Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
489
venv/Lib/site-packages/skimage/morphology/grey.py
Normal file
489
venv/Lib/site-packages/skimage/morphology/grey.py
Normal file
|
@ -0,0 +1,489 @@
|
|||
"""
|
||||
Grayscale morphological operations
|
||||
"""
|
||||
import functools
|
||||
import numpy as np
|
||||
from scipy import ndimage as ndi
|
||||
from .misc import default_selem
|
||||
from ..util import crop
|
||||
|
||||
__all__ = ['erosion', 'dilation', 'opening', 'closing', 'white_tophat',
|
||||
'black_tophat']
|
||||
|
||||
|
||||
def _shift_selem(selem, shift_x, shift_y):
|
||||
"""Shift the binary image `selem` in the left and/or up.
|
||||
|
||||
This only affects 2D structuring elements with even number of rows
|
||||
or columns.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
selem : 2D array, shape (M, N)
|
||||
The input structuring element.
|
||||
shift_x, shift_y : bool
|
||||
Whether to move `selem` along each axis.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : 2D array, shape (M + int(shift_x), N + int(shift_y))
|
||||
The shifted structuring element.
|
||||
"""
|
||||
if selem.ndim != 2:
|
||||
# do nothing for 1D or 3D or higher structuring elements
|
||||
return selem
|
||||
m, n = selem.shape
|
||||
if m % 2 == 0:
|
||||
extra_row = np.zeros((1, n), selem.dtype)
|
||||
if shift_x:
|
||||
selem = np.vstack((selem, extra_row))
|
||||
else:
|
||||
selem = np.vstack((extra_row, selem))
|
||||
m += 1
|
||||
if n % 2 == 0:
|
||||
extra_col = np.zeros((m, 1), selem.dtype)
|
||||
if shift_y:
|
||||
selem = np.hstack((selem, extra_col))
|
||||
else:
|
||||
selem = np.hstack((extra_col, selem))
|
||||
return selem
|
||||
|
||||
|
||||
def _invert_selem(selem):
|
||||
"""Change the order of the values in `selem`.
|
||||
|
||||
This is a patch for the *weird* footprint inversion in
|
||||
`ndi.grey_morphology` [1]_.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
selem : array
|
||||
The input structuring element.
|
||||
|
||||
Returns
|
||||
-------
|
||||
inverted : array, same shape and type as `selem`
|
||||
The structuring element, in opposite order.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> selem = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]], np.uint8)
|
||||
>>> _invert_selem(selem)
|
||||
array([[1, 1, 0],
|
||||
[1, 1, 0],
|
||||
[0, 0, 0]], dtype=uint8)
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] https://github.com/scipy/scipy/blob/ec20ababa400e39ac3ffc9148c01ef86d5349332/scipy/ndimage/morphology.py#L1285
|
||||
"""
|
||||
inverted = selem[(slice(None, None, -1),) * selem.ndim]
|
||||
return inverted
|
||||
|
||||
|
||||
def pad_for_eccentric_selems(func):
|
||||
"""Pad input images for certain morphological operations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable
|
||||
A morphological function, either opening or closing, that
|
||||
supports eccentric structuring elements. Its parameters must
|
||||
include at least `image`, `selem`, and `out`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
func_out : callable
|
||||
The same function, but correctly padding the input image before
|
||||
applying the input function.
|
||||
|
||||
See Also
|
||||
--------
|
||||
opening, closing.
|
||||
"""
|
||||
@functools.wraps(func)
|
||||
def func_out(image, selem, out=None, *args, **kwargs):
|
||||
pad_widths = []
|
||||
padding = False
|
||||
if out is None:
|
||||
out = np.empty_like(image)
|
||||
for axis_len in selem.shape:
|
||||
if axis_len % 2 == 0:
|
||||
axis_pad_width = axis_len - 1
|
||||
padding = True
|
||||
else:
|
||||
axis_pad_width = 0
|
||||
pad_widths.append((axis_pad_width,) * 2)
|
||||
if padding:
|
||||
image = np.pad(image, pad_widths, mode='edge')
|
||||
out_temp = np.empty_like(image)
|
||||
else:
|
||||
out_temp = out
|
||||
out_temp = func(image, selem, out=out_temp, *args, **kwargs)
|
||||
if padding:
|
||||
out[:] = crop(out_temp, pad_widths)
|
||||
else:
|
||||
out = out_temp
|
||||
return out
|
||||
return func_out
|
||||
|
||||
@default_selem
|
||||
def erosion(image, selem=None, out=None, shift_x=False, shift_y=False):
|
||||
"""Return greyscale morphological erosion of an image.
|
||||
|
||||
Morphological erosion sets a pixel at (i,j) to the minimum over all pixels
|
||||
in the neighborhood centered at (i,j). Erosion shrinks bright regions and
|
||||
enlarges dark regions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
Image array.
|
||||
selem : ndarray, optional
|
||||
The neighborhood expressed as an array of 1's and 0's.
|
||||
If None, use cross-shaped structuring element (connectivity=1).
|
||||
out : ndarrays, optional
|
||||
The array to store the result of the morphology. If None is
|
||||
passed, a new array will be allocated.
|
||||
shift_x, shift_y : bool, optional
|
||||
shift structuring element about center point. This only affects
|
||||
eccentric structuring elements (i.e. selem with even numbered sides).
|
||||
|
||||
Returns
|
||||
-------
|
||||
eroded : array, same shape as `image`
|
||||
The result of the morphological erosion.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For ``uint8`` (and ``uint16`` up to a certain bit-depth) data, the
|
||||
lower algorithm complexity makes the `skimage.filters.rank.minimum`
|
||||
function more efficient for larger images and structuring elements.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> # Erosion shrinks bright regions
|
||||
>>> import numpy as np
|
||||
>>> from skimage.morphology import square
|
||||
>>> bright_square = np.array([[0, 0, 0, 0, 0],
|
||||
... [0, 1, 1, 1, 0],
|
||||
... [0, 1, 1, 1, 0],
|
||||
... [0, 1, 1, 1, 0],
|
||||
... [0, 0, 0, 0, 0]], dtype=np.uint8)
|
||||
>>> erosion(bright_square, square(3))
|
||||
array([[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]], dtype=uint8)
|
||||
|
||||
"""
|
||||
selem = np.array(selem)
|
||||
selem = _shift_selem(selem, shift_x, shift_y)
|
||||
if out is None:
|
||||
out = np.empty_like(image)
|
||||
ndi.grey_erosion(image, footprint=selem, output=out)
|
||||
return out
|
||||
|
||||
|
||||
@default_selem
|
||||
def dilation(image, selem=None, out=None, shift_x=False, shift_y=False):
|
||||
"""Return greyscale morphological dilation of an image.
|
||||
|
||||
Morphological dilation sets a pixel at (i,j) to the maximum over all pixels
|
||||
in the neighborhood centered at (i,j). Dilation enlarges bright regions
|
||||
and shrinks dark regions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
image : ndarray
|
||||
Image array.
|
||||
selem : ndarray, optional
|
||||
The neighborhood expressed as a 2-D array of 1's and 0's.
|
||||
If None, use cross-shaped structuring element (connectivity=1).
|
||||
out : ndarray, optional
|
||||
The array to store the result of the morphology. If None, is
|
||||
passed, a new array will be allocated.
|
||||
shift_x, shift_y : bool, optional
|
||||
shift structuring element about center point. This only affects
|
||||
eccentric structuring elements (i.e. selem with even numbered sides).
|
||||
|
||||
Returns
|
||||
-------
|
||||
dilated : uint8 array, same shape and type as `image`
|
||||
The result of the morphological dilation.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For `uint8` (and `uint16` up to a certain bit-depth) data, the lower
|
||||
algorithm complexity makes the `skimage.filters.rank.maximum` function more
|
||||
efficient for larger images and structuring elements.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> # Dilation enlarges bright regions
|
||||
>>> import numpy as np
|
||||
>>> from skimage.morphology import square
|
||||
>>> bright_pixel = np.array([[0, 0, 0, 0, 0],
|
||||
... [0, 0, 0, 0, 0],
|
||||
... [0, 0, 1, 0, 0],
|
||||
... [0, 0, 0, 0, 0],
|
||||
... [0, 0, 0, 0, 0]], dtype=np.uint8)
|
||||
>>> dilation(bright_pixel, square(3))
|
||||
array([[0, 0, 0, 0, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 0, 0, 0, 0]], dtype=uint8)
|
||||
|
||||
"""
|
||||
selem = np.array(selem)
|
||||
selem = _shift_selem(selem, shift_x, shift_y)
|
||||
# Inside ndimage.grey_dilation, the structuring element is inverted,
|
||||
# eg. `selem = selem[::-1, ::-1]` for 2D [1]_, for reasons unknown to
|
||||
# this author (@jni). To "patch" this behaviour, we invert our own
|
||||
# selem before passing it to `ndi.grey_dilation`.
|
||||
# [1] https://github.com/scipy/scipy/blob/ec20ababa400e39ac3ffc9148c01ef86d5349332/scipy/ndimage/morphology.py#L1285
|
||||
selem = _invert_selem(selem)
|
||||
if out is None:
|
||||
out = np.empty_like(image)
|
||||
ndi.grey_dilation(image, footprint=selem, output=out)
|
||||
return out
|
||||
|
||||
|
||||
@default_selem
|
||||
@pad_for_eccentric_selems
|
||||
def opening(image, selem=None, out=None):
|
||||
"""Return greyscale morphological opening of an image.
|
||||
|
||||
The morphological opening on an image is defined as an erosion followed by
|
||||
a dilation. Opening can remove small bright spots (i.e. "salt") and connect
|
||||
small dark cracks. This tends to "open" up (dark) gaps between (bright)
|
||||
features.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
Image array.
|
||||
selem : ndarray, optional
|
||||
The neighborhood expressed as an array of 1's and 0's.
|
||||
If None, use cross-shaped structuring element (connectivity=1).
|
||||
out : ndarray, optional
|
||||
The array to store the result of the morphology. If None
|
||||
is passed, a new array will be allocated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
opening : array, same shape and type as `image`
|
||||
The result of the morphological opening.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> # Open up gap between two bright regions (but also shrink regions)
|
||||
>>> import numpy as np
|
||||
>>> from skimage.morphology import square
|
||||
>>> bad_connection = np.array([[1, 0, 0, 0, 1],
|
||||
... [1, 1, 0, 1, 1],
|
||||
... [1, 1, 1, 1, 1],
|
||||
... [1, 1, 0, 1, 1],
|
||||
... [1, 0, 0, 0, 1]], dtype=np.uint8)
|
||||
>>> opening(bad_connection, square(3))
|
||||
array([[0, 0, 0, 0, 0],
|
||||
[1, 1, 0, 1, 1],
|
||||
[1, 1, 0, 1, 1],
|
||||
[1, 1, 0, 1, 1],
|
||||
[0, 0, 0, 0, 0]], dtype=uint8)
|
||||
|
||||
"""
|
||||
eroded = erosion(image, selem)
|
||||
# note: shift_x, shift_y do nothing if selem side length is odd
|
||||
out = dilation(eroded, selem, out=out, shift_x=True, shift_y=True)
|
||||
return out
|
||||
|
||||
|
||||
@default_selem
|
||||
@pad_for_eccentric_selems
|
||||
def closing(image, selem=None, out=None):
|
||||
"""Return greyscale morphological closing of an image.
|
||||
|
||||
The morphological closing on an image is defined as a dilation followed by
|
||||
an erosion. Closing can remove small dark spots (i.e. "pepper") and connect
|
||||
small bright cracks. This tends to "close" up (dark) gaps between (bright)
|
||||
features.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
Image array.
|
||||
selem : ndarray, optional
|
||||
The neighborhood expressed as an array of 1's and 0's.
|
||||
If None, use cross-shaped structuring element (connectivity=1).
|
||||
out : ndarray, optional
|
||||
The array to store the result of the morphology. If None,
|
||||
is passed, a new array will be allocated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
closing : array, same shape and type as `image`
|
||||
The result of the morphological closing.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> # Close a gap between two bright lines
|
||||
>>> import numpy as np
|
||||
>>> from skimage.morphology import square
|
||||
>>> broken_line = np.array([[0, 0, 0, 0, 0],
|
||||
... [0, 0, 0, 0, 0],
|
||||
... [1, 1, 0, 1, 1],
|
||||
... [0, 0, 0, 0, 0],
|
||||
... [0, 0, 0, 0, 0]], dtype=np.uint8)
|
||||
>>> closing(broken_line, square(3))
|
||||
array([[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]], dtype=uint8)
|
||||
|
||||
"""
|
||||
dilated = dilation(image, selem)
|
||||
# note: shift_x, shift_y do nothing if selem side length is odd
|
||||
out = erosion(dilated, selem, out=out, shift_x=True, shift_y=True)
|
||||
return out
|
||||
|
||||
|
||||
@default_selem
|
||||
def white_tophat(image, selem=None, out=None):
|
||||
"""Return white top hat of an image.
|
||||
|
||||
The white top hat of an image is defined as the image minus its
|
||||
morphological opening. This operation returns the bright spots of the image
|
||||
that are smaller than the structuring element.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
Image array.
|
||||
selem : ndarray, optional
|
||||
The neighborhood expressed as an array of 1's and 0's.
|
||||
If None, use cross-shaped structuring element (connectivity=1).
|
||||
out : ndarray, optional
|
||||
The array to store the result of the morphology. If None
|
||||
is passed, a new array will be allocated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : array, same shape and type as `image`
|
||||
The result of the morphological white top hat.
|
||||
|
||||
See also
|
||||
--------
|
||||
black_tophat
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] https://en.wikipedia.org/wiki/Top-hat_transform
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> # Subtract grey background from bright peak
|
||||
>>> import numpy as np
|
||||
>>> from skimage.morphology import square
|
||||
>>> bright_on_grey = np.array([[2, 3, 3, 3, 2],
|
||||
... [3, 4, 5, 4, 3],
|
||||
... [3, 5, 9, 5, 3],
|
||||
... [3, 4, 5, 4, 3],
|
||||
... [2, 3, 3, 3, 2]], dtype=np.uint8)
|
||||
>>> white_tophat(bright_on_grey, square(3))
|
||||
array([[0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 0, 0],
|
||||
[0, 1, 5, 1, 0],
|
||||
[0, 0, 1, 0, 0],
|
||||
[0, 0, 0, 0, 0]], dtype=uint8)
|
||||
|
||||
"""
|
||||
selem = np.array(selem)
|
||||
if out is image:
|
||||
opened = opening(image, selem)
|
||||
if np.issubdtype(opened.dtype, np.bool_):
|
||||
np.logical_xor(out, opened, out=out)
|
||||
else:
|
||||
out -= opened
|
||||
return out
|
||||
elif out is None:
|
||||
out = np.empty_like(image)
|
||||
# work-around for NumPy deprecation warning for arithmetic
|
||||
# operations on bool arrays
|
||||
if isinstance(image, np.ndarray) and image.dtype == np.bool:
|
||||
image_ = image.view(dtype=np.uint8)
|
||||
else:
|
||||
image_ = image
|
||||
if isinstance(out, np.ndarray) and out.dtype == np.bool:
|
||||
out_ = out.view(dtype=np.uint8)
|
||||
else:
|
||||
out_ = out
|
||||
out_ = ndi.white_tophat(image_, footprint=selem, output=out_)
|
||||
return out
|
||||
|
||||
|
||||
@default_selem
|
||||
def black_tophat(image, selem=None, out=None):
|
||||
"""Return black top hat of an image.
|
||||
|
||||
The black top hat of an image is defined as its morphological closing minus
|
||||
the original image. This operation returns the dark spots of the image that
|
||||
are smaller than the structuring element. Note that dark spots in the
|
||||
original image are bright spots after the black top hat.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
Image array.
|
||||
selem : ndarray, optional
|
||||
The neighborhood expressed as a 2-D array of 1's and 0's.
|
||||
If None, use cross-shaped structuring element (connectivity=1).
|
||||
out : ndarray, optional
|
||||
The array to store the result of the morphology. If None
|
||||
is passed, a new array will be allocated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : array, same shape and type as `image`
|
||||
The result of the morphological black top hat.
|
||||
|
||||
See also
|
||||
--------
|
||||
white_tophat
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] https://en.wikipedia.org/wiki/Top-hat_transform
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> # Change dark peak to bright peak and subtract background
|
||||
>>> import numpy as np
|
||||
>>> from skimage.morphology import square
|
||||
>>> dark_on_grey = np.array([[7, 6, 6, 6, 7],
|
||||
... [6, 5, 4, 5, 6],
|
||||
... [6, 4, 0, 4, 6],
|
||||
... [6, 5, 4, 5, 6],
|
||||
... [7, 6, 6, 6, 7]], dtype=np.uint8)
|
||||
>>> black_tophat(dark_on_grey, square(3))
|
||||
array([[0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 0, 0],
|
||||
[0, 1, 5, 1, 0],
|
||||
[0, 0, 1, 0, 0],
|
||||
[0, 0, 0, 0, 0]], dtype=uint8)
|
||||
|
||||
"""
|
||||
if out is image:
|
||||
original = image.copy()
|
||||
else:
|
||||
original = image
|
||||
out = closing(image, selem, out=out)
|
||||
if np.issubdtype(out.dtype, np.bool_):
|
||||
np.logical_xor(out, original, out=out)
|
||||
else:
|
||||
out -= original
|
||||
return out
|
Loading…
Add table
Add a link
Reference in a new issue