Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
147
venv/Lib/site-packages/skimage/util/apply_parallel.py
Normal file
147
venv/Lib/site-packages/skimage/util/apply_parallel.py
Normal file
|
@ -0,0 +1,147 @@
|
|||
__all__ = ['apply_parallel']
|
||||
|
||||
|
||||
def _get_chunks(shape, ncpu):
|
||||
"""Split the array into equal sized chunks based on the number of
|
||||
available processors. The last chunk in each dimension absorbs the
|
||||
remainder array elements if the number of CPUs does not divide evenly into
|
||||
the number of array elements.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> _get_chunks((4, 4), 4)
|
||||
((2, 2), (2, 2))
|
||||
>>> _get_chunks((4, 4), 2)
|
||||
((2, 2), (4,))
|
||||
>>> _get_chunks((5, 5), 2)
|
||||
((2, 3), (5,))
|
||||
>>> _get_chunks((2, 4), 2)
|
||||
((1, 1), (4,))
|
||||
"""
|
||||
# since apply_parallel is in the critical import path, we lazy import
|
||||
# math just when we need it.
|
||||
from math import ceil
|
||||
|
||||
chunks = []
|
||||
nchunks_per_dim = int(ceil(ncpu ** (1./len(shape))))
|
||||
|
||||
used_chunks = 1
|
||||
for i in shape:
|
||||
if used_chunks < ncpu:
|
||||
regular_chunk = i // nchunks_per_dim
|
||||
remainder_chunk = regular_chunk + (i % nchunks_per_dim)
|
||||
|
||||
if regular_chunk == 0:
|
||||
chunk_lens = (remainder_chunk,)
|
||||
else:
|
||||
chunk_lens = ((regular_chunk,) * (nchunks_per_dim - 1) +
|
||||
(remainder_chunk,))
|
||||
else:
|
||||
chunk_lens = (i,)
|
||||
|
||||
chunks.append(chunk_lens)
|
||||
used_chunks *= nchunks_per_dim
|
||||
return tuple(chunks)
|
||||
|
||||
|
||||
def _ensure_dask_array(array, chunks=None):
|
||||
import dask.array as da
|
||||
if isinstance(array, da.Array):
|
||||
return array
|
||||
|
||||
return da.from_array(array, chunks=chunks)
|
||||
|
||||
|
||||
def apply_parallel(function, array, chunks=None, depth=0, mode=None,
|
||||
extra_arguments=(), extra_keywords={}, *, compute=None):
|
||||
"""Map a function in parallel across an array.
|
||||
|
||||
Split an array into possibly overlapping chunks of a given depth and
|
||||
boundary type, call the given function in parallel on the chunks, combine
|
||||
the chunks and return the resulting array.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
function : function
|
||||
Function to be mapped which takes an array as an argument.
|
||||
array : numpy array or dask array
|
||||
Array which the function will be applied to.
|
||||
chunks : int, tuple, or tuple of tuples, optional
|
||||
A single integer is interpreted as the length of one side of a square
|
||||
chunk that should be tiled across the array. One tuple of length
|
||||
``array.ndim`` represents the shape of a chunk, and it is tiled across
|
||||
the array. A list of tuples of length ``ndim``, where each sub-tuple
|
||||
is a sequence of chunk sizes along the corresponding dimension. If
|
||||
None, the array is broken up into chunks based on the number of
|
||||
available cpus. More information about chunks is in the documentation
|
||||
`here <https://dask.pydata.org/en/latest/array-design.html>`_.
|
||||
depth : int, optional
|
||||
Integer equal to the depth of the added boundary cells. Defaults to
|
||||
zero.
|
||||
mode : {'reflect', 'symmetric', 'periodic', 'wrap', 'nearest', 'edge'}, optional
|
||||
type of external boundary padding.
|
||||
extra_arguments : tuple, optional
|
||||
Tuple of arguments to be passed to the function.
|
||||
extra_keywords : dictionary, optional
|
||||
Dictionary of keyword arguments to be passed to the function.
|
||||
compute : bool, optional
|
||||
If ``True``, compute eagerly returning a NumPy Array.
|
||||
If ``False``, compute lazily returning a Dask Array.
|
||||
If ``None`` (default), compute based on array type provided
|
||||
(eagerly for NumPy Arrays and lazily for Dask Arrays).
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray or dask Array
|
||||
Returns the result of the applying the operation.
|
||||
Type is dependent on the ``compute`` argument.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Numpy edge modes 'symmetric', 'wrap', and 'edge' are converted to the
|
||||
equivalent ``dask`` boundary modes 'reflect', 'periodic' and 'nearest',
|
||||
respectively.
|
||||
Setting ``compute=False`` can be useful for chaining later operations.
|
||||
For example region selection to preview a result or storing large data
|
||||
to disk instead of loading in memory.
|
||||
|
||||
"""
|
||||
try:
|
||||
# Importing dask takes time. since apply_parallel is on the
|
||||
# minimum import path of skimage, we lazy attempt to import dask
|
||||
import dask.array as da
|
||||
except ImportError:
|
||||
raise RuntimeError("Could not import 'dask'. Please install "
|
||||
"using 'pip install dask'")
|
||||
|
||||
if compute is None:
|
||||
compute = not isinstance(array, da.Array)
|
||||
|
||||
if chunks is None:
|
||||
shape = array.shape
|
||||
try:
|
||||
# since apply_parallel is in the critical import path, we lazy
|
||||
# import multiprocessing just when we need it.
|
||||
from multiprocessing import cpu_count
|
||||
ncpu = cpu_count()
|
||||
except NotImplementedError:
|
||||
ncpu = 4
|
||||
chunks = _get_chunks(shape, ncpu)
|
||||
|
||||
if mode == 'wrap':
|
||||
mode = 'periodic'
|
||||
elif mode == 'symmetric':
|
||||
mode = 'reflect'
|
||||
elif mode == 'edge':
|
||||
mode = 'nearest'
|
||||
|
||||
def wrapped_func(arr):
|
||||
return function(arr, *extra_arguments, **extra_keywords)
|
||||
|
||||
darr = _ensure_dask_array(array, chunks=chunks)
|
||||
|
||||
res = darr.map_overlap(wrapped_func, depth, boundary=mode)
|
||||
if compute:
|
||||
res = res.compute()
|
||||
|
||||
return res
|
Loading…
Add table
Add a link
Reference in a new issue