Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
935
venv/Lib/site-packages/skimage/restoration/_denoise.py
Normal file
935
venv/Lib/site-packages/skimage/restoration/_denoise.py
Normal file
|
@ -0,0 +1,935 @@
|
|||
import scipy.stats
|
||||
import numpy as np
|
||||
from math import ceil
|
||||
from .. import img_as_float
|
||||
from ._denoise_cy import _denoise_bilateral, _denoise_tv_bregman
|
||||
from .._shared.utils import warn
|
||||
import pywt
|
||||
import skimage.color as color
|
||||
from skimage.color.colorconv import ycbcr_from_rgb
|
||||
import numbers
|
||||
|
||||
|
||||
def _gaussian_weight(array, sigma_squared, *, dtype=float):
|
||||
"""Helping function. Define a Gaussian weighting from array and
|
||||
sigma_square.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
array : ndarray
|
||||
Input array.
|
||||
sigma_squared : float
|
||||
The squared standard deviation used in the filter.
|
||||
dtype : data type object, optional (default : float)
|
||||
The type and size of the data to be returned.
|
||||
|
||||
Returns
|
||||
-------
|
||||
gaussian : ndarray
|
||||
The input array filtered by the Gaussian.
|
||||
"""
|
||||
return np.exp(-0.5 * (array ** 2 / sigma_squared), dtype=dtype)
|
||||
|
||||
|
||||
def _compute_color_lut(bins, sigma, max_value, *, dtype=float):
|
||||
"""Helping function. Define a lookup table containing Gaussian filter
|
||||
values using the color distance sigma.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bins : int
|
||||
Number of discrete values for Gaussian weights of color filtering.
|
||||
A larger value results in improved accuracy.
|
||||
sigma : float
|
||||
Standard deviation for grayvalue/color distance (radiometric
|
||||
similarity). A larger value results in averaging of pixels with larger
|
||||
radiometric differences. Note, that the image will be converted using
|
||||
the `img_as_float` function and thus the standard deviation is in
|
||||
respect to the range ``[0, 1]``. If the value is ``None`` the standard
|
||||
deviation of the ``image`` will be used.
|
||||
max_value : float
|
||||
Maximum value of the input image.
|
||||
dtype : data type object, optional (default : float)
|
||||
The type and size of the data to be returned.
|
||||
|
||||
Returns
|
||||
-------
|
||||
color_lut : ndarray
|
||||
Lookup table for the color distance sigma.
|
||||
"""
|
||||
values = np.linspace(0, max_value, bins, endpoint=False)
|
||||
return _gaussian_weight(values, sigma**2, dtype=dtype)
|
||||
|
||||
|
||||
def _compute_spatial_lut(win_size, sigma, *, dtype=float):
|
||||
"""Helping function. Define a lookup table containing Gaussian filter
|
||||
values using the spatial sigma.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
win_size : int
|
||||
Window size for filtering.
|
||||
If win_size is not specified, it is calculated as
|
||||
``max(5, 2 * ceil(3 * sigma_spatial) + 1)``.
|
||||
sigma : float
|
||||
Standard deviation for range distance. A larger value results in
|
||||
averaging of pixels with larger spatial differences.
|
||||
dtype : data type object
|
||||
The type and size of the data to be returned.
|
||||
|
||||
Returns
|
||||
-------
|
||||
spatial_lut : ndarray
|
||||
Lookup table for the spatial sigma.
|
||||
"""
|
||||
grid_points = np.arange(-win_size // 2, win_size // 2 + 1)
|
||||
rr, cc = np.meshgrid(grid_points, grid_points, indexing='ij')
|
||||
distances = np.hypot(rr, cc)
|
||||
return _gaussian_weight(distances, sigma**2, dtype=dtype).ravel()
|
||||
|
||||
|
||||
def denoise_bilateral(image, win_size=None, sigma_color=None, sigma_spatial=1,
|
||||
bins=10000, mode='constant', cval=0, multichannel=False):
|
||||
"""Denoise image using bilateral filter.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray, shape (M, N[, 3])
|
||||
Input image, 2D grayscale or RGB.
|
||||
win_size : int
|
||||
Window size for filtering.
|
||||
If win_size is not specified, it is calculated as
|
||||
``max(5, 2 * ceil(3 * sigma_spatial) + 1)``.
|
||||
sigma_color : float
|
||||
Standard deviation for grayvalue/color distance (radiometric
|
||||
similarity). A larger value results in averaging of pixels with larger
|
||||
radiometric differences. Note, that the image will be converted using
|
||||
the `img_as_float` function and thus the standard deviation is in
|
||||
respect to the range ``[0, 1]``. If the value is ``None`` the standard
|
||||
deviation of the ``image`` will be used.
|
||||
sigma_spatial : float
|
||||
Standard deviation for range distance. A larger value results in
|
||||
averaging of pixels with larger spatial differences.
|
||||
bins : int
|
||||
Number of discrete values for Gaussian weights of color filtering.
|
||||
A larger value results in improved accuracy.
|
||||
mode : {'constant', 'edge', 'symmetric', 'reflect', 'wrap'}
|
||||
How to handle values outside the image borders. See
|
||||
`numpy.pad` for detail.
|
||||
cval : string
|
||||
Used in conjunction with mode 'constant', the value outside
|
||||
the image boundaries.
|
||||
multichannel : bool
|
||||
Whether the last axis of the image is to be interpreted as multiple
|
||||
channels or another spatial dimension.
|
||||
|
||||
Returns
|
||||
-------
|
||||
denoised : ndarray
|
||||
Denoised image.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This is an edge-preserving, denoising filter. It averages pixels based on
|
||||
their spatial closeness and radiometric similarity [1]_.
|
||||
|
||||
Spatial closeness is measured by the Gaussian function of the Euclidean
|
||||
distance between two pixels and a certain standard deviation
|
||||
(`sigma_spatial`).
|
||||
|
||||
Radiometric similarity is measured by the Gaussian function of the
|
||||
Euclidean distance between two color values and a certain standard
|
||||
deviation (`sigma_color`).
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] C. Tomasi and R. Manduchi. "Bilateral Filtering for Gray and Color
|
||||
Images." IEEE International Conference on Computer Vision (1998)
|
||||
839-846. :DOI:`10.1109/ICCV.1998.710815`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from skimage import data, img_as_float
|
||||
>>> astro = img_as_float(data.astronaut())
|
||||
>>> astro = astro[220:300, 220:320]
|
||||
>>> noisy = astro + 0.6 * astro.std() * np.random.random(astro.shape)
|
||||
>>> noisy = np.clip(noisy, 0, 1)
|
||||
>>> denoised = denoise_bilateral(noisy, sigma_color=0.05, sigma_spatial=15,
|
||||
... multichannel=True)
|
||||
"""
|
||||
if multichannel:
|
||||
if image.ndim != 3:
|
||||
if image.ndim == 2:
|
||||
raise ValueError("Use ``multichannel=False`` for 2D grayscale "
|
||||
"images. The last axis of the input image "
|
||||
"must be multiple color channels not another "
|
||||
"spatial dimension.")
|
||||
else:
|
||||
raise ValueError("Bilateral filter is only implemented for "
|
||||
"2D grayscale images (image.ndim == 2) and "
|
||||
"2D multichannel (image.ndim == 3) images, "
|
||||
"but the input image has {0} dimensions. "
|
||||
"".format(image.ndim))
|
||||
elif image.shape[2] not in (3, 4):
|
||||
if image.shape[2] > 4:
|
||||
msg = ("The last axis of the input image is interpreted as "
|
||||
"channels. Input image with shape {0} has {1} channels "
|
||||
"in last axis. ``denoise_bilateral`` is implemented "
|
||||
"for 2D grayscale and color images only")
|
||||
warn(msg.format(image.shape, image.shape[2]))
|
||||
else:
|
||||
msg = "Input image must be grayscale, RGB, or RGBA; " \
|
||||
"but has shape {0}."
|
||||
warn(msg.format(image.shape))
|
||||
else:
|
||||
if image.ndim > 2:
|
||||
raise ValueError("Bilateral filter is not implemented for "
|
||||
"grayscale images of 3 or more dimensions, "
|
||||
"but input image has {0} dimension. Use "
|
||||
"``multichannel=True`` for 2-D RGB "
|
||||
"images.".format(image.shape))
|
||||
|
||||
if win_size is None:
|
||||
win_size = max(5, 2 * int(ceil(3 * sigma_spatial)) + 1)
|
||||
|
||||
min_value = image.min()
|
||||
max_value = image.max()
|
||||
|
||||
if min_value == max_value:
|
||||
return image
|
||||
|
||||
# if image.max() is 0, then dist_scale can have an unverified value
|
||||
# and color_lut[<int>(dist * dist_scale)] may cause a segmentation fault
|
||||
# so we verify we have a positive image and that the max is not 0.0.
|
||||
if min_value < 0.0:
|
||||
raise ValueError("Image must contain only positive values")
|
||||
|
||||
if max_value == 0.0:
|
||||
raise ValueError("The maximum value found in the image was 0.")
|
||||
|
||||
image = np.atleast_3d(img_as_float(image))
|
||||
image = np.ascontiguousarray(image)
|
||||
|
||||
sigma_color = sigma_color or image.std()
|
||||
|
||||
color_lut = _compute_color_lut(bins, sigma_color, max_value,
|
||||
dtype=image.dtype)
|
||||
|
||||
range_lut = _compute_spatial_lut(win_size, sigma_spatial, dtype=image.dtype)
|
||||
|
||||
out = np.empty(image.shape, dtype=image.dtype)
|
||||
|
||||
dims = image.shape[2]
|
||||
|
||||
# There are a number of arrays needed in the Cython function.
|
||||
# It's easier to allocate them outside of Cython so that all
|
||||
# arrays are in the same type, then just copy the empty array
|
||||
# where needed within Cython.
|
||||
empty_dims = np.empty(dims, dtype=image.dtype)
|
||||
|
||||
return _denoise_bilateral(image, image.max(), win_size, sigma_color,
|
||||
sigma_spatial, bins, mode, cval, color_lut,
|
||||
range_lut, empty_dims, out)
|
||||
|
||||
|
||||
def denoise_tv_bregman(image, weight, max_iter=100, eps=1e-3, isotropic=True,
|
||||
*, multichannel=False):
|
||||
"""Perform total-variation denoising using split-Bregman optimization.
|
||||
|
||||
Total-variation denoising (also know as total-variation regularization)
|
||||
tries to find an image with less total-variation under the constraint
|
||||
of being similar to the input image, which is controlled by the
|
||||
regularization parameter ([1]_, [2]_, [3]_, [4]_).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
Input data to be denoised (converted using img_as_float`).
|
||||
weight : float
|
||||
Denoising weight. The smaller the `weight`, the more denoising (at
|
||||
the expense of less similarity to the `input`). The regularization
|
||||
parameter `lambda` is chosen as `2 * weight`.
|
||||
eps : float, optional
|
||||
Relative difference of the value of the cost function that determines
|
||||
the stop criterion. The algorithm stops when::
|
||||
|
||||
SUM((u(n) - u(n-1))**2) < eps
|
||||
|
||||
max_iter : int, optional
|
||||
Maximal number of iterations used for the optimization.
|
||||
isotropic : boolean, optional
|
||||
Switch between isotropic and anisotropic TV denoising.
|
||||
multichannel : bool, optional
|
||||
Apply total-variation denoising separately for each channel. This
|
||||
option should be true for color images, otherwise the denoising is
|
||||
also applied in the channels dimension.
|
||||
|
||||
Returns
|
||||
-------
|
||||
u : ndarray
|
||||
Denoised image.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] https://en.wikipedia.org/wiki/Total_variation_denoising
|
||||
.. [2] Tom Goldstein and Stanley Osher, "The Split Bregman Method For L1
|
||||
Regularized Problems",
|
||||
ftp://ftp.math.ucla.edu/pub/camreport/cam08-29.pdf
|
||||
.. [3] Pascal Getreuer, "Rudin–Osher–Fatemi Total Variation Denoising
|
||||
using Split Bregman" in Image Processing On Line on 2012–05–19,
|
||||
https://www.ipol.im/pub/art/2012/g-tvd/article_lr.pdf
|
||||
.. [4] https://web.math.ucsb.edu/~cgarcia/UGProjects/BregmanAlgorithms_JacquelineBush.pdf
|
||||
|
||||
"""
|
||||
image = np.atleast_3d(img_as_float(image))
|
||||
|
||||
rows = image.shape[0]
|
||||
cols = image.shape[1]
|
||||
dims = image.shape[2]
|
||||
|
||||
shape_ext = (rows + 2, cols + 2, dims)
|
||||
|
||||
out = np.zeros(shape_ext, image.dtype)
|
||||
|
||||
if multichannel:
|
||||
channel_out = np.zeros(shape_ext[:2] + (1,), dtype=out.dtype)
|
||||
for c in range(image.shape[-1]):
|
||||
# the algorithm below expects 3 dimensions to always be present.
|
||||
# slicing the array in this fashion preserves the channel dimension for us
|
||||
channel_in = np.ascontiguousarray(image[..., c:c+1])
|
||||
|
||||
_denoise_tv_bregman(channel_in, image.dtype.type(weight),
|
||||
max_iter, eps, isotropic, channel_out)
|
||||
|
||||
out[..., c] = channel_out[..., 0]
|
||||
|
||||
else:
|
||||
image = np.ascontiguousarray(image)
|
||||
|
||||
_denoise_tv_bregman(image, image.dtype.type(weight), max_iter, eps,
|
||||
isotropic, out)
|
||||
|
||||
return np.squeeze(out[1:-1, 1:-1])
|
||||
|
||||
|
||||
def _denoise_tv_chambolle_nd(image, weight=0.1, eps=2.e-4, n_iter_max=200):
|
||||
"""Perform total-variation denoising on n-dimensional images.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
n-D input data to be denoised.
|
||||
weight : float, optional
|
||||
Denoising weight. The greater `weight`, the more denoising (at
|
||||
the expense of fidelity to `input`).
|
||||
eps : float, optional
|
||||
Relative difference of the value of the cost function that determines
|
||||
the stop criterion. The algorithm stops when:
|
||||
|
||||
(E_(n-1) - E_n) < eps * E_0
|
||||
|
||||
n_iter_max : int, optional
|
||||
Maximal number of iterations used for the optimization.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
Denoised array of floats.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Rudin, Osher and Fatemi algorithm.
|
||||
"""
|
||||
|
||||
ndim = image.ndim
|
||||
p = np.zeros((image.ndim, ) + image.shape, dtype=image.dtype)
|
||||
g = np.zeros_like(p)
|
||||
d = np.zeros_like(image)
|
||||
i = 0
|
||||
while i < n_iter_max:
|
||||
if i > 0:
|
||||
# d will be the (negative) divergence of p
|
||||
d = -p.sum(0)
|
||||
slices_d = [slice(None), ] * ndim
|
||||
slices_p = [slice(None), ] * (ndim + 1)
|
||||
for ax in range(ndim):
|
||||
slices_d[ax] = slice(1, None)
|
||||
slices_p[ax+1] = slice(0, -1)
|
||||
slices_p[0] = ax
|
||||
d[tuple(slices_d)] += p[tuple(slices_p)]
|
||||
slices_d[ax] = slice(None)
|
||||
slices_p[ax+1] = slice(None)
|
||||
out = image + d
|
||||
else:
|
||||
out = image
|
||||
E = (d ** 2).sum()
|
||||
|
||||
# g stores the gradients of out along each axis
|
||||
# e.g. g[0] is the first order finite difference along axis 0
|
||||
slices_g = [slice(None), ] * (ndim + 1)
|
||||
for ax in range(ndim):
|
||||
slices_g[ax+1] = slice(0, -1)
|
||||
slices_g[0] = ax
|
||||
g[tuple(slices_g)] = np.diff(out, axis=ax)
|
||||
slices_g[ax+1] = slice(None)
|
||||
|
||||
norm = np.sqrt((g ** 2).sum(axis=0))[np.newaxis, ...]
|
||||
E += weight * norm.sum()
|
||||
tau = 1. / (2.*ndim)
|
||||
norm *= tau / weight
|
||||
norm += 1.
|
||||
p -= tau * g
|
||||
p /= norm
|
||||
E /= float(image.size)
|
||||
if i == 0:
|
||||
E_init = E
|
||||
E_previous = E
|
||||
else:
|
||||
if np.abs(E_previous - E) < eps * E_init:
|
||||
break
|
||||
else:
|
||||
E_previous = E
|
||||
i += 1
|
||||
return out
|
||||
|
||||
|
||||
def denoise_tv_chambolle(image, weight=0.1, eps=2.e-4, n_iter_max=200,
|
||||
multichannel=False):
|
||||
"""Perform total-variation denoising on n-dimensional images.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray of ints, uints or floats
|
||||
Input data to be denoised. `image` can be of any numeric type,
|
||||
but it is cast into an ndarray of floats for the computation
|
||||
of the denoised image.
|
||||
weight : float, optional
|
||||
Denoising weight. The greater `weight`, the more denoising (at
|
||||
the expense of fidelity to `input`).
|
||||
eps : float, optional
|
||||
Relative difference of the value of the cost function that
|
||||
determines the stop criterion. The algorithm stops when:
|
||||
|
||||
(E_(n-1) - E_n) < eps * E_0
|
||||
|
||||
n_iter_max : int, optional
|
||||
Maximal number of iterations used for the optimization.
|
||||
multichannel : bool, optional
|
||||
Apply total-variation denoising separately for each channel. This
|
||||
option should be true for color images, otherwise the denoising is
|
||||
also applied in the channels dimension.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
Denoised image.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Make sure to set the multichannel parameter appropriately for color images.
|
||||
|
||||
The principle of total variation denoising is explained in
|
||||
https://en.wikipedia.org/wiki/Total_variation_denoising
|
||||
|
||||
The principle of total variation denoising is to minimize the
|
||||
total variation of the image, which can be roughly described as
|
||||
the integral of the norm of the image gradient. Total variation
|
||||
denoising tends to produce "cartoon-like" images, that is,
|
||||
piecewise-constant images.
|
||||
|
||||
This code is an implementation of the algorithm of Rudin, Fatemi and Osher
|
||||
that was proposed by Chambolle in [1]_.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] A. Chambolle, An algorithm for total variation minimization and
|
||||
applications, Journal of Mathematical Imaging and Vision,
|
||||
Springer, 2004, 20, 89-97.
|
||||
|
||||
Examples
|
||||
--------
|
||||
2D example on astronaut image:
|
||||
|
||||
>>> from skimage import color, data
|
||||
>>> img = color.rgb2gray(data.astronaut())[:50, :50]
|
||||
>>> img += 0.5 * img.std() * np.random.randn(*img.shape)
|
||||
>>> denoised_img = denoise_tv_chambolle(img, weight=60)
|
||||
|
||||
3D example on synthetic data:
|
||||
|
||||
>>> x, y, z = np.ogrid[0:20, 0:20, 0:20]
|
||||
>>> mask = (x - 22)**2 + (y - 20)**2 + (z - 17)**2 < 8**2
|
||||
>>> mask = mask.astype(np.float)
|
||||
>>> mask += 0.2*np.random.randn(*mask.shape)
|
||||
>>> res = denoise_tv_chambolle(mask, weight=100)
|
||||
|
||||
"""
|
||||
|
||||
im_type = image.dtype
|
||||
if not im_type.kind == 'f':
|
||||
image = img_as_float(image)
|
||||
|
||||
if multichannel:
|
||||
out = np.zeros_like(image)
|
||||
for c in range(image.shape[-1]):
|
||||
out[..., c] = _denoise_tv_chambolle_nd(image[..., c], weight, eps,
|
||||
n_iter_max)
|
||||
else:
|
||||
out = _denoise_tv_chambolle_nd(image, weight, eps, n_iter_max)
|
||||
return out
|
||||
|
||||
|
||||
def _bayes_thresh(details, var):
|
||||
"""BayesShrink threshold for a zero-mean details coeff array."""
|
||||
# Equivalent to: dvar = np.var(details) for 0-mean details array
|
||||
dvar = np.mean(details*details)
|
||||
eps = np.finfo(details.dtype).eps
|
||||
thresh = var / np.sqrt(max(dvar - var, eps))
|
||||
return thresh
|
||||
|
||||
|
||||
def _universal_thresh(img, sigma):
|
||||
""" Universal threshold used by the VisuShrink method """
|
||||
return sigma*np.sqrt(2*np.log(img.size))
|
||||
|
||||
|
||||
def _sigma_est_dwt(detail_coeffs, distribution='Gaussian'):
|
||||
"""Calculate the robust median estimator of the noise standard deviation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
detail_coeffs : ndarray
|
||||
The detail coefficients corresponding to the discrete wavelet
|
||||
transform of an image.
|
||||
distribution : str
|
||||
The underlying noise distribution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
sigma : float
|
||||
The estimated noise standard deviation (see section 4.2 of [1]_).
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] D. L. Donoho and I. M. Johnstone. "Ideal spatial adaptation
|
||||
by wavelet shrinkage." Biometrika 81.3 (1994): 425-455.
|
||||
:DOI:`10.1093/biomet/81.3.425`
|
||||
"""
|
||||
# Consider regions with detail coefficients exactly zero to be masked out
|
||||
detail_coeffs = detail_coeffs[np.nonzero(detail_coeffs)]
|
||||
|
||||
if distribution.lower() == 'gaussian':
|
||||
# 75th quantile of the underlying, symmetric noise distribution
|
||||
denom = scipy.stats.norm.ppf(0.75)
|
||||
sigma = np.median(np.abs(detail_coeffs)) / denom
|
||||
else:
|
||||
raise ValueError("Only Gaussian noise estimation is currently "
|
||||
"supported")
|
||||
return sigma
|
||||
|
||||
|
||||
def _wavelet_threshold(image, wavelet, method=None, threshold=None,
|
||||
sigma=None, mode='soft', wavelet_levels=None):
|
||||
"""Perform wavelet thresholding.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray (2d or 3d) of ints, uints or floats
|
||||
Input data to be denoised. `image` can be of any numeric type,
|
||||
but it is cast into an ndarray of floats for the computation
|
||||
of the denoised image.
|
||||
wavelet : string
|
||||
The type of wavelet to perform. Can be any of the options
|
||||
pywt.wavelist outputs. For example, this may be any of ``{db1, db2,
|
||||
db3, db4, haar}``.
|
||||
method : {'BayesShrink', 'VisuShrink'}, optional
|
||||
Thresholding method to be used. The currently supported methods are
|
||||
"BayesShrink" [1]_ and "VisuShrink" [2]_. If it is set to None, a
|
||||
user-specified ``threshold`` must be supplied instead.
|
||||
threshold : float, optional
|
||||
The thresholding value to apply during wavelet coefficient
|
||||
thresholding. The default value (None) uses the selected ``method`` to
|
||||
estimate appropriate threshold(s) for noise removal.
|
||||
sigma : float, optional
|
||||
The standard deviation of the noise. The noise is estimated when sigma
|
||||
is None (the default) by the method in [2]_.
|
||||
mode : {'soft', 'hard'}, optional
|
||||
An optional argument to choose the type of denoising performed. It
|
||||
noted that choosing soft thresholding given additive noise finds the
|
||||
best approximation of the original image.
|
||||
wavelet_levels : int or None, optional
|
||||
The number of wavelet decomposition levels to use. The default is
|
||||
three less than the maximum number of possible decomposition levels
|
||||
(see Notes below).
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
Denoised image.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Chang, S. Grace, Bin Yu, and Martin Vetterli. "Adaptive wavelet
|
||||
thresholding for image denoising and compression." Image Processing,
|
||||
IEEE Transactions on 9.9 (2000): 1532-1546.
|
||||
:DOI:`10.1109/83.862633`
|
||||
.. [2] D. L. Donoho and I. M. Johnstone. "Ideal spatial adaptation
|
||||
by wavelet shrinkage." Biometrika 81.3 (1994): 425-455.
|
||||
:DOI:`10.1093/biomet/81.3.425`
|
||||
"""
|
||||
wavelet = pywt.Wavelet(wavelet)
|
||||
if not wavelet.orthogonal:
|
||||
warn(("Wavelet thresholding was designed for use with orthogonal "
|
||||
"wavelets. For nonorthogonal wavelets such as {}, results are "
|
||||
"likely to be suboptimal.").format(wavelet.name))
|
||||
|
||||
# original_extent is used to workaround PyWavelets issue #80
|
||||
# odd-sized input results in an image with 1 extra sample after waverecn
|
||||
original_extent = tuple(slice(s) for s in image.shape)
|
||||
|
||||
# Determine the number of wavelet decomposition levels
|
||||
if wavelet_levels is None:
|
||||
# Determine the maximum number of possible levels for image
|
||||
dlen = wavelet.dec_len
|
||||
wavelet_levels = pywt.dwtn_max_level(image.shape, wavelet)
|
||||
|
||||
# Skip coarsest wavelet scales (see Notes in docstring).
|
||||
wavelet_levels = max(wavelet_levels - 3, 1)
|
||||
|
||||
coeffs = pywt.wavedecn(image, wavelet=wavelet, level=wavelet_levels)
|
||||
# Detail coefficients at each decomposition level
|
||||
dcoeffs = coeffs[1:]
|
||||
|
||||
if sigma is None:
|
||||
# Estimate the noise via the method in [2]_
|
||||
detail_coeffs = dcoeffs[-1]['d' * image.ndim]
|
||||
sigma = _sigma_est_dwt(detail_coeffs, distribution='Gaussian')
|
||||
|
||||
if method is not None and threshold is not None:
|
||||
warn(("Thresholding method {} selected. The user-specified threshold "
|
||||
"will be ignored.").format(method))
|
||||
|
||||
if threshold is None:
|
||||
var = sigma**2
|
||||
if method is None:
|
||||
raise ValueError(
|
||||
"If method is None, a threshold must be provided.")
|
||||
elif method == "BayesShrink":
|
||||
# The BayesShrink thresholds from [1]_ in docstring
|
||||
threshold = [{key: _bayes_thresh(level[key], var) for key in level}
|
||||
for level in dcoeffs]
|
||||
elif method == "VisuShrink":
|
||||
# The VisuShrink thresholds from [2]_ in docstring
|
||||
threshold = _universal_thresh(image, sigma)
|
||||
else:
|
||||
raise ValueError("Unrecognized method: {}".format(method))
|
||||
|
||||
if np.isscalar(threshold):
|
||||
# A single threshold for all coefficient arrays
|
||||
denoised_detail = [{key: pywt.threshold(level[key],
|
||||
value=threshold,
|
||||
mode=mode) for key in level}
|
||||
for level in dcoeffs]
|
||||
else:
|
||||
# Dict of unique threshold coefficients for each detail coeff. array
|
||||
denoised_detail = [{key: pywt.threshold(level[key],
|
||||
value=thresh[key],
|
||||
mode=mode) for key in level}
|
||||
for thresh, level in zip(threshold, dcoeffs)]
|
||||
denoised_coeffs = [coeffs[0]] + denoised_detail
|
||||
return pywt.waverecn(denoised_coeffs, wavelet)[original_extent]
|
||||
|
||||
|
||||
def _scale_sigma_and_image_consistently(image, sigma, multichannel,
|
||||
rescale_sigma):
|
||||
"""If the ``image`` is rescaled, also rescale ``sigma`` consistently.
|
||||
|
||||
Images that are not floating point will be rescaled via ``img_as_float``.
|
||||
"""
|
||||
if multichannel:
|
||||
if isinstance(sigma, numbers.Number) or sigma is None:
|
||||
sigma = [sigma] * image.shape[-1]
|
||||
elif len(sigma) != image.shape[-1]:
|
||||
raise ValueError(
|
||||
"When multichannel is True, sigma must be a scalar or have "
|
||||
"length equal to the number of channels")
|
||||
if image.dtype.kind != 'f':
|
||||
if rescale_sigma:
|
||||
range_pre = image.max() - image.min()
|
||||
image = img_as_float(image)
|
||||
if rescale_sigma:
|
||||
range_post = image.max() - image.min()
|
||||
# apply the same magnitude scaling to sigma
|
||||
scale_factor = range_post / range_pre
|
||||
if multichannel:
|
||||
sigma = [s * scale_factor if s is not None else s
|
||||
for s in sigma]
|
||||
elif sigma is not None:
|
||||
sigma *= scale_factor
|
||||
return image, sigma
|
||||
|
||||
|
||||
def _rescale_sigma_rgb2ycbcr(sigmas):
|
||||
"""Convert user-provided noise standard deviations to YCbCr space.
|
||||
|
||||
Notes
|
||||
-----
|
||||
If R, G, B are linearly independent random variables and a1, a2, a3 are
|
||||
scalars, then random variable C:
|
||||
C = a1 * R + a2 * G + a3 * B
|
||||
has variance, var_C, given by:
|
||||
var_C = a1**2 * var_R + a2**2 * var_G + a3**2 * var_B
|
||||
"""
|
||||
if sigmas[0] is None:
|
||||
return sigmas
|
||||
sigmas = np.asarray(sigmas)
|
||||
rgv_variances = sigmas * sigmas
|
||||
for i in range(3):
|
||||
scalars = ycbcr_from_rgb[i, :]
|
||||
var_channel = np.sum(scalars * scalars * rgv_variances)
|
||||
sigmas[i] = np.sqrt(var_channel)
|
||||
return sigmas
|
||||
|
||||
|
||||
def denoise_wavelet(image, sigma=None, wavelet='db1', mode='soft',
|
||||
wavelet_levels=None, multichannel=False,
|
||||
convert2ycbcr=False, method='BayesShrink',
|
||||
rescale_sigma=None):
|
||||
"""Perform wavelet denoising on an image.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray ([M[, N[, ...P]][, C]) of ints, uints or floats
|
||||
Input data to be denoised. `image` can be of any numeric type,
|
||||
but it is cast into an ndarray of floats for the computation
|
||||
of the denoised image.
|
||||
sigma : float or list, optional
|
||||
The noise standard deviation used when computing the wavelet detail
|
||||
coefficient threshold(s). When None (default), the noise standard
|
||||
deviation is estimated via the method in [2]_.
|
||||
wavelet : string, optional
|
||||
The type of wavelet to perform and can be any of the options
|
||||
``pywt.wavelist`` outputs. The default is `'db1'`. For example,
|
||||
``wavelet`` can be any of ``{'db2', 'haar', 'sym9'}`` and many more.
|
||||
mode : {'soft', 'hard'}, optional
|
||||
An optional argument to choose the type of denoising performed. It
|
||||
noted that choosing soft thresholding given additive noise finds the
|
||||
best approximation of the original image.
|
||||
wavelet_levels : int or None, optional
|
||||
The number of wavelet decomposition levels to use. The default is
|
||||
three less than the maximum number of possible decomposition levels.
|
||||
multichannel : bool, optional
|
||||
Apply wavelet denoising separately for each channel (where channels
|
||||
correspond to the final axis of the array).
|
||||
convert2ycbcr : bool, optional
|
||||
If True and multichannel True, do the wavelet denoising in the YCbCr
|
||||
colorspace instead of the RGB color space. This typically results in
|
||||
better performance for RGB images.
|
||||
method : {'BayesShrink', 'VisuShrink'}, optional
|
||||
Thresholding method to be used. The currently supported methods are
|
||||
"BayesShrink" [1]_ and "VisuShrink" [2]_. Defaults to "BayesShrink".
|
||||
rescale_sigma : bool or None, optional
|
||||
If False, no rescaling of the user-provided ``sigma`` will be
|
||||
performed. The default of ``None`` rescales sigma appropriately if the
|
||||
image is rescaled internally. A ``DeprecationWarning`` is raised to
|
||||
warn the user about this new behaviour. This warning can be avoided
|
||||
by setting ``rescale_sigma=True``.
|
||||
|
||||
.. versionadded:: 0.16
|
||||
``rescale_sigma`` was introduced in 0.16
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
Denoised image.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The wavelet domain is a sparse representation of the image, and can be
|
||||
thought of similarly to the frequency domain of the Fourier transform.
|
||||
Sparse representations have most values zero or near-zero and truly random
|
||||
noise is (usually) represented by many small values in the wavelet domain.
|
||||
Setting all values below some threshold to 0 reduces the noise in the
|
||||
image, but larger thresholds also decrease the detail present in the image.
|
||||
|
||||
If the input is 3D, this function performs wavelet denoising on each color
|
||||
plane separately.
|
||||
|
||||
.. versionchanged:: 0.16
|
||||
For floating point inputs, the original input range is maintained and
|
||||
there is no clipping applied to the output. Other input types will be
|
||||
converted to a floating point value in the range [-1, 1] or [0, 1]
|
||||
depending on the input image range. Unless ``rescale_sigma = False``,
|
||||
any internal rescaling applied to the ``image`` will also be applied
|
||||
to ``sigma`` to maintain the same relative amplitude.
|
||||
|
||||
Many wavelet coefficient thresholding approaches have been proposed. By
|
||||
default, ``denoise_wavelet`` applies BayesShrink, which is an adaptive
|
||||
thresholding method that computes separate thresholds for each wavelet
|
||||
sub-band as described in [1]_.
|
||||
|
||||
If ``method == "VisuShrink"``, a single "universal threshold" is applied to
|
||||
all wavelet detail coefficients as described in [2]_. This threshold
|
||||
is designed to remove all Gaussian noise at a given ``sigma`` with high
|
||||
probability, but tends to produce images that appear overly smooth.
|
||||
|
||||
Although any of the wavelets from ``PyWavelets`` can be selected, the
|
||||
thresholding methods assume an orthogonal wavelet transform and may not
|
||||
choose the threshold appropriately for biorthogonal wavelets. Orthogonal
|
||||
wavelets are desirable because white noise in the input remains white noise
|
||||
in the subbands. Biorthogonal wavelets lead to colored noise in the
|
||||
subbands. Additionally, the orthogonal wavelets in PyWavelets are
|
||||
orthonormal so that noise variance in the subbands remains identical to the
|
||||
noise variance of the input. Example orthogonal wavelets are the Daubechies
|
||||
(e.g. 'db2') or symmlet (e.g. 'sym2') families.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Chang, S. Grace, Bin Yu, and Martin Vetterli. "Adaptive wavelet
|
||||
thresholding for image denoising and compression." Image Processing,
|
||||
IEEE Transactions on 9.9 (2000): 1532-1546.
|
||||
:DOI:`10.1109/83.862633`
|
||||
.. [2] D. L. Donoho and I. M. Johnstone. "Ideal spatial adaptation
|
||||
by wavelet shrinkage." Biometrika 81.3 (1994): 425-455.
|
||||
:DOI:`10.1093/biomet/81.3.425`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from skimage import color, data
|
||||
>>> img = img_as_float(data.astronaut())
|
||||
>>> img = color.rgb2gray(img)
|
||||
>>> img += 0.1 * np.random.randn(*img.shape)
|
||||
>>> img = np.clip(img, 0, 1)
|
||||
>>> denoised_img = denoise_wavelet(img, sigma=0.1, rescale_sigma=True)
|
||||
|
||||
"""
|
||||
if method not in ["BayesShrink", "VisuShrink"]:
|
||||
raise ValueError(
|
||||
('Invalid method: {}. The currently supported methods are '
|
||||
'"BayesShrink" and "VisuShrink"').format(method))
|
||||
|
||||
# floating-point inputs are not rescaled, so don't clip their output.
|
||||
clip_output = image.dtype.kind != 'f'
|
||||
|
||||
if convert2ycbcr and not multichannel:
|
||||
raise ValueError("convert2ycbcr requires multichannel == True")
|
||||
|
||||
if rescale_sigma is None:
|
||||
msg = (
|
||||
"As of scikit-image 0.16, automated rescaling of sigma to match "
|
||||
"any internal rescaling of the image is performed. Setting "
|
||||
"rescale_sigma to False, will disable this new behaviour. To "
|
||||
"avoid this warning the user should explicitly set rescale_sigma "
|
||||
"to True or False."
|
||||
)
|
||||
warn(msg, FutureWarning, stacklevel=2)
|
||||
rescale_sigma = True
|
||||
image, sigma = _scale_sigma_and_image_consistently(image,
|
||||
sigma,
|
||||
multichannel,
|
||||
rescale_sigma)
|
||||
if multichannel:
|
||||
if convert2ycbcr:
|
||||
out = color.rgb2ycbcr(image)
|
||||
# convert user-supplied sigmas to the new colorspace as well
|
||||
if rescale_sigma:
|
||||
sigma = _rescale_sigma_rgb2ycbcr(sigma)
|
||||
for i in range(3):
|
||||
# renormalizing this color channel to live in [0, 1]
|
||||
_min, _max = out[..., i].min(), out[..., i].max()
|
||||
scale_factor = _max - _min
|
||||
if scale_factor == 0:
|
||||
# skip any channel containing only zeros!
|
||||
continue
|
||||
channel = out[..., i] - _min
|
||||
channel /= scale_factor
|
||||
sigma_channel = sigma[i]
|
||||
if sigma_channel is not None:
|
||||
sigma_channel /= scale_factor
|
||||
out[..., i] = denoise_wavelet(channel,
|
||||
wavelet=wavelet,
|
||||
method=method,
|
||||
sigma=sigma_channel,
|
||||
mode=mode,
|
||||
wavelet_levels=wavelet_levels,
|
||||
rescale_sigma=rescale_sigma)
|
||||
out[..., i] = out[..., i] * scale_factor
|
||||
out[..., i] += _min
|
||||
out = color.ycbcr2rgb(out)
|
||||
else:
|
||||
out = np.empty_like(image)
|
||||
for c in range(image.shape[-1]):
|
||||
out[..., c] = _wavelet_threshold(image[..., c],
|
||||
wavelet=wavelet,
|
||||
method=method,
|
||||
sigma=sigma[c], mode=mode,
|
||||
wavelet_levels=wavelet_levels)
|
||||
else:
|
||||
out = _wavelet_threshold(image, wavelet=wavelet, method=method,
|
||||
sigma=sigma, mode=mode,
|
||||
wavelet_levels=wavelet_levels)
|
||||
|
||||
if clip_output:
|
||||
clip_range = (-1, 1) if image.min() < 0 else (0, 1)
|
||||
out = np.clip(out, *clip_range, out=out)
|
||||
return out
|
||||
|
||||
|
||||
def estimate_sigma(image, average_sigmas=False, multichannel=False):
|
||||
"""
|
||||
Robust wavelet-based estimator of the (Gaussian) noise standard deviation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
Image for which to estimate the noise standard deviation.
|
||||
average_sigmas : bool, optional
|
||||
If true, average the channel estimates of `sigma`. Otherwise return
|
||||
a list of sigmas corresponding to each channel.
|
||||
multichannel : bool
|
||||
Estimate sigma separately for each channel.
|
||||
|
||||
Returns
|
||||
-------
|
||||
sigma : float or list
|
||||
Estimated noise standard deviation(s). If `multichannel` is True and
|
||||
`average_sigmas` is False, a separate noise estimate for each channel
|
||||
is returned. Otherwise, the average of the individual channel
|
||||
estimates is returned.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This function assumes the noise follows a Gaussian distribution. The
|
||||
estimation algorithm is based on the median absolute deviation of the
|
||||
wavelet detail coefficients as described in section 4.2 of [1]_.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] D. L. Donoho and I. M. Johnstone. "Ideal spatial adaptation
|
||||
by wavelet shrinkage." Biometrika 81.3 (1994): 425-455.
|
||||
:DOI:`10.1093/biomet/81.3.425`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import skimage.data
|
||||
>>> from skimage import img_as_float
|
||||
>>> img = img_as_float(skimage.data.camera())
|
||||
>>> sigma = 0.1
|
||||
>>> img = img + sigma * np.random.standard_normal(img.shape)
|
||||
>>> sigma_hat = estimate_sigma(img, multichannel=False)
|
||||
"""
|
||||
if multichannel:
|
||||
nchannels = image.shape[-1]
|
||||
sigmas = [estimate_sigma(
|
||||
image[..., c], multichannel=False) for c in range(nchannels)]
|
||||
if average_sigmas:
|
||||
sigmas = np.mean(sigmas)
|
||||
return sigmas
|
||||
elif image.shape[-1] <= 4:
|
||||
msg = ("image is size {0} on the last axis, but multichannel is "
|
||||
"False. If this is a color image, please set multichannel "
|
||||
"to True for proper noise estimation.")
|
||||
warn(msg.format(image.shape[-1]))
|
||||
coeffs = pywt.dwtn(image, wavelet='db2')
|
||||
detail_coeffs = coeffs['d' * image.ndim]
|
||||
return _sigma_est_dwt(detail_coeffs, distribution='Gaussian')
|
Loading…
Add table
Add a link
Reference in a new issue