Fixed database typo and removed unnecessary class identifier.

This commit is contained in:
Batuhan Berk Başoğlu 2020-10-14 10:10:37 -04:00
parent 00ad49a143
commit 45fb349a7d
5098 changed files with 952558 additions and 85 deletions

View file

@ -0,0 +1,9 @@
from ..._shared.testing import setup_test, teardown_test
def setup():
setup_test()
def teardown():
teardown_test()

View file

@ -0,0 +1,146 @@
import numpy as np
from skimage import data
from skimage.color import rgb2gray
from skimage.filters import gaussian
from skimage.segmentation import active_contour
from skimage._shared import testing
from skimage._shared.testing import assert_equal, assert_allclose
from skimage._shared._warnings import expected_warnings
def test_periodic_reference():
img = data.astronaut()
img = rgb2gray(img)
s = np.linspace(0, 2*np.pi, 400)
r = 100 + 100*np.sin(s)
c = 220 + 100*np.cos(s)
init = np.array([r, c]).T
snake = active_contour(gaussian(img, 3), init, alpha=0.015, beta=10,
w_line=0, w_edge=1, gamma=0.001, coordinates='rc')
refr = [98, 99, 100, 101, 102, 103, 104, 105, 106, 108]
refc = [299, 298, 298, 298, 298, 297, 297, 296, 296, 295]
assert_equal(np.array(snake[:10, 0], dtype=np.int32), refr)
assert_equal(np.array(snake[:10, 1], dtype=np.int32), refc)
def test_fixed_reference():
img = data.text()
r = np.linspace(136, 50, 100)
c = np.linspace(5, 424, 100)
init = np.array([r, c]).T
snake = active_contour(gaussian(img, 1), init, boundary_condition='fixed',
alpha=0.1, beta=1.0, w_line=-5, w_edge=0, gamma=0.1,
coordinates='rc')
refr = [136, 135, 134, 133, 132, 131, 129, 128, 127, 125]
refc = [5, 9, 13, 17, 21, 25, 30, 34, 38, 42]
assert_equal(np.array(snake[:10, 0], dtype=np.int32), refr)
assert_equal(np.array(snake[:10, 1], dtype=np.int32), refc)
def test_free_reference():
img = data.text()
r = np.linspace(70, 40, 100)
c = np.linspace(5, 424, 100)
init = np.array([r, c]).T
snake = active_contour(gaussian(img, 3), init, boundary_condition='free',
alpha=0.1, beta=1.0, w_line=-5, w_edge=0, gamma=0.1,
coordinates='rc')
refr = [76, 76, 75, 74, 73, 72, 71, 70, 69, 69]
refc = [10, 13, 16, 19, 23, 26, 29, 32, 36, 39]
assert_equal(np.array(snake[:10, 0], dtype=np.int32), refr)
assert_equal(np.array(snake[:10, 1], dtype=np.int32), refc)
def test_RGB():
img = gaussian(data.text(), 1)
imgR = np.zeros((img.shape[0], img.shape[1], 3))
imgG = np.zeros((img.shape[0], img.shape[1], 3))
imgRGB = np.zeros((img.shape[0], img.shape[1], 3))
imgR[:, :, 0] = img
imgG[:, :, 1] = img
imgRGB[:, :, :] = img[:, :, None]
r = np.linspace(136, 50, 100)
c = np.linspace(5, 424, 100)
init = np.array([r, c]).T
snake = active_contour(imgR, init, boundary_condition='fixed',
alpha=0.1, beta=1.0, w_line=-5, w_edge=0, gamma=0.1,
coordinates='rc')
refr = [136, 135, 134, 133, 132, 131, 129, 128, 127, 125]
refc = [5, 9, 13, 17, 21, 25, 30, 34, 38, 42]
assert_equal(np.array(snake[:10, 0], dtype=np.int32), refr)
assert_equal(np.array(snake[:10, 1], dtype=np.int32), refc)
snake = active_contour(imgG, init, boundary_condition='fixed',
alpha=0.1, beta=1.0, w_line=-5, w_edge=0, gamma=0.1,
coordinates='rc')
assert_equal(np.array(snake[:10, 0], dtype=np.int32), refr)
assert_equal(np.array(snake[:10, 1], dtype=np.int32), refc)
snake = active_contour(imgRGB, init, boundary_condition='fixed',
alpha=0.1, beta=1.0, w_line=-5/3., w_edge=0,
gamma=0.1, coordinates='rc')
assert_equal(np.array(snake[:10, 0], dtype=np.int32), refr)
assert_equal(np.array(snake[:10, 1], dtype=np.int32), refc)
def test_end_points():
img = data.astronaut()
img = rgb2gray(img)
s = np.linspace(0, 2*np.pi, 400)
r = 100 + 100*np.sin(s)
c = 220 + 100*np.cos(s)
init = np.array([r, c]).T
snake = active_contour(gaussian(img, 3), init,
boundary_condition='periodic', alpha=0.015, beta=10,
w_line=0, w_edge=1, gamma=0.001, max_iterations=100,
coordinates='rc')
assert np.sum(np.abs(snake[0, :]-snake[-1, :])) < 2
snake = active_contour(gaussian(img, 3), init,
boundary_condition='free', alpha=0.015, beta=10,
w_line=0, w_edge=1, gamma=0.001, max_iterations=100,
coordinates='rc')
assert np.sum(np.abs(snake[0, :]-snake[-1, :])) > 2
snake = active_contour(gaussian(img, 3), init,
boundary_condition='fixed', alpha=0.015, beta=10,
w_line=0, w_edge=1, gamma=0.001, max_iterations=100,
coordinates='rc')
assert_allclose(snake[0, :], [r[0], c[0]], atol=1e-5)
def test_bad_input():
img = np.zeros((10, 10))
r = np.linspace(136, 50, 100)
c = np.linspace(5, 424, 100)
init = np.array([r, c]).T
with testing.raises(ValueError):
active_contour(img, init, boundary_condition='wrong',
coordinates='rc')
with testing.raises(ValueError):
active_contour(img, init, max_iterations=-15,
coordinates='rc')
def test_bc_deprecation():
with expected_warnings(['boundary_condition']):
img = rgb2gray(data.astronaut())
s = np.linspace(0, 2*np.pi, 400)
r = 100 + 100*np.sin(s)
c = 220 + 100*np.cos(s)
init = np.array([r, c]).T
snake = active_contour(gaussian(img, 3), init,
bc='periodic', alpha=0.015, beta=10,
w_line=0, w_edge=1, gamma=0.001,
max_iterations=100, coordinates='rc')
def test_xy_coord_warning():
# this should raise ValueError after 0.18.
with expected_warnings(['xy coordinates']):
img = rgb2gray(data.astronaut())
s = np.linspace(0, 2*np.pi, 400)
x = 100 + 100*np.sin(s)
y = 220 + 100*np.cos(s)
init = np.array([x, y]).T
snake = active_contour(gaussian(img, 3), init,
boundary_condition='periodic', alpha=0.015,
beta=10, w_line=0, w_edge=1, gamma=0.001,
max_iterations=100)

View file

@ -0,0 +1,120 @@
import numpy as np
from skimage.segmentation import find_boundaries, mark_boundaries
from skimage._shared.testing import assert_array_equal, assert_allclose
white = (1, 1, 1)
def test_find_boundaries():
image = np.zeros((10, 10), dtype=np.uint8)
image[2:7, 2:7] = 1
ref = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
result = find_boundaries(image)
assert_array_equal(result, ref)
def test_find_boundaries_bool():
image = np.zeros((5, 5), dtype=np.bool)
image[2:5, 2:5] = True
ref = np.array([[False, False, False, False, False],
[False, False, True, True, True],
[False, True, True, True, True],
[False, True, True, False, False],
[False, True, True, False, False]], dtype=np.bool)
result = find_boundaries(image)
assert_array_equal(result, ref)
def test_mark_boundaries():
image = np.zeros((10, 10))
label_image = np.zeros((10, 10), dtype=np.uint8)
label_image[2:7, 2:7] = 1
ref = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
marked = mark_boundaries(image, label_image, color=white, mode='thick')
result = np.mean(marked, axis=-1)
assert_array_equal(result, ref)
ref = np.array([[0, 2, 2, 2, 2, 2, 2, 2, 0, 0],
[2, 2, 1, 1, 1, 1, 1, 2, 2, 0],
[2, 1, 1, 1, 1, 1, 1, 1, 2, 0],
[2, 1, 1, 2, 2, 2, 1, 1, 2, 0],
[2, 1, 1, 2, 0, 2, 1, 1, 2, 0],
[2, 1, 1, 2, 2, 2, 1, 1, 2, 0],
[2, 1, 1, 1, 1, 1, 1, 1, 2, 0],
[2, 2, 1, 1, 1, 1, 1, 2, 2, 0],
[0, 2, 2, 2, 2, 2, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
marked = mark_boundaries(image, label_image, color=white,
outline_color=(2, 2, 2), mode='thick')
result = np.mean(marked, axis=-1)
assert_array_equal(result, ref)
def test_mark_boundaries_bool():
image = np.zeros((10, 10), dtype=np.bool)
label_image = np.zeros((10, 10), dtype=np.uint8)
label_image[2:7, 2:7] = 1
ref = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
marked = mark_boundaries(image, label_image, color=white, mode='thick')
result = np.mean(marked, axis=-1)
assert_array_equal(result, ref)
def test_mark_boundaries_subpixel():
labels = np.array([[0, 0, 0, 0],
[0, 0, 5, 0],
[0, 1, 5, 0],
[0, 0, 5, 0],
[0, 0, 0, 0]], dtype=np.uint8)
np.random.seed(0)
image = np.round(np.random.rand(*labels.shape), 2)
marked = mark_boundaries(image, labels, color=white, mode='subpixel')
marked_proj = np.round(np.mean(marked, axis=-1), 2)
ref_result = np.array(
[[ 0.55, 0.63, 0.72, 0.69, 0.6 , 0.55, 0.54],
[ 0.45, 0.58, 0.72, 1. , 1. , 1. , 0.69],
[ 0.42, 0.54, 0.65, 1. , 0.44, 1. , 0.89],
[ 0.69, 1. , 1. , 1. , 0.69, 1. , 0.83],
[ 0.96, 1. , 0.38, 1. , 0.79, 1. , 0.53],
[ 0.89, 1. , 1. , 1. , 0.38, 1. , 0.16],
[ 0.57, 0.78, 0.93, 1. , 0.07, 1. , 0.09],
[ 0.2 , 0.52, 0.92, 1. , 1. , 1. , 0.54],
[ 0.02, 0.35, 0.83, 0.9 , 0.78, 0.81, 0.87]])
assert_allclose(marked_proj, ref_result, atol=0.01)

View file

@ -0,0 +1,90 @@
import numpy as np
from skimage.segmentation import chan_vese
from skimage._shared import testing
from skimage._shared.testing import assert_array_equal
def test_chan_vese_flat_level_set():
# because the algorithm evolves the level set around the
# zero-level, it the level-set has no zero level, the algorithm
# will not produce results in theory. However, since a continuous
# approximation of the delta function is used, the algorithm
# still affects the entirety of the level-set. Therefore with
# infinite time, the segmentation will still converge.
img = np.zeros((10, 10))
img[3:6, 3:6] = np.ones((3, 3))
ls = np.full((10, 10), 1000)
result = chan_vese(img, mu=0.0, tol=1e-3, init_level_set=ls)
assert_array_equal(result.astype(np.float), np.ones((10, 10)))
result = chan_vese(img, mu=0.0, tol=1e-3, init_level_set=-ls)
assert_array_equal(result.astype(np.float), np.zeros((10, 10)))
def test_chan_vese_small_disk_level_set():
img = np.zeros((10, 10))
img[3:6, 3:6] = np.ones((3, 3))
result = chan_vese(img, mu=0.0, tol=1e-3, init_level_set="small disk")
assert_array_equal(result.astype(np.float), img)
def test_chan_vese_simple_shape():
img = np.zeros((10, 10))
img[3:6, 3:6] = np.ones((3, 3))
result = chan_vese(img, mu=0.0, tol=1e-8).astype(np.float)
assert_array_equal(result, img)
def test_chan_vese_extended_output():
img = np.zeros((10, 10))
img[3:6, 3:6] = np.ones((3, 3))
result = chan_vese(img, mu=0.0, tol=1e-8, extended_output=True)
assert_array_equal(len(result), 3)
def test_chan_vese_remove_noise():
ref = np.zeros((10, 10))
ref[1:6, 1:6] = np.array([[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0]])
img = ref.copy()
img[8, 3] = 1
result = chan_vese(img, mu=0.3, tol=1e-3, max_iter=100, dt=10,
init_level_set="disk").astype(np.float)
assert_array_equal(result, ref)
def test_chan_vese_incorrect_image_type():
img = np.zeros((10, 10, 3))
ls = np.zeros((10, 9))
with testing.raises(ValueError):
chan_vese(img, mu=0.0, init_level_set=ls)
def test_chan_vese_gap_closing():
ref = np.zeros((20, 20))
ref[8:15, :] = np.ones((7, 20))
img = ref.copy()
img[:, 6] = np.zeros((20))
result = chan_vese(img, mu=0.7, tol=1e-3, max_iter=1000, dt=1000,
init_level_set="disk").astype(np.float)
assert_array_equal(result, ref)
def test_chan_vese_incorrect_level_set():
img = np.zeros((10, 10))
ls = np.zeros((10, 9))
with testing.raises(ValueError):
chan_vese(img, mu=0.0, init_level_set=ls)
with testing.raises(ValueError):
chan_vese(img, mu=0.0, init_level_set="a")
def test_chan_vese_blank_image():
img = np.zeros((10, 10))
level_set = np.random.rand(10, 10)
ref = level_set > 0
result = chan_vese(img, mu=0.0, tol=0.0, init_level_set=level_set)
assert_array_equal(result, ref)

View file

@ -0,0 +1,175 @@
import numpy as np
from skimage.segmentation import clear_border
from skimage._shared.testing import assert_array_equal, assert_
def test_clear_border():
image = np.array(
[[0, 0, 0, 0, 0, 0, 0, 1, 0],
[1, 1, 0, 0, 1, 0, 0, 1, 0],
[1, 1, 0, 1, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]])
# test default case
result = clear_border(image.copy())
ref = image.copy()
ref[1:3, 0:2] = 0
ref[0:2, -2] = 0
assert_array_equal(result, ref)
# test buffer
result = clear_border(image.copy(), 1)
assert_array_equal(result, np.zeros(result.shape))
# test background value
result = clear_border(image.copy(), buffer_size=1, bgval=2)
assert_array_equal(result, 2 * np.ones_like(image))
# test mask
mask = np.array([[0, 0, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1]]).astype(np.bool)
result = clear_border(image.copy(), mask=mask)
ref = image.copy()
ref[1:3, 0:2] = 0
assert_array_equal(result, ref)
def test_clear_border_3d():
image = np.array([
[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[1, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
])
# test default case
result = clear_border(image.copy())
ref = image.copy()
ref[0, 3, 0] = 0
assert_array_equal(result, ref)
# test buffer
result = clear_border(image.copy(), 1)
assert_array_equal(result, np.zeros(result.shape))
# test background value
result = clear_border(image.copy(), buffer_size=1, bgval=2)
assert_array_equal(result, 2 * np.ones_like(image))
def test_clear_border_non_binary():
image = np.array([[1, 2, 3, 1, 2],
[3, 3, 5, 4, 2],
[3, 4, 5, 4, 2],
[3, 3, 2, 1, 2]])
result = clear_border(image)
expected = np.array([[0, 0, 0, 0, 0],
[0, 0, 5, 4, 0],
[0, 4, 5, 4, 0],
[0, 0, 0, 0, 0]])
assert_array_equal(result, expected)
assert_(not np.all(image == result))
def test_clear_border_non_binary_3d():
image3d = np.array(
[[[1, 2, 3, 1, 2],
[3, 3, 3, 4, 2],
[3, 4, 3, 4, 2],
[3, 3, 2, 1, 2]],
[[1, 2, 3, 1, 2],
[3, 3, 5, 4, 2],
[3, 4, 5, 4, 2],
[3, 3, 2, 1, 2]],
[[1, 2, 3, 1, 2],
[3, 3, 3, 4, 2],
[3, 4, 3, 4, 2],
[3, 3, 2, 1, 2]],
])
result = clear_border(image3d)
expected = np.array(
[[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0],
[0, 0, 5, 0, 0],
[0, 0, 5, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
])
assert_array_equal(result, expected)
assert_(not np.all(image3d == result))
def test_clear_border_non_binary_inplace():
image = np.array([[1, 2, 3, 1, 2],
[3, 3, 5, 4, 2],
[3, 4, 5, 4, 2],
[3, 3, 2, 1, 2]])
result = clear_border(image, in_place=True)
expected = np.array([[0, 0, 0, 0, 0],
[0, 0, 5, 4, 0],
[0, 4, 5, 4, 0],
[0, 0, 0, 0, 0]])
assert_array_equal(result, expected)
assert_array_equal(image, result)
def test_clear_border_non_binary_inplace_3d():
image3d = np.array(
[[[1, 2, 3, 1, 2],
[3, 3, 3, 4, 2],
[3, 4, 3, 4, 2],
[3, 3, 2, 1, 2]],
[[1, 2, 3, 1, 2],
[3, 3, 5, 4, 2],
[3, 4, 5, 4, 2],
[3, 3, 2, 1, 2]],
[[1, 2, 3, 1, 2],
[3, 3, 3, 4, 2],
[3, 4, 3, 4, 2],
[3, 3, 2, 1, 2]],
])
result = clear_border(image3d, in_place=True)
expected = np.array(
[[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0],
[0, 0, 5, 0, 0],
[0, 0, 5, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
])
assert_array_equal(result, expected)
assert_array_equal(image3d, result)

View file

@ -0,0 +1,82 @@
import numpy as np
from skimage import data
from skimage.segmentation import felzenszwalb
from skimage._shared import testing
from skimage._shared.testing import (assert_greater, test_parallel,
assert_equal, assert_array_equal,
assert_warns, assert_no_warnings)
@test_parallel()
def test_grey():
# very weak tests.
img = np.zeros((20, 21))
img[:10, 10:] = 0.2
img[10:, :10] = 0.4
img[10:, 10:] = 0.6
seg = felzenszwalb(img, sigma=0)
# we expect 4 segments:
assert_equal(len(np.unique(seg)), 4)
# that mostly respect the 4 regions:
for i in range(4):
hist = np.histogram(img[seg == i], bins=[0, 0.1, 0.3, 0.5, 1])[0]
assert_greater(hist[i], 40)
def test_minsize():
# single-channel:
img = data.coins()[20:168, 0:128]
for min_size in np.arange(10, 100, 10):
segments = felzenszwalb(img, min_size=min_size, sigma=3)
counts = np.bincount(segments.ravel())
# actually want to test greater or equal.
assert_greater(counts.min() + 1, min_size)
# multi-channel:
coffee = data.coffee()[::4, ::4]
for min_size in np.arange(10, 100, 10):
segments = felzenszwalb(coffee, min_size=min_size, sigma=3)
counts = np.bincount(segments.ravel())
# actually want to test greater or equal.
assert_greater(counts.min() + 1, min_size)
def test_3D():
grey_img = np.zeros((10, 10))
rgb_img = np.zeros((10, 10, 3))
three_d_img = np.zeros((10, 10, 10))
with assert_no_warnings():
felzenszwalb(grey_img, multichannel=True)
felzenszwalb(grey_img, multichannel=False)
felzenszwalb(rgb_img, multichannel=True)
with assert_warns(RuntimeWarning):
felzenszwalb(three_d_img, multichannel=True)
with testing.raises(ValueError):
felzenszwalb(rgb_img, multichannel=False)
felzenszwalb(three_d_img, multichannel=False)
def test_color():
# very weak tests.
img = np.zeros((20, 21, 3))
img[:10, :10, 0] = 1
img[10:, :10, 1] = 1
img[10:, 10:, 2] = 1
seg = felzenszwalb(img, sigma=0)
# we expect 4 segments:
assert_equal(len(np.unique(seg)), 4)
assert_array_equal(seg[:10, :10], 0)
assert_array_equal(seg[10:, :10], 2)
assert_array_equal(seg[:10, 10:], 1)
assert_array_equal(seg[10:, 10:], 3)
def test_merging():
# test region merging in the post-processing step
img = np.array([[0, 0.3], [0.7, 1]])
# With scale=0, only the post-processing is performed.
seg = felzenszwalb(img, scale=0, sigma=0, min_size=2)
# we expect 2 segments:
assert_equal(len(np.unique(seg)), 2)
assert_array_equal(seg[0, :], 0)
assert_array_equal(seg[1, :], 1)

View file

@ -0,0 +1,211 @@
import numpy as np
from skimage.segmentation import join_segmentations, relabel_sequential
from skimage._shared import testing
from skimage._shared.testing import assert_array_equal
import pytest
def test_join_segmentations():
s1 = np.array([[0, 0, 1, 1],
[0, 2, 1, 1],
[2, 2, 2, 1]])
s2 = np.array([[0, 1, 1, 0],
[0, 1, 1, 0],
[0, 1, 1, 1]])
# test correct join
# NOTE: technically, equality to j_ref is not required, only that there
# is a one-to-one mapping between j and j_ref. I don't know of an easy way
# to check this (i.e. not as error-prone as the function being tested)
j = join_segmentations(s1, s2)
j_ref = np.array([[0, 1, 3, 2],
[0, 5, 3, 2],
[4, 5, 5, 3]])
assert_array_equal(j, j_ref)
# test correct exception when arrays are different shapes
s3 = np.array([[0, 0, 1, 1], [0, 2, 2, 1]])
with testing.raises(ValueError):
join_segmentations(s1, s3)
def _check_maps(ar, ar_relab, fw, inv):
assert_array_equal(fw[ar], ar_relab)
assert_array_equal(inv[ar_relab], ar)
def test_relabel_sequential_offset1():
ar = np.array([1, 1, 5, 5, 8, 99, 42])
ar_relab, fw, inv = relabel_sequential(ar)
_check_maps(ar, ar_relab, fw, inv)
ar_relab_ref = np.array([1, 1, 2, 2, 3, 5, 4])
assert_array_equal(ar_relab, ar_relab_ref)
fw_ref = np.zeros(100, int)
fw_ref[1] = 1
fw_ref[5] = 2
fw_ref[8] = 3
fw_ref[42] = 4
fw_ref[99] = 5
assert_array_equal(fw, fw_ref)
inv_ref = np.array([0, 1, 5, 8, 42, 99])
assert_array_equal(inv, inv_ref)
def test_relabel_sequential_offset5():
ar = np.array([1, 1, 5, 5, 8, 99, 42])
ar_relab, fw, inv = relabel_sequential(ar, offset=5)
_check_maps(ar, ar_relab, fw, inv)
ar_relab_ref = np.array([5, 5, 6, 6, 7, 9, 8])
assert_array_equal(ar_relab, ar_relab_ref)
fw_ref = np.zeros(100, int)
fw_ref[1] = 5
fw_ref[5] = 6
fw_ref[8] = 7
fw_ref[42] = 8
fw_ref[99] = 9
assert_array_equal(fw, fw_ref)
inv_ref = np.array([0, 0, 0, 0, 0, 1, 5, 8, 42, 99])
assert_array_equal(inv, inv_ref)
def test_relabel_sequential_offset5_with0():
ar = np.array([1, 1, 5, 5, 8, 99, 42, 0])
ar_relab, fw, inv = relabel_sequential(ar, offset=5)
_check_maps(ar, ar_relab, fw, inv)
ar_relab_ref = np.array([5, 5, 6, 6, 7, 9, 8, 0])
assert_array_equal(ar_relab, ar_relab_ref)
fw_ref = np.zeros(100, int)
fw_ref[1] = 5
fw_ref[5] = 6
fw_ref[8] = 7
fw_ref[42] = 8
fw_ref[99] = 9
assert_array_equal(fw, fw_ref)
inv_ref = np.array([0, 0, 0, 0, 0, 1, 5, 8, 42, 99])
assert_array_equal(inv, inv_ref)
def test_relabel_sequential_dtype():
ar = np.array([1, 1, 5, 5, 8, 99, 42, 0], dtype=np.uint8)
ar_relab, fw, inv = relabel_sequential(ar, offset=5)
_check_maps(ar.astype(int), ar_relab, fw, inv)
ar_relab_ref = np.array([5, 5, 6, 6, 7, 9, 8, 0])
assert_array_equal(ar_relab, ar_relab_ref)
fw_ref = np.zeros(100, int)
fw_ref[1] = 5
fw_ref[5] = 6
fw_ref[8] = 7
fw_ref[42] = 8
fw_ref[99] = 9
assert_array_equal(fw, fw_ref)
inv_ref = np.array([0, 0, 0, 0, 0, 1, 5, 8, 42, 99])
assert_array_equal(inv, inv_ref)
def test_relabel_sequential_signed_overflow():
imax = np.iinfo(np.int32).max
labels = np.array([0, 1, 99, 42, 42], dtype=np.int32)
output, fw, inv = relabel_sequential(labels, offset=imax)
reference = np.array([0, imax, imax + 2, imax + 1, imax + 1],
dtype=np.uint32)
assert_array_equal(output, reference)
assert output.dtype == reference.dtype
def test_very_large_labels():
imax = np.iinfo(np.int64).max
labels = np.array([0, 1, imax, 42, 42], dtype=np.int64)
output, fw, inv = relabel_sequential(labels, offset=imax)
assert np.max(output) == imax + 2
@pytest.mark.parametrize('dtype', (np.byte, np.short, np.intc, np.int_,
np.longlong, np.ubyte, np.ushort,
np.uintc, np.uint, np.ulonglong))
@pytest.mark.parametrize('data_already_sequential', (False, True))
def test_relabel_sequential_int_dtype_stability(data_already_sequential,
dtype):
if data_already_sequential:
ar = np.array([1, 3, 0, 2, 5, 4], dtype=dtype)
else:
ar = np.array([1, 1, 5, 5, 8, 99, 42, 0], dtype=dtype)
assert all(a.dtype == dtype for a in relabel_sequential(ar))
def test_relabel_sequential_int_dtype_overflow():
ar = np.array([1, 3, 0, 2, 5, 4], dtype=np.uint8)
offset = 254
ar_relab, fw, inv = relabel_sequential(ar, offset=offset)
_check_maps(ar, ar_relab, fw, inv)
assert all(a.dtype == np.uint16 for a in (ar_relab, fw))
assert inv.dtype == ar.dtype
ar_relab_ref = np.where(ar > 0, ar.astype(np.int) + offset - 1, 0)
assert_array_equal(ar_relab, ar_relab_ref)
def test_relabel_sequential_negative_values():
ar = np.array([1, 1, 5, -5, 8, 99, 42, 0])
with pytest.raises(ValueError):
relabel_sequential(ar)
@pytest.mark.parametrize('offset', (0, -3))
@pytest.mark.parametrize('data_already_sequential', (False, True))
def test_relabel_sequential_nonpositive_offset(data_already_sequential,
offset):
if data_already_sequential:
ar = np.array([1, 3, 0, 2, 5, 4])
else:
ar = np.array([1, 1, 5, 5, 8, 99, 42, 0])
with pytest.raises(ValueError):
relabel_sequential(ar, offset=offset)
@pytest.mark.parametrize('offset', (1, 5))
@pytest.mark.parametrize('with0', (False, True))
@pytest.mark.parametrize('input_starts_at_offset', (False, True))
def test_relabel_sequential_already_sequential(offset, with0,
input_starts_at_offset):
if with0:
ar = np.array([1, 3, 0, 2, 5, 4])
else:
ar = np.array([1, 3, 2, 5, 4])
if input_starts_at_offset:
ar[ar > 0] += offset - 1
ar_relab, fw, inv = relabel_sequential(ar, offset=offset)
_check_maps(ar, ar_relab, fw, inv)
if input_starts_at_offset:
ar_relab_ref = ar
else:
ar_relab_ref = np.where(ar > 0, ar + offset - 1, 0)
assert_array_equal(ar_relab, ar_relab_ref)
def test_incorrect_input_dtype():
labels = np.array([0, 2, 2, 1, 1, 8], dtype=float)
with testing.raises(TypeError):
_ = relabel_sequential(labels)
def test_arraymap_call():
ar = np.array([1, 1, 5, 5, 8, 99, 42, 0], dtype=np.intp)
relabeled, fw, inv = relabel_sequential(ar)
testing.assert_array_equal(relabeled, fw(ar))
testing.assert_array_equal(ar, inv(relabeled))
def test_arraymap_len():
ar = np.array([1, 1, 5, 5, 8, 99, 42, 0], dtype=np.intp)
relabeled, fw, inv = relabel_sequential(ar)
assert len(fw) == 100
assert len(fw) == len(np.array(fw))
assert len(inv) == 6
assert len(inv) == len(np.array(inv))
def test_arraymap_set():
ar = np.array([1, 1, 5, 5, 8, 99, 42, 0], dtype=np.intp)
relabeled, fw, inv = relabel_sequential(ar)
fw[72] = 6
assert fw[72] == 6

View file

@ -0,0 +1,149 @@
import numpy as np
from skimage.segmentation import (morphological_chan_vese,
morphological_geodesic_active_contour,
inverse_gaussian_gradient,
circle_level_set,
disk_level_set)
from skimage._shared import testing
from skimage._shared.testing import assert_array_equal
from skimage._shared._warnings import expected_warnings
def gaussian_blob():
coords = np.mgrid[-5:6, -5:6]
sqrdistances = (coords ** 2).sum(0)
return np.exp(-sqrdistances / 10)
def test_morphsnakes_incorrect_image_shape():
img = np.zeros((10, 10, 3))
ls = np.zeros((10, 9))
with testing.raises(ValueError):
morphological_chan_vese(img, iterations=1, init_level_set=ls)
with testing.raises(ValueError):
morphological_geodesic_active_contour(img, iterations=1,
init_level_set=ls)
def test_morphsnakes_incorrect_ndim():
img = np.zeros((4, 4, 4, 4))
ls = np.zeros((4, 4, 4, 4))
with testing.raises(ValueError):
morphological_chan_vese(img, iterations=1, init_level_set=ls)
with testing.raises(ValueError):
morphological_geodesic_active_contour(img, iterations=1,
init_level_set=ls)
def test_morphsnakes_black():
img = np.zeros((11, 11))
ls = disk_level_set(img.shape, center=(5, 5), radius=3)
ref_zeros = np.zeros(img.shape, dtype=np.int8)
ref_ones = np.ones(img.shape, dtype=np.int8)
acwe_ls = morphological_chan_vese(img, iterations=6, init_level_set=ls)
assert_array_equal(acwe_ls, ref_zeros)
gac_ls = morphological_geodesic_active_contour(img, iterations=6,
init_level_set=ls)
assert_array_equal(gac_ls, ref_zeros)
gac_ls2 = morphological_geodesic_active_contour(img, iterations=6,
init_level_set=ls,
balloon=1, threshold=-1,
smoothing=0)
assert_array_equal(gac_ls2, ref_ones)
assert acwe_ls.dtype == gac_ls.dtype == gac_ls2.dtype == np.int8
def test_morphsnakes_simple_shape_chan_vese():
img = gaussian_blob()
ls1 = disk_level_set(img.shape, center=(5, 5), radius=3)
ls2 = disk_level_set(img.shape, center=(5, 5), radius=6)
acwe_ls1 = morphological_chan_vese(img, iterations=10, init_level_set=ls1)
acwe_ls2 = morphological_chan_vese(img, iterations=10, init_level_set=ls2)
assert_array_equal(acwe_ls1, acwe_ls2)
assert acwe_ls1.dtype == acwe_ls2.dtype == np.int8
def test_morphsnakes_simple_shape_geodesic_active_contour():
img = np.float_(disk_level_set((11, 11), center=(5, 5), radius=3.5))
gimg = inverse_gaussian_gradient(img, alpha=10.0, sigma=1.0)
ls = disk_level_set(img.shape, center=(5, 5), radius=6)
ref = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=np.int8)
gac_ls = morphological_geodesic_active_contour(gimg, iterations=10,
init_level_set=ls,
balloon=-1)
assert_array_equal(gac_ls, ref)
assert gac_ls.dtype == np.int8
def test_deprecated_circle_level_set():
img = gaussian_blob()
with expected_warnings(['circle_level_set is deprecated']):
ls1 = circle_level_set(img.shape, (5, 5), 3)
def test_init_level_sets():
image = np.zeros((6, 6))
checkerboard_ls = morphological_chan_vese(image, 0, 'checkerboard')
checkerboard_ref = np.array([[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 0]], dtype=np.int8)
disk_ls = morphological_geodesic_active_contour(image, 0, 'disk')
disk_ref = np.array([[0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 0]], dtype=np.int8)
assert_array_equal(checkerboard_ls, checkerboard_ref)
assert_array_equal(disk_ls, disk_ref)
def test_morphsnakes_3d():
image = np.zeros((7, 7, 7))
evolution = []
def callback(x):
evolution.append(x.sum())
ls = morphological_chan_vese(image, 5, 'disk',
iter_callback=callback)
# Check that the initial disk level set is correct
assert evolution[0] == 81
# Check that the final level set is correct
assert ls.sum() == 0
# Check that the contour is shrinking at every iteration
for v1, v2 in zip(evolution[:-1], evolution[1:]):
assert v1 >= v2

View file

@ -0,0 +1,49 @@
import numpy as np
from skimage.segmentation import quickshift
from skimage._shared.testing import (assert_greater, test_parallel,
assert_equal, assert_array_equal)
@test_parallel()
def test_grey():
rnd = np.random.RandomState(0)
img = np.zeros((20, 21))
img[:10, 10:] = 0.2
img[10:, :10] = 0.4
img[10:, 10:] = 0.6
img += 0.1 * rnd.normal(size=img.shape)
seg = quickshift(img, kernel_size=2, max_dist=3, random_seed=0,
convert2lab=False, sigma=0)
# we expect 4 segments:
assert_equal(len(np.unique(seg)), 4)
# that mostly respect the 4 regions:
for i in range(4):
hist = np.histogram(img[seg == i], bins=[0, 0.1, 0.3, 0.5, 1])[0]
assert_greater(hist[i], 20)
def test_color():
rnd = np.random.RandomState(0)
img = np.zeros((20, 21, 3))
img[:10, :10, 0] = 1
img[10:, :10, 1] = 1
img[10:, 10:, 2] = 1
img += 0.01 * rnd.normal(size=img.shape)
img[img > 1] = 1
img[img < 0] = 0
seg = quickshift(img, random_seed=0, max_dist=30, kernel_size=10, sigma=0)
# we expect 4 segments:
assert_equal(len(np.unique(seg)), 4)
assert_array_equal(seg[:10, :10], 1)
assert_array_equal(seg[10:, :10], 2)
assert_array_equal(seg[:10, 10:], 0)
assert_array_equal(seg[10:, 10:], 3)
seg2 = quickshift(img, kernel_size=1, max_dist=2, random_seed=0,
convert2lab=False, sigma=0)
# very oversegmented:
assert_equal(len(np.unique(seg2)), 7)
# still don't cross lines
assert (seg2[9, :] != seg2[10, :]).all()
assert (seg2[:, 9] != seg2[:, 10]).all()

View file

@ -0,0 +1,439 @@
import numpy as np
from skimage.segmentation import random_walker
from skimage.transform import resize
from skimage._shared._warnings import expected_warnings
from skimage._shared import testing
from skimage._shared.testing import xfail, arch32
import scipy
from distutils.version import LooseVersion as Version
# older versions of scipy raise a warning with new NumPy because they use
# numpy.rank() instead of arr.ndim or numpy.linalg.matrix_rank.
SCIPY_RANK_WARNING = r'numpy.linalg.matrix_rank|\A\Z'
PYAMG_MISSING_WARNING = r'pyamg|\A\Z'
PYAMG_OR_SCIPY_WARNING = SCIPY_RANK_WARNING + '|' + PYAMG_MISSING_WARNING
if Version(scipy.__version__) < '1.3':
NUMPY_MATRIX_WARNING = 'matrix subclass'
else:
NUMPY_MATRIX_WARNING = None
def make_2d_syntheticdata(lx, ly=None):
if ly is None:
ly = lx
np.random.seed(1234)
data = np.zeros((lx, ly)) + 0.1 * np.random.randn(lx, ly)
small_l = int(lx // 5)
data[lx // 2 - small_l:lx // 2 + small_l,
ly // 2 - small_l:ly // 2 + small_l] = 1
data[lx // 2 - small_l + 1:lx // 2 + small_l - 1,
ly // 2 - small_l + 1:ly // 2 + small_l - 1] = (
0.1 * np.random.randn(2 * small_l - 2, 2 * small_l - 2))
data[lx // 2 - small_l, ly // 2 - small_l // 8:ly // 2 + small_l // 8] = 0
seeds = np.zeros_like(data)
seeds[lx // 5, ly // 5] = 1
seeds[lx // 2 + small_l // 4, ly // 2 - small_l // 4] = 2
return data, seeds
def make_3d_syntheticdata(lx, ly=None, lz=None):
if ly is None:
ly = lx
if lz is None:
lz = lx
np.random.seed(1234)
data = np.zeros((lx, ly, lz)) + 0.1 * np.random.randn(lx, ly, lz)
small_l = int(lx // 5)
data[lx // 2 - small_l:lx // 2 + small_l,
ly // 2 - small_l:ly // 2 + small_l,
lz // 2 - small_l:lz // 2 + small_l] = 1
data[lx // 2 - small_l + 1:lx // 2 + small_l - 1,
ly // 2 - small_l + 1:ly // 2 + small_l - 1,
lz // 2 - small_l + 1:lz // 2 + small_l - 1] = 0
# make a hole
hole_size = np.max([1, small_l // 8])
data[lx // 2 - small_l,
ly // 2 - hole_size:ly // 2 + hole_size,
lz // 2 - hole_size:lz // 2 + hole_size] = 0
seeds = np.zeros_like(data)
seeds[lx // 5, ly // 5, lz // 5] = 1
seeds[lx // 2 + small_l // 4,
ly // 2 - small_l // 4,
lz // 2 - small_l // 4] = 2
return data, seeds
def test_2d_bf():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
with expected_warnings([NUMPY_MATRIX_WARNING]):
labels_bf = random_walker(data, labels, beta=90, mode='bf')
assert (labels_bf[25:45, 40:60] == 2).all()
assert data.shape == labels.shape
with expected_warnings([NUMPY_MATRIX_WARNING]):
full_prob_bf = random_walker(data, labels, beta=90, mode='bf',
return_full_prob=True)
assert (full_prob_bf[1, 25:45, 40:60] >=
full_prob_bf[0, 25:45, 40:60]).all()
assert data.shape == labels.shape
# Now test with more than two labels
labels[55, 80] = 3
with expected_warnings([NUMPY_MATRIX_WARNING]):
full_prob_bf = random_walker(data, labels, beta=90, mode='bf',
return_full_prob=True)
assert (full_prob_bf[1, 25:45, 40:60] >=
full_prob_bf[0, 25:45, 40:60]).all()
assert len(full_prob_bf) == 3
assert data.shape == labels.shape
def test_2d_cg():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
labels_cg = random_walker(data, labels, beta=90, mode='cg')
assert (labels_cg[25:45, 40:60] == 2).all()
assert data.shape == labels.shape
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
full_prob = random_walker(data, labels, beta=90, mode='cg',
return_full_prob=True)
assert (full_prob[1, 25:45, 40:60] >=
full_prob[0, 25:45, 40:60]).all()
assert data.shape == labels.shape
return data, labels_cg
def test_2d_cg_mg():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
anticipated_warnings = [
'scipy.sparse.sparsetools|%s' % PYAMG_OR_SCIPY_WARNING,
NUMPY_MATRIX_WARNING]
with expected_warnings(anticipated_warnings):
labels_cg_mg = random_walker(data, labels, beta=90, mode='cg_mg')
assert (labels_cg_mg[25:45, 40:60] == 2).all()
assert data.shape == labels.shape
with expected_warnings(anticipated_warnings):
full_prob = random_walker(data, labels, beta=90, mode='cg_mg',
return_full_prob=True)
assert (full_prob[1, 25:45, 40:60] >=
full_prob[0, 25:45, 40:60]).all()
assert data.shape == labels.shape
return data, labels_cg_mg
def test_2d_cg_j():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
with expected_warnings([NUMPY_MATRIX_WARNING]):
labels_cg = random_walker(data, labels, beta=90, mode='cg_j')
assert (labels_cg[25:45, 40:60] == 2).all()
assert data.shape == labels.shape
with expected_warnings([NUMPY_MATRIX_WARNING]):
full_prob = random_walker(data, labels, beta=90, mode='cg_j',
return_full_prob=True)
assert (full_prob[1, 25:45, 40:60]
>= full_prob[0, 25:45, 40:60]).all()
assert data.shape == labels.shape
def test_types():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
data = 255 * (data - data.min()) // (data.max() - data.min())
data = data.astype(np.uint8)
with expected_warnings([PYAMG_OR_SCIPY_WARNING, NUMPY_MATRIX_WARNING]):
labels_cg_mg = random_walker(data, labels, beta=90, mode='cg_mg')
assert (labels_cg_mg[25:45, 40:60] == 2).all()
assert data.shape == labels.shape
return data, labels_cg_mg
def test_reorder_labels():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
labels[labels == 2] = 4
with expected_warnings([NUMPY_MATRIX_WARNING]):
labels_bf = random_walker(data, labels, beta=90, mode='bf')
assert (labels_bf[25:45, 40:60] == 2).all()
assert data.shape == labels.shape
return data, labels_bf
def test_2d_inactive():
lx = 70
ly = 100
data, labels = make_2d_syntheticdata(lx, ly)
labels[10:20, 10:20] = -1
labels[46:50, 33:38] = -2
with expected_warnings([NUMPY_MATRIX_WARNING]):
labels = random_walker(data, labels, beta=90)
assert (labels.reshape((lx, ly))[25:45, 40:60] == 2).all()
assert data.shape == labels.shape
return data, labels
def test_3d():
n = 30
lx, ly, lz = n, n, n
data, labels = make_3d_syntheticdata(lx, ly, lz)
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
labels = random_walker(data, labels, mode='cg')
assert (labels.reshape(data.shape)[13:17, 13:17, 13:17] == 2).all()
assert data.shape == labels.shape
return data, labels
def test_3d_inactive():
n = 30
lx, ly, lz = n, n, n
data, labels = make_3d_syntheticdata(lx, ly, lz)
old_labels = np.copy(labels)
labels[5:25, 26:29, 26:29] = -1
after_labels = np.copy(labels)
with expected_warnings(['"cg" mode|CObject type' + '|'
+ SCIPY_RANK_WARNING, NUMPY_MATRIX_WARNING]):
labels = random_walker(data, labels, mode='cg')
assert (labels.reshape(data.shape)[13:17, 13:17, 13:17] == 2).all()
assert data.shape == labels.shape
return data, labels, old_labels, after_labels
def test_multispectral_2d():
lx, ly = 70, 100
data, labels = make_2d_syntheticdata(lx, ly)
data = data[..., np.newaxis].repeat(2, axis=-1) # Expect identical output
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
multi_labels = random_walker(data, labels, mode='cg',
multichannel=True)
assert data[..., 0].shape == labels.shape
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
single_labels = random_walker(data[..., 0], labels, mode='cg')
assert (multi_labels.reshape(labels.shape)[25:45, 40:60] == 2).all()
assert data[..., 0].shape == labels.shape
return data, multi_labels, single_labels, labels
def test_multispectral_3d():
n = 30
lx, ly, lz = n, n, n
data, labels = make_3d_syntheticdata(lx, ly, lz)
data = data[..., np.newaxis].repeat(2, axis=-1) # Expect identical output
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
multi_labels = random_walker(data, labels, mode='cg',
multichannel=True)
assert data[..., 0].shape == labels.shape
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
single_labels = random_walker(data[..., 0], labels, mode='cg')
assert (multi_labels.reshape(labels.shape)[13:17, 13:17, 13:17] == 2).all()
assert (single_labels.reshape(labels.shape)[13:17, 13:17, 13:17] == 2).all()
assert data[..., 0].shape == labels.shape
return data, multi_labels, single_labels, labels
def test_spacing_0():
n = 30
lx, ly, lz = n, n, n
data, _ = make_3d_syntheticdata(lx, ly, lz)
# Rescale `data` along Z axis
data_aniso = np.zeros((n, n, n // 2))
for i, yz in enumerate(data):
data_aniso[i, :, :] = resize(yz, (n, n // 2),
mode='constant',
anti_aliasing=False)
# Generate new labels
small_l = int(lx // 5)
labels_aniso = np.zeros_like(data_aniso)
labels_aniso[lx // 5, ly // 5, lz // 5] = 1
labels_aniso[lx // 2 + small_l // 4,
ly // 2 - small_l // 4,
lz // 4 - small_l // 8] = 2
# Test with `spacing` kwarg
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
labels_aniso = random_walker(data_aniso, labels_aniso, mode='cg',
spacing=(1., 1., 0.5))
assert (labels_aniso[13:17, 13:17, 7:9] == 2).all()
@xfail(condition=arch32,
reason=('Known test failure on 32-bit platforms. See links for '
'details: '
'https://github.com/scikit-image/scikit-image/issues/3091 '
'https://github.com/scikit-image/scikit-image/issues/3092'))
def test_spacing_1():
n = 30
lx, ly, lz = n, n, n
data, _ = make_3d_syntheticdata(lx, ly, lz)
# Rescale `data` along Y axis
# `resize` is not yet 3D capable, so this must be done by looping in 2D.
data_aniso = np.zeros((n, n * 2, n))
for i, yz in enumerate(data):
data_aniso[i, :, :] = resize(yz, (n * 2, n),
mode='constant',
anti_aliasing=False)
# Generate new labels
small_l = int(lx // 5)
labels_aniso = np.zeros_like(data_aniso)
labels_aniso[lx // 5, ly // 5, lz // 5] = 1
labels_aniso[lx // 2 + small_l // 4,
ly - small_l // 2,
lz // 2 - small_l // 4] = 2
# Test with `spacing` kwarg
# First, anisotropic along Y
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
labels_aniso = random_walker(data_aniso, labels_aniso, mode='cg',
spacing=(1., 2., 1.))
assert (labels_aniso[13:17, 26:34, 13:17] == 2).all()
# Rescale `data` along X axis
# `resize` is not yet 3D capable, so this must be done by looping in 2D.
data_aniso = np.zeros((n, n * 2, n))
for i in range(data.shape[1]):
data_aniso[i, :, :] = resize(data[:, 1, :], (n * 2, n),
mode='constant',
anti_aliasing=False)
# Generate new labels
small_l = int(lx // 5)
labels_aniso2 = np.zeros_like(data_aniso)
labels_aniso2[lx // 5, ly // 5, lz // 5] = 1
labels_aniso2[lx - small_l // 2,
ly // 2 + small_l // 4,
lz // 2 - small_l // 4] = 2
# Anisotropic along X
with expected_warnings(['"cg" mode' + '|' + SCIPY_RANK_WARNING,
NUMPY_MATRIX_WARNING]):
labels_aniso2 = random_walker(data_aniso,
labels_aniso2,
mode='cg', spacing=(2., 1., 1.))
assert (labels_aniso2[26:34, 13:17, 13:17] == 2).all()
def test_trivial_cases():
# When all voxels are labeled
img = np.ones((10, 10))
labels = np.ones((10, 10))
with expected_warnings(["Returning provided labels"]):
pass_through = random_walker(img, labels)
np.testing.assert_array_equal(pass_through, labels)
# When all voxels are labeled AND return_full_prob is True
labels[:, :5] = 3
expected = np.concatenate(((labels == 1)[..., np.newaxis],
(labels == 3)[..., np.newaxis]), axis=2)
with expected_warnings(["Returning provided labels"]):
test = random_walker(img, labels, return_full_prob=True)
np.testing.assert_array_equal(test, expected)
# Unlabeled voxels not connected to seed, so nothing can be done
img = np.full((10, 10), False)
object_A = np.array([(6,7), (6,8), (7,7), (7,8)])
object_B = np.array([(3,1), (4,1), (2,2), (3,2), (4,2), (2,3), (3,3)])
for x, y in np.vstack((object_A, object_B)):
img[y][x] = True
markers = np.zeros((10, 10), dtype=np.int8)
for x, y in object_B:
markers[y][x] = 1
markers[img == 0] = -1
with expected_warnings(["All unlabeled pixels are isolated"]):
output_labels = random_walker(img, markers)
assert np.all(output_labels[markers == 1] == 1)
# Here 0-labeled pixels could not be determined (no connexion to seed)
assert np.all(output_labels[markers == 0] == -1)
with expected_warnings(["All unlabeled pixels are isolated"]):
test = random_walker(img, markers, return_full_prob=True)
def test_length2_spacing():
# If this passes without raising an exception (warnings OK), the new
# spacing code is working properly.
np.random.seed(42)
img = np.ones((10, 10)) + 0.2 * np.random.normal(size=(10, 10))
labels = np.zeros((10, 10), dtype=np.uint8)
labels[2, 4] = 1
labels[6, 8] = 4
with expected_warnings([NUMPY_MATRIX_WARNING]):
random_walker(img, labels, spacing=(1., 2.))
def test_bad_inputs():
# Too few dimensions
img = np.ones(10)
labels = np.arange(10)
with testing.raises(ValueError):
random_walker(img, labels)
with testing.raises(ValueError):
random_walker(img, labels, multichannel=True)
# Too many dimensions
np.random.seed(42)
img = np.random.normal(size=(3, 3, 3, 3, 3))
labels = np.arange(3 ** 5).reshape(img.shape)
with testing.raises(ValueError):
random_walker(img, labels)
with testing.raises(ValueError):
random_walker(img, labels, multichannel=True)
# Spacing incorrect length
img = np.random.normal(size=(10, 10))
labels = np.zeros((10, 10))
labels[2, 4] = 2
labels[6, 8] = 5
with testing.raises(ValueError):
random_walker(img, labels, spacing=(1,))
# Invalid mode
img = np.random.normal(size=(10, 10))
labels = np.zeros((10, 10))
with testing.raises(ValueError):
random_walker(img, labels, mode='bad')
def test_isolated_seeds():
np.random.seed(0)
a = np.random.random((7, 7))
mask = - np.ones(a.shape)
# This pixel is an isolated seed
mask[1, 1] = 1
# Unlabeled pixels
mask[3:, 3:] = 0
# Seeds connected to unlabeled pixels
mask[4, 4] = 2
mask[6, 6] = 1
# Test that no error is raised, and that labels of isolated seeds are OK
with expected_warnings([NUMPY_MATRIX_WARNING]):
res = random_walker(a, mask)
assert res[1, 1] == 1
with expected_warnings([NUMPY_MATRIX_WARNING]):
res = random_walker(a, mask, return_full_prob=True)
assert res[0, 1, 1] == 1
assert res[1, 1, 1] == 0

View file

@ -0,0 +1,474 @@
from itertools import product
import pytest
import numpy as np
from skimage.segmentation import slic
from skimage._shared import testing
from skimage._shared.testing import test_parallel, assert_equal
@test_parallel()
def test_color_2d():
rnd = np.random.RandomState(0)
img = np.zeros((20, 21, 3))
img[:10, :10, 0] = 1
img[10:, :10, 1] = 1
img[10:, 10:, 2] = 1
img += 0.01 * rnd.normal(size=img.shape)
img[img > 1] = 1
img[img < 0] = 0
seg = slic(img, n_segments=4, sigma=0, enforce_connectivity=False,
start_label=0)
# we expect 4 segments
assert_equal(len(np.unique(seg)), 4)
assert_equal(seg.shape, img.shape[:-1])
assert_equal(seg[:10, :10], 0)
assert_equal(seg[10:, :10], 2)
assert_equal(seg[:10, 10:], 1)
assert_equal(seg[10:, 10:], 3)
def test_multichannel_2d():
rnd = np.random.RandomState(0)
img = np.zeros((20, 20, 8))
img[:10, :10, 0:2] = 1
img[:10, 10:, 2:4] = 1
img[10:, :10, 4:6] = 1
img[10:, 10:, 6:8] = 1
img += 0.01 * rnd.normal(size=img.shape)
img = np.clip(img, 0, 1, out=img)
seg = slic(img, n_segments=4, enforce_connectivity=False, start_label=0)
# we expect 4 segments
assert_equal(len(np.unique(seg)), 4)
assert_equal(seg.shape, img.shape[:-1])
assert_equal(seg[:10, :10], 0)
assert_equal(seg[10:, :10], 2)
assert_equal(seg[:10, 10:], 1)
assert_equal(seg[10:, 10:], 3)
def test_gray_2d():
rnd = np.random.RandomState(0)
img = np.zeros((20, 21))
img[:10, :10] = 0.33
img[10:, :10] = 0.67
img[10:, 10:] = 1.00
img += 0.0033 * rnd.normal(size=img.shape)
img[img > 1] = 1
img[img < 0] = 0
seg = slic(img, sigma=0, n_segments=4, compactness=1,
multichannel=False, convert2lab=False, start_label=0)
assert_equal(len(np.unique(seg)), 4)
assert_equal(seg.shape, img.shape)
assert_equal(seg[:10, :10], 0)
assert_equal(seg[10:, :10], 2)
assert_equal(seg[:10, 10:], 1)
assert_equal(seg[10:, 10:], 3)
def test_color_3d():
rnd = np.random.RandomState(0)
img = np.zeros((20, 21, 22, 3))
slices = []
for dim_size in img.shape[:-1]:
midpoint = dim_size // 2
slices.append((slice(None, midpoint), slice(midpoint, None)))
slices = list(product(*slices))
colors = list(product(*(([0, 1],) * 3)))
for s, c in zip(slices, colors):
img[s] = c
img += 0.01 * rnd.normal(size=img.shape)
img[img > 1] = 1
img[img < 0] = 0
seg = slic(img, sigma=0, n_segments=8, start_label=0)
assert_equal(len(np.unique(seg)), 8)
for s, c in zip(slices, range(8)):
assert_equal(seg[s], c)
def test_gray_3d():
rnd = np.random.RandomState(0)
img = np.zeros((20, 21, 22))
slices = []
for dim_size in img.shape:
midpoint = dim_size // 2
slices.append((slice(None, midpoint), slice(midpoint, None)))
slices = list(product(*slices))
shades = np.arange(0, 1.000001, 1.0 / 7)
for s, sh in zip(slices, shades):
img[s] = sh
img += 0.001 * rnd.normal(size=img.shape)
img[img > 1] = 1
img[img < 0] = 0
seg = slic(img, sigma=0, n_segments=8, compactness=1,
multichannel=False, convert2lab=False, start_label=0)
assert_equal(len(np.unique(seg)), 8)
for s, c in zip(slices, range(8)):
assert_equal(seg[s], c)
def test_list_sigma():
rnd = np.random.RandomState(0)
img = np.array([[1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1]], np.float)
img += 0.1 * rnd.normal(size=img.shape)
result_sigma = np.array([[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1]], np.int)
seg_sigma = slic(img, n_segments=2, sigma=[1, 50, 1],
multichannel=False, start_label=0)
assert_equal(seg_sigma, result_sigma)
def test_spacing():
rnd = np.random.RandomState(0)
img = np.array([[1, 1, 1, 0, 0],
[1, 1, 0, 0, 0]], np.float)
result_non_spaced = np.array([[0, 0, 0, 1, 1],
[0, 0, 1, 1, 1]], np.int)
result_spaced = np.array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1]], np.int)
img += 0.1 * rnd.normal(size=img.shape)
seg_non_spaced = slic(img, n_segments=2, sigma=0, multichannel=False,
compactness=1.0, start_label=0)
seg_spaced = slic(img, n_segments=2, sigma=0, spacing=[1, 500, 1],
compactness=1.0, multichannel=False, start_label=0)
assert_equal(seg_non_spaced, result_non_spaced)
assert_equal(seg_spaced, result_spaced)
def test_invalid_lab_conversion():
img = np.array([[1, 1, 1, 0, 0],
[1, 1, 0, 0, 0]], np.float) + 1
with testing.raises(ValueError):
slic(img, multichannel=True, convert2lab=True, start_label=0)
def test_enforce_connectivity():
img = np.array([[0, 0, 0, 1, 1, 1],
[1, 0, 0, 1, 1, 0],
[0, 0, 0, 1, 1, 0]], np.float)
segments_connected = slic(img, 2, compactness=0.0001,
enforce_connectivity=True,
convert2lab=False, start_label=0)
segments_disconnected = slic(img, 2, compactness=0.0001,
enforce_connectivity=False,
convert2lab=False, start_label=0)
# Make sure nothing fatal occurs (e.g. buffer overflow) at low values of
# max_size_factor
segments_connected_low_max = slic(img, 2, compactness=0.0001,
enforce_connectivity=True,
convert2lab=False,
max_size_factor=0.8,
start_label=0)
result_connected = np.array([[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1]], np.float)
result_disconnected = np.array([[0, 0, 0, 1, 1, 1],
[1, 0, 0, 1, 1, 0],
[0, 0, 0, 1, 1, 0]], np.float)
assert_equal(segments_connected, result_connected)
assert_equal(segments_disconnected, result_disconnected)
assert_equal(segments_connected_low_max, result_connected)
def test_slic_zero():
# Same as test_color_2d but with slic_zero=True
rnd = np.random.RandomState(0)
img = np.zeros((20, 21, 3))
img[:10, :10, 0] = 1
img[10:, :10, 1] = 1
img[10:, 10:, 2] = 1
img += 0.01 * rnd.normal(size=img.shape)
img[img > 1] = 1
img[img < 0] = 0
seg = slic(img, n_segments=4, sigma=0, slic_zero=True, start_label=0)
# we expect 4 segments
assert_equal(len(np.unique(seg)), 4)
assert_equal(seg.shape, img.shape[:-1])
assert_equal(seg[:10, :10], 0)
assert_equal(seg[10:, :10], 2)
assert_equal(seg[:10, 10:], 1)
assert_equal(seg[10:, 10:], 3)
def test_more_segments_than_pixels():
rnd = np.random.RandomState(0)
img = np.zeros((20, 21))
img[:10, :10] = 0.33
img[10:, :10] = 0.67
img[10:, 10:] = 1.00
img += 0.0033 * rnd.normal(size=img.shape)
img[img > 1] = 1
img[img < 0] = 0
seg = slic(img, sigma=0, n_segments=500, compactness=1,
multichannel=False, convert2lab=False, start_label=0)
assert np.all(seg.ravel() == np.arange(seg.size))
def test_color_2d_mask():
rnd = np.random.RandomState(0)
msk = np.zeros((20, 21))
msk[2:-2, 2:-2] = 1
img = np.zeros((20, 21, 3))
img[:10, :10, 0] = 1
img[10:, :10, 1] = 1
img[10:, 10:, 2] = 1
img += 0.01 * rnd.normal(size=img.shape)
np.clip(img, 0, 1, out=img)
seg = slic(img, n_segments=4, sigma=0, enforce_connectivity=False,
mask=msk)
# we expect 4 segments + masked area
assert_equal(len(np.unique(seg)), 5)
assert_equal(seg.shape, img.shape[:-1])
# segments
assert_equal(seg[2:10, 2:10], 1)
assert_equal(seg[10:-2, 2:10], 4)
assert_equal(seg[2:10, 10:-2], 2)
assert_equal(seg[10:-2, 10:-2], 3)
# non masked area
assert_equal(seg[:2, :], 0)
assert_equal(seg[-2:, :], 0)
assert_equal(seg[:, :2], 0)
assert_equal(seg[:, -2:], 0)
def test_multichannel_2d_mask():
rnd = np.random.RandomState(0)
msk = np.zeros((20, 20))
msk[2:-2, 2:-2] = 1
img = np.zeros((20, 20, 8))
img[:10, :10, 0:2] = 1
img[:10, 10:, 2:4] = 1
img[10:, :10, 4:6] = 1
img[10:, 10:, 6:8] = 1
img += 0.01 * rnd.normal(size=img.shape)
np.clip(img, 0, 1, out=img)
seg = slic(img, n_segments=4, enforce_connectivity=False,
mask=msk)
# we expect 4 segments + masked area
assert_equal(len(np.unique(seg)), 5)
assert_equal(seg.shape, img.shape[:-1])
# segments
assert_equal(seg[2:10, 2:10], 2)
assert_equal(seg[2:10, 10:-2], 1)
assert_equal(seg[10:-2, 2:10], 4)
assert_equal(seg[10:-2, 10:-2], 3)
# non masked area
assert_equal(seg[:2, :], 0)
assert_equal(seg[-2:, :], 0)
assert_equal(seg[:, :2], 0)
assert_equal(seg[:, -2:], 0)
def test_gray_2d_mask():
rnd = np.random.RandomState(0)
msk = np.zeros((20, 21))
msk[2:-2, 2:-2] = 1
img = np.zeros((20, 21))
img[:10, :10] = 0.33
img[10:, :10] = 0.67
img[10:, 10:] = 1.00
img += 0.0033 * rnd.normal(size=img.shape)
np.clip(img, 0, 1, out=img)
seg = slic(img, sigma=0, n_segments=4, compactness=1,
multichannel=False, convert2lab=False, mask=msk)
assert_equal(len(np.unique(seg)), 5)
assert_equal(seg.shape, img.shape)
# segments
assert_equal(seg[2:10, 2:10], 1)
assert_equal(seg[2:10, 10:-2], 2)
assert_equal(seg[10:-2, 2:10], 3)
assert_equal(seg[10:-2, 10:-2], 4)
# non masked area
assert_equal(seg[:2, :], 0)
assert_equal(seg[-2:, :], 0)
assert_equal(seg[:, :2], 0)
assert_equal(seg[:, -2:], 0)
def test_list_sigma_mask():
rnd = np.random.RandomState(0)
msk = np.zeros((2, 6))
msk[:, 1:-1] = 1
img = np.array([[1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1]], np.float)
img += 0.1 * rnd.normal(size=img.shape)
result_sigma = np.array([[0, 1, 1, 2, 2, 0],
[0, 1, 1, 2, 2, 0]], np.int)
seg_sigma = slic(img, n_segments=2, sigma=[1, 50, 1],
multichannel=False, mask=msk)
assert_equal(seg_sigma, result_sigma)
def test_spacing_mask():
rnd = np.random.RandomState(0)
msk = np.zeros((2, 5))
msk[:, 1:-1] = 1
img = np.array([[1, 1, 1, 0, 0],
[1, 1, 0, 0, 0]], np.float)
result_non_spaced = np.array([[0, 1, 1, 2, 0],
[0, 1, 2, 2, 0]], np.int)
result_spaced = np.array([[0, 1, 1, 1, 0],
[0, 2, 2, 2, 0]], np.int)
img += 0.1 * rnd.normal(size=img.shape)
seg_non_spaced = slic(img, n_segments=2, sigma=0, multichannel=False,
compactness=1.0, mask=msk)
seg_spaced = slic(img, n_segments=2, sigma=0, spacing=[1, 50, 1],
compactness=1.0, multichannel=False, mask=msk)
assert_equal(seg_non_spaced, result_non_spaced)
assert_equal(seg_spaced, result_spaced)
def test_enforce_connectivity_mask():
msk = np.zeros((3, 6))
msk[:, 1:-1] = 1
img = np.array([[0, 0, 0, 1, 1, 1],
[1, 0, 0, 1, 1, 0],
[0, 0, 0, 1, 1, 0]], np.float)
segments_connected = slic(img, 2, compactness=0.0001,
enforce_connectivity=True,
convert2lab=False, mask=msk)
segments_disconnected = slic(img, 2, compactness=0.0001,
enforce_connectivity=False,
convert2lab=False, mask=msk)
# Make sure nothing fatal occurs (e.g. buffer overflow) at low values of
# max_size_factor
segments_connected_low_max = slic(img, 2, compactness=0.0001,
enforce_connectivity=True,
convert2lab=False,
max_size_factor=0.8, mask=msk)
result_connected = np.array([[0, 1, 1, 2, 2, 0],
[0, 1, 1, 2, 2, 0],
[0, 1, 1, 2, 2, 0]], np.float)
result_disconnected = np.array([[0, 1, 1, 2, 2, 0],
[0, 1, 1, 2, 2, 0],
[0, 1, 1, 2, 2, 0]], np.float)
assert_equal(segments_connected, result_connected)
assert_equal(segments_disconnected, result_disconnected)
assert_equal(segments_connected_low_max, result_connected)
def test_slic_zero_mask():
rnd = np.random.RandomState(0)
msk = np.zeros((20, 21))
msk[2:-2, 2:-2] = 1
img = np.zeros((20, 21, 3))
img[:10, :10, 0] = 1
img[10:, :10, 1] = 1
img[10:, 10:, 2] = 1
img += 0.01 * rnd.normal(size=img.shape)
np.clip(img, 0, 1, out=img)
seg = slic(img, n_segments=4, sigma=0, slic_zero=True,
mask=msk)
# we expect 4 segments + masked area
assert_equal(len(np.unique(seg)), 5)
assert_equal(seg.shape, img.shape[:-1])
# segments
assert_equal(seg[2:10, 2:10], 1)
assert_equal(seg[2:10, 10:-2], 2)
assert_equal(seg[10:-2, 2:10], 3)
assert_equal(seg[10:-2, 10:-2], 4)
# non masked area
assert_equal(seg[:2, :], 0)
assert_equal(seg[-2:, :], 0)
assert_equal(seg[:, :2], 0)
assert_equal(seg[:, -2:], 0)
def test_more_segments_than_pixels_mask():
rnd = np.random.RandomState(0)
msk = np.zeros((20, 21))
msk[2:-2, 2:-2] = 1
img = np.zeros((20, 21))
img[:10, :10] = 0.33
img[10:, :10] = 0.67
img[10:, 10:] = 1.00
img += 0.0033 * rnd.normal(size=img.shape)
np.clip(img, 0, 1, out=img)
seg = slic(img, sigma=0, n_segments=500, compactness=1,
multichannel=False, convert2lab=False, mask=msk)
expected = np.arange(seg[2:-2, 2:-2].size) + 1
assert np.all(seg[2:-2, 2:-2].ravel() == expected)
def test_color_3d_mask():
msk = np.zeros((20, 21, 22))
msk[2:-2, 2:-2, 2:-2] = 1
rnd = np.random.RandomState(0)
img = np.zeros((20, 21, 22, 3))
slices = []
for dim_size in msk.shape:
midpoint = dim_size // 2
slices.append((slice(None, midpoint), slice(midpoint, None)))
slices = list(product(*slices))
colors = list(product(*(([0, 1],) * 3)))
for s, c in zip(slices, colors):
img[s] = c
img += 0.01 * rnd.normal(size=img.shape)
np.clip(img, 0, 1, out=img)
seg = slic(img, sigma=0, n_segments=8, mask=msk)
# we expect 8 segments + masked area
assert_equal(len(np.unique(seg)), 9)
for s, c in zip(slices, range(1, 9)):
assert_equal(seg[s][2:-2, 2:-2, 2:-2], c)
def test_gray_3d_mask():
msk = np.zeros((20, 21, 22))
msk[2:-2, 2:-2, 2:-2] = 1
rnd = np.random.RandomState(0)
img = np.zeros((20, 21, 22))
slices = []
for dim_size in img.shape:
midpoint = dim_size // 2
slices.append((slice(None, midpoint), slice(midpoint, None)))
slices = list(product(*slices))
shades = np.linspace(0, 1, 8)
for s, sh in zip(slices, shades):
img[s] = sh
img += 0.001 * rnd.normal(size=img.shape)
np.clip(img, 0, 1, out=img)
seg = slic(img, sigma=0, n_segments=8, multichannel=False,
convert2lab=False, mask=msk)
# we expect 8 segments + masked area
assert_equal(len(np.unique(seg)), 9)
for s, c in zip(slices, range(1, 9)):
assert_equal(seg[s][2:-2, 2:-2, 2:-2], c)
@pytest.mark.parametrize("dtype", ['float32', 'float64', 'uint8', 'int'])
def test_dtype_support(dtype):
img = np.random.rand(28, 28).astype(dtype)
# Simply run the function to assert that it runs without error
slic(img, start_label=1)

View file

@ -0,0 +1,498 @@
"""test_watershed.py - tests the watershed function
Originally part of CellProfiler, code licensed under both GPL and BSD licenses.
Website: http://www.cellprofiler.org
Copyright (c) 2003-2009 Massachusetts Institute of Technology
Copyright (c) 2009-2011 Broad Institute
All rights reserved.
Original author: Lee Kamentsky
"""
#Portions of this test were taken from scipy's watershed test in test_ndimage.py
#
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
# products derived from this software without specific prior
# written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import math
import unittest
import pytest
import numpy as np
from scipy import ndimage as ndi
from .._watershed import watershed
from skimage.measure import label
eps = 1e-12
blob = np.array([[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 204, 204, 204, 204, 204, 204, 255, 255, 255, 255, 255],
[255, 255, 255, 204, 204, 183, 153, 153, 153, 153, 183, 204, 204, 255, 255, 255],
[255, 255, 204, 183, 153, 141, 111, 103, 103, 111, 141, 153, 183, 204, 255, 255],
[255, 255, 204, 153, 111, 94, 72, 52, 52, 72, 94, 111, 153, 204, 255, 255],
[255, 255, 204, 153, 111, 72, 39, 1, 1, 39, 72, 111, 153, 204, 255, 255],
[255, 255, 204, 183, 141, 111, 72, 39, 39, 72, 111, 141, 183, 204, 255, 255],
[255, 255, 255, 204, 183, 141, 111, 72, 72, 111, 141, 183, 204, 255, 255, 255],
[255, 255, 255, 255, 204, 183, 141, 94, 94, 141, 183, 204, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 204, 153, 103, 103, 153, 204, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 204, 183, 141, 94, 94, 141, 183, 204, 255, 255, 255, 255],
[255, 255, 255, 204, 183, 141, 111, 72, 72, 111, 141, 183, 204, 255, 255, 255],
[255, 255, 204, 183, 141, 111, 72, 39, 39, 72, 111, 141, 183, 204, 255, 255],
[255, 255, 204, 153, 111, 72, 39, 1, 1, 39, 72, 111, 153, 204, 255, 255],
[255, 255, 204, 153, 111, 94, 72, 52, 52, 72, 94, 111, 153, 204, 255, 255],
[255, 255, 204, 183, 153, 141, 111, 103, 103, 111, 141, 153, 183, 204, 255, 255],
[255, 255, 255, 204, 204, 183, 153, 153, 153, 153, 183, 204, 204, 255, 255, 255],
[255, 255, 255, 255, 255, 204, 204, 204, 204, 204, 204, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255]])
def diff(a, b):
if not isinstance(a, np.ndarray):
a = np.asarray(a)
if not isinstance(b, np.ndarray):
b = np.asarray(b)
if (0 in a.shape) and (0 in b.shape):
return 0.0
b[a == 0] = 0
if (a.dtype in [np.complex64, np.complex128] or
b.dtype in [np.complex64, np.complex128]):
a = np.asarray(a, np.complex128)
b = np.asarray(b, np.complex128)
t = ((a.real - b.real)**2).sum() + ((a.imag - b.imag)**2).sum()
else:
a = np.asarray(a)
a = a.astype(np.float64)
b = np.asarray(b)
b = b.astype(np.float64)
t = ((a - b)**2).sum()
return math.sqrt(t)
class TestWatershed(unittest.TestCase):
eight = np.ones((3, 3), bool)
def test_watershed01(self):
"watershed 1"
data = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[ -1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0]],
np.int8)
out = watershed(data, markers, self.eight)
expected = np.array([[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]])
error = diff(expected, out)
assert error < eps
def test_watershed02(self):
"watershed 2"
data = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[-1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.int8)
out = watershed(data, markers)
error = diff([[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, 1, 1, 1, -1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, -1, 1, 1, 1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], out)
self.assertTrue(error < eps)
def test_watershed03(self):
"watershed 3"
data = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 2, 0, 3, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, -1]], np.int8)
out = watershed(data, markers)
error = diff([[-1, -1, -1, -1, -1, -1, -1],
[-1, 0, 2, 0, 3, 0, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 0, 2, 0, 3, 0, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], out)
self.assertTrue(error < eps)
def test_watershed04(self):
"watershed 4"
data = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 2, 0, 3, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, -1]], np.int8)
out = watershed(data, markers, self.eight)
error = diff([[-1, -1, -1, -1, -1, -1, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, 2, 2, 0, 3, 3, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], out)
self.assertTrue(error < eps)
def test_watershed05(self):
"watershed 5"
data = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 3, 0, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, -1]], np.int8)
out = watershed(data, markers, self.eight)
error = diff([[-1, -1, -1, -1, -1, -1, -1],
[-1, 3, 3, 0, 2, 2, -1],
[-1, 3, 3, 0, 2, 2, -1],
[-1, 3, 3, 0, 2, 2, -1],
[-1, 3, 3, 0, 2, 2, -1],
[-1, 3, 3, 0, 2, 2, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], out)
self.assertTrue(error < eps)
def test_watershed06(self):
"watershed 6"
data = np.array([[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)
markers = np.array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0]], np.int8)
out = watershed(data, markers, self.eight)
error = diff([[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1]], out)
self.assertTrue(error < eps)
def test_watershed07(self):
"A regression test of a competitive case that failed"
data = blob
mask = (data != 255)
markers = np.zeros(data.shape, int)
markers[6, 7] = 1
markers[14, 7] = 2
out = watershed(data, markers, self.eight, mask=mask)
#
# The two objects should be the same size, except possibly for the
# border region
#
size1 = np.sum(out == 1)
size2 = np.sum(out == 2)
self.assertTrue(abs(size1 - size2) <= 6)
def test_watershed08(self):
"The border pixels + an edge are all the same value"
data = blob.copy()
data[10, 7:9] = 141
mask = (data != 255)
markers = np.zeros(data.shape, int)
markers[6, 7] = 1
markers[14, 7] = 2
out = watershed(data, markers, self.eight, mask=mask)
#
# The two objects should be the same size, except possibly for the
# border region
#
size1 = np.sum(out == 1)
size2 = np.sum(out == 2)
self.assertTrue(abs(size1 - size2) <= 6)
def test_watershed09(self):
"""Test on an image of reasonable size
This is here both for timing (does it take forever?) and to
ensure that the memory constraints are reasonable
"""
image = np.zeros((1000, 1000))
coords = np.random.uniform(0, 1000, (100, 2)).astype(int)
markers = np.zeros((1000, 1000), int)
idx = 1
for x, y in coords:
image[x, y] = 1
markers[x, y] = idx
idx += 1
image = ndi.gaussian_filter(image, 4)
watershed(image, markers, self.eight)
ndi.watershed_ift(image.astype(np.uint16), markers, self.eight)
def test_watershed10(self):
"watershed 10"
data = np.array([[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]], np.uint8)
markers = np.array([[1, 0, 0, 2],
[0, 0, 0, 0],
[0, 0, 0, 0],
[3, 0, 0, 4]], np.int8)
out = watershed(data, markers, self.eight)
error = diff([[1, 1, 2, 2],
[1, 1, 2, 2],
[3, 3, 4, 4],
[3, 3, 4, 4]], out)
self.assertTrue(error < eps)
def test_watershed11(self):
'''Make sure that all points on this plateau are assigned to closest seed'''
# https://github.com/scikit-image/scikit-image/issues/803
#
# Make sure that no point in a level image is farther away
# from its seed than any other
#
image = np.zeros((21, 21))
markers = np.zeros((21, 21), int)
markers[5, 5] = 1
markers[5, 10] = 2
markers[10, 5] = 3
markers[10, 10] = 4
structure = np.array([[False, True, False],
[True, True, True],
[False, True, False]])
out = watershed(image, markers, structure)
i, j = np.mgrid[0:21, 0:21]
d = np.dstack(
[np.sqrt((i.astype(float)-i0)**2, (j.astype(float)-j0)**2)
for i0, j0 in ((5, 5), (5, 10), (10, 5), (10, 10))])
dmin = np.min(d, 2)
self.assertTrue(np.all(d[i, j, out[i, j]-1] == dmin))
def test_watershed12(self):
"The watershed line"
data = np.array([[203, 255, 203, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153, 153],
[203, 255, 203, 153, 153, 153, 102, 102, 102, 102, 102, 102, 153, 153, 153, 153],
[203, 255, 203, 203, 153, 153, 102, 102, 77, 0, 102, 102, 153, 153, 203, 203],
[203, 255, 255, 203, 153, 153, 153, 102, 102, 102, 102, 153, 153, 203, 203, 255],
[203, 203, 255, 203, 203, 203, 153, 153, 153, 153, 153, 153, 203, 203, 255, 255],
[153, 203, 255, 255, 255, 203, 203, 203, 203, 203, 203, 203, 203, 255, 255, 203],
[153, 203, 203, 203, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 203, 203],
[153, 153, 153, 203, 203, 203, 203, 203, 255, 203, 203, 203, 203, 203, 203, 153],
[102, 102, 153, 153, 153, 153, 203, 203, 255, 203, 203, 255, 203, 153, 153, 153],
[102, 102, 102, 102, 102, 153, 203, 255, 255, 203, 203, 203, 203, 153, 102, 153],
[102, 51, 51, 102, 102, 153, 203, 255, 203, 203, 153, 153, 153, 153, 102, 153],
[ 77, 51, 51, 102, 153, 153, 203, 255, 203, 203, 203, 153, 102, 102, 102, 153],
[ 77, 0, 51, 102, 153, 203, 203, 255, 203, 255, 203, 153, 102, 51, 102, 153],
[ 77, 0, 51, 102, 153, 203, 255, 255, 203, 203, 203, 153, 102, 0, 102, 153],
[102, 0, 51, 102, 153, 203, 255, 203, 203, 153, 153, 153, 102, 102, 102, 153],
[102, 102, 102, 102, 153, 203, 255, 203, 153, 153, 153, 153, 153, 153, 153, 153]])
markerbin = (data==0)
marker = label(markerbin)
ws = watershed(data, marker, connectivity=2, watershed_line=True)
for lab, area in zip(range(4), [34,74,74,74]):
self.assertTrue(np.sum(ws == lab) == area)
def test_compact_watershed():
image = np.zeros((5, 6))
image[:, 3:] = 1
seeds = np.zeros((5, 6), dtype=int)
seeds[2, 0] = 1
seeds[2, 3] = 2
compact = watershed(image, seeds, compactness=0.01)
expected = np.array([[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2]], dtype=int)
np.testing.assert_equal(compact, expected)
normal = watershed(image, seeds)
expected = np.ones(image.shape, dtype=int)
expected[2, 3:] = 2
np.testing.assert_equal(normal, expected)
def test_numeric_seed_watershed():
"""Test that passing just the number of seeds to watershed works."""
image = np.zeros((5, 6))
image[:, 3:] = 1
compact = watershed(image, 2, compactness=0.01)
expected = np.array([[1, 1, 1, 1, 2, 2],
[1, 1, 1, 1, 2, 2],
[1, 1, 1, 1, 2, 2],
[1, 1, 1, 1, 2, 2],
[1, 1, 1, 1, 2, 2]], dtype=np.int32)
np.testing.assert_equal(compact, expected)
def test_incorrect_markers_shape():
with pytest.raises(ValueError):
image = np.ones((5, 6))
markers = np.ones((5, 7))
output = watershed(image, markers)
def test_incorrect_mask_shape():
with pytest.raises(ValueError):
image = np.ones((5, 6))
mask = np.ones((5, 7))
output = watershed(image, markers=4, mask=mask)
def test_markers_in_mask():
data = blob
mask = (data != 255)
out = watershed(data, 25, connectivity=2, mask=mask)
# There should be no markers where the mask is false
assert np.all(out[~mask] == 0)
def test_no_markers():
data = blob
mask = (data != 255)
out = watershed(data, mask=mask)
assert np.max(out) == 2
if __name__ == "__main__":
np.testing.run_module_suite()