Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
|
@ -0,0 +1,82 @@
|
|||
import numpy as np
|
||||
from skimage import data
|
||||
from skimage.segmentation import felzenszwalb
|
||||
|
||||
from skimage._shared import testing
|
||||
from skimage._shared.testing import (assert_greater, test_parallel,
|
||||
assert_equal, assert_array_equal,
|
||||
assert_warns, assert_no_warnings)
|
||||
|
||||
|
||||
@test_parallel()
|
||||
def test_grey():
|
||||
# very weak tests.
|
||||
img = np.zeros((20, 21))
|
||||
img[:10, 10:] = 0.2
|
||||
img[10:, :10] = 0.4
|
||||
img[10:, 10:] = 0.6
|
||||
seg = felzenszwalb(img, sigma=0)
|
||||
# we expect 4 segments:
|
||||
assert_equal(len(np.unique(seg)), 4)
|
||||
# that mostly respect the 4 regions:
|
||||
for i in range(4):
|
||||
hist = np.histogram(img[seg == i], bins=[0, 0.1, 0.3, 0.5, 1])[0]
|
||||
assert_greater(hist[i], 40)
|
||||
|
||||
|
||||
def test_minsize():
|
||||
# single-channel:
|
||||
img = data.coins()[20:168, 0:128]
|
||||
for min_size in np.arange(10, 100, 10):
|
||||
segments = felzenszwalb(img, min_size=min_size, sigma=3)
|
||||
counts = np.bincount(segments.ravel())
|
||||
# actually want to test greater or equal.
|
||||
assert_greater(counts.min() + 1, min_size)
|
||||
# multi-channel:
|
||||
coffee = data.coffee()[::4, ::4]
|
||||
for min_size in np.arange(10, 100, 10):
|
||||
segments = felzenszwalb(coffee, min_size=min_size, sigma=3)
|
||||
counts = np.bincount(segments.ravel())
|
||||
# actually want to test greater or equal.
|
||||
assert_greater(counts.min() + 1, min_size)
|
||||
|
||||
|
||||
def test_3D():
|
||||
grey_img = np.zeros((10, 10))
|
||||
rgb_img = np.zeros((10, 10, 3))
|
||||
three_d_img = np.zeros((10, 10, 10))
|
||||
with assert_no_warnings():
|
||||
felzenszwalb(grey_img, multichannel=True)
|
||||
felzenszwalb(grey_img, multichannel=False)
|
||||
felzenszwalb(rgb_img, multichannel=True)
|
||||
with assert_warns(RuntimeWarning):
|
||||
felzenszwalb(three_d_img, multichannel=True)
|
||||
with testing.raises(ValueError):
|
||||
felzenszwalb(rgb_img, multichannel=False)
|
||||
felzenszwalb(three_d_img, multichannel=False)
|
||||
|
||||
|
||||
def test_color():
|
||||
# very weak tests.
|
||||
img = np.zeros((20, 21, 3))
|
||||
img[:10, :10, 0] = 1
|
||||
img[10:, :10, 1] = 1
|
||||
img[10:, 10:, 2] = 1
|
||||
seg = felzenszwalb(img, sigma=0)
|
||||
# we expect 4 segments:
|
||||
assert_equal(len(np.unique(seg)), 4)
|
||||
assert_array_equal(seg[:10, :10], 0)
|
||||
assert_array_equal(seg[10:, :10], 2)
|
||||
assert_array_equal(seg[:10, 10:], 1)
|
||||
assert_array_equal(seg[10:, 10:], 3)
|
||||
|
||||
|
||||
def test_merging():
|
||||
# test region merging in the post-processing step
|
||||
img = np.array([[0, 0.3], [0.7, 1]])
|
||||
# With scale=0, only the post-processing is performed.
|
||||
seg = felzenszwalb(img, scale=0, sigma=0, min_size=2)
|
||||
# we expect 2 segments:
|
||||
assert_equal(len(np.unique(seg)), 2)
|
||||
assert_array_equal(seg[0, :], 0)
|
||||
assert_array_equal(seg[1, :], 1)
|
Loading…
Add table
Add a link
Reference in a new issue