Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
55
venv/Lib/site-packages/skimage/util/tests/test_map_array.py
Normal file
55
venv/Lib/site-packages/skimage/util/tests/test_map_array.py
Normal file
|
@ -0,0 +1,55 @@
|
|||
import numpy as np
|
||||
from skimage.util._map_array import map_array, ArrayMap
|
||||
|
||||
from skimage._shared import testing
|
||||
from skimage._shared.testing import assert_array_equal
|
||||
import pytest
|
||||
|
||||
|
||||
def test_map_array_incorrect_output_shape():
|
||||
labels = np.random.randint(0, 5, size=(24, 25))
|
||||
out = np.empty((24, 24))
|
||||
in_values = np.unique(labels)
|
||||
out_values = np.random.random(in_values.shape).astype(out.dtype)
|
||||
with testing.raises(ValueError):
|
||||
map_array(labels, in_values, out_values, out=out)
|
||||
|
||||
|
||||
def test_map_array_non_contiguous_output_array():
|
||||
labels = np.random.randint(0, 5, size=(24, 25))
|
||||
out = np.empty((24 * 3, 25 * 2))[::3, ::2]
|
||||
in_values = np.unique(labels)
|
||||
out_values = np.random.random(in_values.shape).astype(out.dtype)
|
||||
with testing.raises(ValueError):
|
||||
map_array(labels, in_values, out_values, out=out)
|
||||
|
||||
|
||||
def test_arraymap_long_str():
|
||||
labels = np.random.randint(0, 40, size=(24, 25))
|
||||
in_values = np.unique(labels)
|
||||
out_values = np.random.random(in_values.shape)
|
||||
m = ArrayMap(in_values, out_values)
|
||||
assert len(str(m).split('\n')) == m._max_str_lines + 2
|
||||
|
||||
|
||||
def test_arraymap_update():
|
||||
in_values = np.unique(np.random.randint(0, 200, size=5))
|
||||
out_values = np.random.random(len(in_values))
|
||||
m = ArrayMap(in_values, out_values)
|
||||
image = np.random.randint(1, len(m), size=(512, 512))
|
||||
assert np.all(m[image] < 1) # missing values map to 0.
|
||||
m[1:] += 1
|
||||
assert np.all(m[image] >= 1)
|
||||
|
||||
|
||||
def test_arraymap_bool_index():
|
||||
in_values = np.unique(np.random.randint(0, 200, size=5))
|
||||
out_values = np.random.random(len(in_values))
|
||||
m = ArrayMap(in_values, out_values)
|
||||
image = np.random.randint(1, len(in_values), size=(512, 512))
|
||||
assert np.all(m[image] < 1) # missing values map to 0.
|
||||
positive = np.ones(len(m), dtype=bool)
|
||||
positive[0] = False
|
||||
m[positive] += 1
|
||||
assert np.all(m[image] >= 1)
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue