Integrate face registration and enrollment

This commit is contained in:
Feier Zhang 2021-01-19 17:08:55 -05:00
parent 2d1ee72eb7
commit 4d0d442ab6
5 changed files with 54 additions and 51 deletions

View file

@ -9,69 +9,70 @@ try:
except ImportError:
import _pickle as cPickle # Python3.
pwd = sys.path[0]
PREDICTOR_PATH = pwd + '/Facial_models/shape_predictor_68_face_landmarks.dat'
FACE_RECOGNITION_MODEL_PATH = pwd + '/Facial_models/dlib_face_recognition_resnet_model_v1.dat'
def enroll_face_dataset():
pwd = sys.path[0]
PREDICTOR_PATH = pwd + '/Facial_models/shape_predictor_68_face_landmarks.dat'
FACE_RECOGNITION_MODEL_PATH = pwd + '/Facial_models/dlib_face_recognition_resnet_model_v1.dat'
faceDetector = dlib.get_frontal_face_detector()
shapePredictor = dlib.shape_predictor(PREDICTOR_PATH)
faceRecognizer = dlib.face_recognition_model_v1(FACE_RECOGNITION_MODEL_PATH)
faceDetector = dlib.get_frontal_face_detector()
shapePredictor = dlib.shape_predictor(PREDICTOR_PATH)
faceRecognizer = dlib.face_recognition_model_v1(FACE_RECOGNITION_MODEL_PATH)
faceDatasetFolder = pwd + '/Facial_images/face_rec/train/'
faceDatasetFolder = pwd + '/Facial_images/face_rec/train/'
subfolders = []
for x in os.listdir(faceDatasetFolder):
xpath = os.path.join(faceDatasetFolder, x)
if os.path.isdir(xpath):
subfolders.append(xpath)
subfolders = []
for x in os.listdir(faceDatasetFolder):
xpath = os.path.join(faceDatasetFolder, x)
if os.path.isdir(xpath):
subfolders.append(xpath)
nameLabelMap = {}
labels = []
imagePaths = []
for i, subfolder in enumerate(subfolders):
for x in os.listdir(subfolder):
xpath = os.path.join(subfolder, x)
if x.endswith('jpg'):
imagePaths.append(xpath)
labels.append(i)
nameLabelMap[xpath] = subfolder.split('/')[-1]
nameLabelMap = {}
labels = []
imagePaths = []
for i, subfolder in enumerate(subfolders):
for x in os.listdir(subfolder):
xpath = os.path.join(subfolder, x)
if x.endswith('jpg'):
imagePaths.append(xpath)
labels.append(i)
nameLabelMap[xpath] = subfolder.split('/')[-1]
index = {}
i = 0
faceDescriptors = None
for imagePath in imagePaths:
print("processing: {}".format(imagePath))
img = cv2.imread(imagePath)
index = {}
i = 0
faceDescriptors = None
for imagePath in imagePaths:
print("processing: {}".format(imagePath))
img = cv2.imread(imagePath)
faces = faceDetector(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
faces = faceDetector(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
print("{} Face(s) found".format(len(faces)))
print("{} Face(s) found".format(len(faces)))
for k, face in enumerate(faces):
for k, face in enumerate(faces):
shape = shapePredictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), face)
shape = shapePredictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), face)
landmarks = [(p.x, p.y) for p in shape.parts()]
landmarks = [(p.x, p.y) for p in shape.parts()]
faceDescriptor = faceRecognizer.compute_face_descriptor(img, shape)
faceDescriptor = faceRecognizer.compute_face_descriptor(img, shape)
faceDescriptorList = [x for x in faceDescriptor]
faceDescriptorNdarray = np.asarray(faceDescriptorList, dtype=np.float64)
faceDescriptorNdarray = faceDescriptorNdarray[np.newaxis, :]
faceDescriptorList = [x for x in faceDescriptor]
faceDescriptorNdarray = np.asarray(faceDescriptorList, dtype=np.float64)
faceDescriptorNdarray = faceDescriptorNdarray[np.newaxis, :]
if faceDescriptors is None:
faceDescriptors = faceDescriptorNdarray
else:
faceDescriptors = np.concatenate((faceDescriptors, faceDescriptorNdarray), axis=0)
if faceDescriptors is None:
faceDescriptors = faceDescriptorNdarray
else:
faceDescriptors = np.concatenate((faceDescriptors, faceDescriptorNdarray), axis=0)
index[i] = nameLabelMap[imagePath]
i += 1
index[i] = nameLabelMap[imagePath]
i += 1
# Write descriors and index to disk
np.save(pwd+'/Facial_models/descriptors.npy', faceDescriptors)
with open(pwd+'/Facial_models/index.pkl', 'wb') as f:
cPickle.dump(index, f)
# Write descriors and index to disk
np.save(pwd+'/Facial_models/descriptors.npy', faceDescriptors)
with open(pwd+'/Facial_models/index.pkl', 'wb') as f:
cPickle.dump(index, f)

View file

@ -2,10 +2,11 @@ import sys
import os
import math
import cv2
import Facial_Recognition_Enrollment
def register_your_face(label):
num_cap = 60
num_cap = 50
path = sys.path[0] + '/Facial_images/face_rec/train/' + label
@ -14,7 +15,7 @@ def register_your_face(label):
if not folder:
os.makedirs(path)
cap = cv2.VideoCapture(0)
cap = cv2.VideoCapture(1)
c = 0
while c < num_cap:
ret, frame = cap.read()
@ -31,5 +32,6 @@ def register_your_face(label):
if __name__ == "__main__":
label = input('Enter a label:')
label = input('Enter a label: ')
register_your_face(label)
Facial_Recognition_Enrollment.enroll_face_dataset()

Binary file not shown.

Binary file not shown.