Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
227
venv/Lib/site-packages/skimage/segmentation/_watershed.py
Normal file
227
venv/Lib/site-packages/skimage/segmentation/_watershed.py
Normal file
|
@ -0,0 +1,227 @@
|
|||
"""watershed.py - watershed algorithm
|
||||
|
||||
This module implements a watershed algorithm that apportions pixels into
|
||||
marked basins. The algorithm uses a priority queue to hold the pixels
|
||||
with the metric for the priority queue being pixel value, then the time
|
||||
of entry into the queue - this settles ties in favor of the closest marker.
|
||||
|
||||
Some ideas taken from
|
||||
Soille, "Automated Basin Delineation from Digital Elevation Models Using
|
||||
Mathematical Morphology", Signal Processing 20 (1990) 171-182.
|
||||
|
||||
The most important insight in the paper is that entry time onto the queue
|
||||
solves two problems: a pixel should be assigned to the neighbor with the
|
||||
largest gradient or, if there is no gradient, pixels on a plateau should
|
||||
be split between markers on opposite sides.
|
||||
|
||||
Originally part of CellProfiler, code licensed under both GPL and BSD licenses.
|
||||
Website: http://www.cellprofiler.org
|
||||
|
||||
Copyright (c) 2003-2009 Massachusetts Institute of Technology
|
||||
Copyright (c) 2009-2011 Broad Institute
|
||||
All rights reserved.
|
||||
|
||||
Original author: Lee Kamentsky
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from scipy import ndimage as ndi
|
||||
|
||||
from . import _watershed_cy
|
||||
from ..morphology.extrema import local_minima
|
||||
from ..morphology._util import (_validate_connectivity,
|
||||
_offsets_to_raveled_neighbors)
|
||||
from ..util import crop, regular_seeds
|
||||
|
||||
|
||||
def _validate_inputs(image, markers, mask, connectivity):
|
||||
"""Ensure that all inputs to watershed have matching shapes and types.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : array
|
||||
The input image.
|
||||
markers : int or array of int
|
||||
The marker image.
|
||||
mask : array, or None
|
||||
A boolean mask, True where we want to compute the watershed.
|
||||
connectivity : int in {1, ..., image.ndim}
|
||||
The connectivity of the neighborhood of a pixel.
|
||||
|
||||
Returns
|
||||
-------
|
||||
image, markers, mask : arrays
|
||||
The validated and formatted arrays. Image will have dtype float64,
|
||||
markers int32, and mask int8. If ``None`` was given for the mask,
|
||||
it is a volume of all 1s.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If the shapes of the given arrays don't match.
|
||||
"""
|
||||
n_pixels = image.size
|
||||
if mask is None:
|
||||
# Use a complete `True` mask if none is provided
|
||||
mask = np.ones(image.shape, bool)
|
||||
else:
|
||||
mask = np.asanyarray(mask, dtype=bool)
|
||||
n_pixels = np.sum(mask)
|
||||
if mask.shape != image.shape:
|
||||
message = ("`mask` (shape {}) must have same shape as "
|
||||
"`image` (shape {})".format(mask.shape, image.shape))
|
||||
raise ValueError(message)
|
||||
if markers is None:
|
||||
markers_bool = local_minima(image, connectivity=connectivity) * mask
|
||||
markers = ndi.label(markers_bool)[0]
|
||||
elif not isinstance(markers, (np.ndarray, list, tuple)):
|
||||
# not array-like, assume int
|
||||
# given int, assume that number of markers *within mask*.
|
||||
markers = regular_seeds(image.shape,
|
||||
int(markers / (n_pixels / image.size)))
|
||||
markers *= mask
|
||||
else:
|
||||
markers = np.asanyarray(markers) * mask
|
||||
if markers.shape != image.shape:
|
||||
message = ("`markers` (shape {}) must have same shape as "
|
||||
"`image` (shape {})".format(markers.shape, image.shape))
|
||||
raise ValueError(message)
|
||||
return (image.astype(np.float64),
|
||||
markers.astype(np.int32),
|
||||
mask.astype(np.int8))
|
||||
|
||||
|
||||
def watershed(image, markers=None, connectivity=1, offset=None, mask=None,
|
||||
compactness=0, watershed_line=False):
|
||||
"""Find watershed basins in `image` flooded from given `markers`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray (2-D, 3-D, ...) of integers
|
||||
Data array where the lowest value points are labeled first.
|
||||
markers : int, or ndarray of int, same shape as `image`, optional
|
||||
The desired number of markers, or an array marking the basins with the
|
||||
values to be assigned in the label matrix. Zero means not a marker. If
|
||||
``None`` (no markers given), the local minima of the image are used as
|
||||
markers.
|
||||
connectivity : ndarray, optional
|
||||
An array with the same number of dimensions as `image` whose
|
||||
non-zero elements indicate neighbors for connection.
|
||||
Following the scipy convention, default is a one-connected array of
|
||||
the dimension of the image.
|
||||
offset : array_like of shape image.ndim, optional
|
||||
offset of the connectivity (one offset per dimension)
|
||||
mask : ndarray of bools or 0s and 1s, optional
|
||||
Array of same shape as `image`. Only points at which mask == True
|
||||
will be labeled.
|
||||
compactness : float, optional
|
||||
Use compact watershed [3]_ with given compactness parameter.
|
||||
Higher values result in more regularly-shaped watershed basins.
|
||||
watershed_line : bool, optional
|
||||
If watershed_line is True, a one-pixel wide line separates the regions
|
||||
obtained by the watershed algorithm. The line has the label 0.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
A labeled matrix of the same type and shape as markers
|
||||
|
||||
See also
|
||||
--------
|
||||
skimage.segmentation.random_walker: random walker segmentation
|
||||
A segmentation algorithm based on anisotropic diffusion, usually
|
||||
slower than the watershed but with good results on noisy data and
|
||||
boundaries with holes.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function implements a watershed algorithm [1]_ [2]_ that apportions
|
||||
pixels into marked basins. The algorithm uses a priority queue to hold
|
||||
the pixels with the metric for the priority queue being pixel value, then
|
||||
the time of entry into the queue - this settles ties in favor of the
|
||||
closest marker.
|
||||
|
||||
Some ideas taken from
|
||||
Soille, "Automated Basin Delineation from Digital Elevation Models Using
|
||||
Mathematical Morphology", Signal Processing 20 (1990) 171-182
|
||||
|
||||
The most important insight in the paper is that entry time onto the queue
|
||||
solves two problems: a pixel should be assigned to the neighbor with the
|
||||
largest gradient or, if there is no gradient, pixels on a plateau should
|
||||
be split between markers on opposite sides.
|
||||
|
||||
This implementation converts all arguments to specific, lowest common
|
||||
denominator types, then passes these to a C algorithm.
|
||||
|
||||
Markers can be determined manually, or automatically using for example
|
||||
the local minima of the gradient of the image, or the local maxima of the
|
||||
distance function to the background for separating overlapping objects
|
||||
(see example).
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] https://en.wikipedia.org/wiki/Watershed_%28image_processing%29
|
||||
|
||||
.. [2] http://cmm.ensmp.fr/~beucher/wtshed.html
|
||||
|
||||
.. [3] Peer Neubert & Peter Protzel (2014). Compact Watershed and
|
||||
Preemptive SLIC: On Improving Trade-offs of Superpixel Segmentation
|
||||
Algorithms. ICPR 2014, pp 996-1001. :DOI:`10.1109/ICPR.2014.181`
|
||||
https://www.tu-chemnitz.de/etit/proaut/publications/cws_pSLIC_ICPR.pdf
|
||||
|
||||
Examples
|
||||
--------
|
||||
The watershed algorithm is useful to separate overlapping objects.
|
||||
|
||||
We first generate an initial image with two overlapping circles:
|
||||
|
||||
>>> x, y = np.indices((80, 80))
|
||||
>>> x1, y1, x2, y2 = 28, 28, 44, 52
|
||||
>>> r1, r2 = 16, 20
|
||||
>>> mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2
|
||||
>>> mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2
|
||||
>>> image = np.logical_or(mask_circle1, mask_circle2)
|
||||
|
||||
Next, we want to separate the two circles. We generate markers at the
|
||||
maxima of the distance to the background:
|
||||
|
||||
>>> from scipy import ndimage as ndi
|
||||
>>> distance = ndi.distance_transform_edt(image)
|
||||
>>> from skimage.feature import peak_local_max
|
||||
>>> local_maxi = peak_local_max(distance, labels=image,
|
||||
... footprint=np.ones((3, 3)),
|
||||
... indices=False)
|
||||
>>> markers = ndi.label(local_maxi)[0]
|
||||
|
||||
Finally, we run the watershed on the image and markers:
|
||||
|
||||
>>> labels = watershed(-distance, markers, mask=image)
|
||||
|
||||
The algorithm works also for 3-D images, and can be used for example to
|
||||
separate overlapping spheres.
|
||||
"""
|
||||
image, markers, mask = _validate_inputs(image, markers, mask, connectivity)
|
||||
connectivity, offset = _validate_connectivity(image.ndim, connectivity,
|
||||
offset)
|
||||
|
||||
# pad the image, markers, and mask so that we can use the mask to
|
||||
# keep from running off the edges
|
||||
pad_width = [(p, p) for p in offset]
|
||||
image = np.pad(image, pad_width, mode='constant')
|
||||
mask = np.pad(mask, pad_width, mode='constant').ravel()
|
||||
output = np.pad(markers, pad_width, mode='constant')
|
||||
|
||||
flat_neighborhood = _offsets_to_raveled_neighbors(
|
||||
image.shape, connectivity, center=offset)
|
||||
marker_locations = np.flatnonzero(output)
|
||||
image_strides = np.array(image.strides, dtype=np.intp) // image.itemsize
|
||||
|
||||
_watershed_cy.watershed_raveled(image.ravel(),
|
||||
marker_locations, flat_neighborhood,
|
||||
mask, image_strides, compactness,
|
||||
output.ravel(),
|
||||
watershed_line)
|
||||
|
||||
output = crop(output, pad_width, copy=True)
|
||||
|
||||
return output
|
Loading…
Add table
Add a link
Reference in a new issue