||||
|
||||
Now we write implementations of numpy functions for ``DiagonalArray``.
|
||||
For completeness, to support the usage ``arr.sum()`` add a method ``sum`` that
|
||||
calls ``numpy.sum(self)``, and the same for ``mean``.
|
||||
|
||||
>>> @implements(np.sum)
|
||||
... def sum(arr):
|
||||
... "Implementation of np.sum for DiagonalArray objects"
|
||||
... return arr._i * arr._N
|
||||
...
|
||||
>>> @implements(np.mean)
|
||||
... def mean(arr):
|
||||
... "Implementation of np.mean for DiagonalArray objects"
|
||||
... return arr._i / arr._N
|
||||
...
|
||||
>>> arr = DiagonalArray(5, 1)
|
||||
>>> np.sum(arr)
|
||||
5
|
||||
>>> np.mean(arr)
|
||||
0.2
|
||||
|
||||
If the user tries to use any numpy functions not included in
|
||||
``HANDLED_FUNCTIONS``, a ``TypeError`` will be raised by numpy, indicating that
|
||||
this operation is not supported. For example, concatenating two
|
||||
``DiagonalArrays`` does not produce another diagonal array, so it is not
|
||||
supported.
|
||||
|
||||
>>> np.concatenate([arr, arr])
|
||||
TypeError: no implementation found for 'numpy.concatenate' on types that implement __array_function__: [<class '__main__.DiagonalArray'>]
|
||||
|
||||
Additionally, our implementations of ``sum`` and ``mean`` do not accept the
|
||||
optional arguments that numpy's implementation does.
|
||||
|
||||
>>> np.sum(arr, axis=0)
|
||||
TypeError: sum() got an unexpected keyword argument 'axis'
|
||||
|
||||
The user always has the option of converting to a normal ``numpy.ndarray`` with
|
||||
:func:`numpy.asarray` and using standard numpy from there.
|
||||
|
||||
>>> np.concatenate([np.asarray(arr), np.asarray(arr)])
|
||||
array([[1., 0., 0., 0., 0.],
|
||||
[0., 1., 0., 0., 0.],
|
||||
[0., 0., 1., 0., 0.],
|
||||
[0., 0., 0., 1., 0.],
|
||||
[0., 0., 0., 0., 1.],
|
||||
[1., 0., 0., 0., 0.],
|
||||
[0., 1., 0., 0., 0.],
|
||||
[0., 0., 1., 0., 0.],
|
||||
[0., 0., 0., 1., 0.],
|
||||
[0., 0., 0., 0., 1.]])
|
||||
|
||||
Refer to the `dask source code <https://github.com/dask/dask>`_ and
|
||||
`cupy source code <https://github.com/cupy/cupy>`_ for more fully-worked
|
||||
examples of custom array containers.
|
||||
|
||||
See also `NEP 18 <http://www.numpy.org/neps/nep-0018-array-function-protocol.html>`_.
|
||||
"""
|
Loading…
Add table
Add a link
Reference in a new issue