Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
647
venv/Lib/site-packages/skimage/morphology/_skeletonize.py
Normal file
647
venv/Lib/site-packages/skimage/morphology/_skeletonize.py
Normal file
|
@ -0,0 +1,647 @@
|
|||
"""
|
||||
Algorithms for computing the skeleton of a binary image
|
||||
"""
|
||||
|
||||
|
||||
import numpy as np
|
||||
from ..util import img_as_ubyte, crop
|
||||
from scipy import ndimage as ndi
|
||||
|
||||
from .._shared.utils import check_nD, warn
|
||||
from ._skeletonize_cy import (_fast_skeletonize, _skeletonize_loop,
|
||||
_table_lookup_index)
|
||||
from ._skeletonize_3d_cy import _compute_thin_image
|
||||
|
||||
|
||||
def skeletonize(image, *, method=None):
|
||||
"""Compute the skeleton of a binary image.
|
||||
|
||||
Thinning is used to reduce each connected component in a binary image
|
||||
to a single-pixel wide skeleton.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray, 2D or 3D
|
||||
A binary image containing the objects to be skeletonized. Zeros
|
||||
represent background, nonzero values are foreground.
|
||||
method : {'zhang', 'lee'}, optional
|
||||
Which algorithm to use. Zhang's algorithm [Zha84]_ only works for
|
||||
2D images, and is the default for 2D. Lee's algorithm [Lee94]_
|
||||
works for 2D or 3D images and is the default for 3D.
|
||||
|
||||
Returns
|
||||
-------
|
||||
skeleton : ndarray
|
||||
The thinned image.
|
||||
|
||||
See also
|
||||
--------
|
||||
medial_axis
|
||||
|
||||
References
|
||||
----------
|
||||
.. [Lee94] T.-C. Lee, R.L. Kashyap and C.-N. Chu, Building skeleton models
|
||||
via 3-D medial surface/axis thinning algorithms.
|
||||
Computer Vision, Graphics, and Image Processing, 56(6):462-478, 1994.
|
||||
|
||||
.. [Zha84] A fast parallel algorithm for thinning digital patterns,
|
||||
T. Y. Zhang and C. Y. Suen, Communications of the ACM,
|
||||
March 1984, Volume 27, Number 3.
|
||||
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> X, Y = np.ogrid[0:9, 0:9]
|
||||
>>> ellipse = (1./3 * (X - 4)**2 + (Y - 4)**2 < 3**2).astype(np.uint8)
|
||||
>>> ellipse
|
||||
array([[0, 0, 0, 1, 1, 1, 0, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 0, 1, 1, 1, 0, 0, 0]], dtype=uint8)
|
||||
>>> skel = skeletonize(ellipse)
|
||||
>>> skel.astype(np.uint8)
|
||||
array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
|
||||
|
||||
"""
|
||||
|
||||
if image.ndim == 2 and (method is None or method == 'zhang'):
|
||||
skeleton = skeletonize_2d(image)
|
||||
elif image.ndim == 3 and method == 'zhang':
|
||||
raise ValueError('skeletonize method "zhang" only works for 2D '
|
||||
'images.')
|
||||
elif image.ndim == 3 or (image.ndim == 2 and method == 'lee'):
|
||||
skeleton = skeletonize_3d(image)
|
||||
else:
|
||||
raise ValueError('skeletonize requires a 2D or 3D image as input, '
|
||||
'got {}D.'.format(image.ndim))
|
||||
return skeleton
|
||||
|
||||
|
||||
def skeletonize_2d(image):
|
||||
"""Return the skeleton of a 2D binary image.
|
||||
|
||||
Thinning is used to reduce each connected component in a binary image
|
||||
to a single-pixel wide skeleton.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : numpy.ndarray
|
||||
A binary image containing the objects to be skeletonized. '1'
|
||||
represents foreground, and '0' represents background. It
|
||||
also accepts arrays of boolean values where True is foreground.
|
||||
|
||||
Returns
|
||||
-------
|
||||
skeleton : ndarray
|
||||
A matrix containing the thinned image.
|
||||
|
||||
See also
|
||||
--------
|
||||
medial_axis
|
||||
|
||||
Notes
|
||||
-----
|
||||
The algorithm [Zha84]_ works by making successive passes of the image,
|
||||
removing pixels on object borders. This continues until no
|
||||
more pixels can be removed. The image is correlated with a
|
||||
mask that assigns each pixel a number in the range [0...255]
|
||||
corresponding to each possible pattern of its 8 neighbouring
|
||||
pixels. A look up table is then used to assign the pixels a
|
||||
value of 0, 1, 2 or 3, which are selectively removed during
|
||||
the iterations.
|
||||
|
||||
Note that this algorithm will give different results than a
|
||||
medial axis transform, which is also often referred to as
|
||||
"skeletonization".
|
||||
|
||||
References
|
||||
----------
|
||||
.. [Zha84] A fast parallel algorithm for thinning digital patterns,
|
||||
T. Y. Zhang and C. Y. Suen, Communications of the ACM,
|
||||
March 1984, Volume 27, Number 3.
|
||||
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> X, Y = np.ogrid[0:9, 0:9]
|
||||
>>> ellipse = (1./3 * (X - 4)**2 + (Y - 4)**2 < 3**2).astype(np.uint8)
|
||||
>>> ellipse
|
||||
array([[0, 0, 0, 1, 1, 1, 0, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 1, 1, 0, 0],
|
||||
[0, 0, 0, 1, 1, 1, 0, 0, 0]], dtype=uint8)
|
||||
>>> skel = skeletonize(ellipse)
|
||||
>>> skel.astype(np.uint8)
|
||||
array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
|
||||
|
||||
"""
|
||||
|
||||
# convert to unsigned int (this should work for boolean values)
|
||||
image = image.astype(np.uint8)
|
||||
|
||||
# check some properties of the input image:
|
||||
# - 2D
|
||||
# - binary image with only 0's and 1's
|
||||
if image.ndim != 2:
|
||||
raise ValueError('Skeletonize requires a 2D array')
|
||||
if not np.all(np.in1d(image.flat, (0, 1))):
|
||||
raise ValueError('Image contains values other than 0 and 1')
|
||||
|
||||
return _fast_skeletonize(image)
|
||||
|
||||
|
||||
# --------- Skeletonization and thinning based on Guo and Hall 1989 ---------
|
||||
|
||||
def _generate_thin_luts():
|
||||
"""generate LUTs for thinning algorithm (for reference)"""
|
||||
|
||||
def nabe(n):
|
||||
return np.array([n >> i & 1 for i in range(0, 9)]).astype(np.bool)
|
||||
|
||||
def G1(n):
|
||||
s = 0
|
||||
bits = nabe(n)
|
||||
for i in (0, 2, 4, 6):
|
||||
if not(bits[i]) and (bits[i + 1] or bits[(i + 2) % 8]):
|
||||
s += 1
|
||||
return s == 1
|
||||
|
||||
g1_lut = np.array([G1(n) for n in range(256)])
|
||||
|
||||
def G2(n):
|
||||
n1, n2 = 0, 0
|
||||
bits = nabe(n)
|
||||
for k in (1, 3, 5, 7):
|
||||
if bits[k] or bits[k - 1]:
|
||||
n1 += 1
|
||||
if bits[k] or bits[(k + 1) % 8]:
|
||||
n2 += 1
|
||||
return min(n1, n2) in [2, 3]
|
||||
|
||||
g2_lut = np.array([G2(n) for n in range(256)])
|
||||
|
||||
g12_lut = g1_lut & g2_lut
|
||||
|
||||
def G3(n):
|
||||
bits = nabe(n)
|
||||
return not((bits[1] or bits[2] or not(bits[7])) and bits[0])
|
||||
|
||||
def G3p(n):
|
||||
bits = nabe(n)
|
||||
return not((bits[5] or bits[6] or not(bits[3])) and bits[4])
|
||||
|
||||
g3_lut = np.array([G3(n) for n in range(256)])
|
||||
g3p_lut = np.array([G3p(n) for n in range(256)])
|
||||
|
||||
g123_lut = g12_lut & g3_lut
|
||||
g123p_lut = g12_lut & g3p_lut
|
||||
|
||||
return g123_lut, g123p_lut
|
||||
|
||||
|
||||
G123_LUT = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
|
||||
0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1,
|
||||
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
|
||||
0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
|
||||
0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=np.bool)
|
||||
|
||||
G123P_LUT = np.array([0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,
|
||||
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
|
||||
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=np.bool)
|
||||
|
||||
|
||||
def thin(image, max_iter=None):
|
||||
"""
|
||||
Perform morphological thinning of a binary image.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : binary (M, N) ndarray
|
||||
The image to be thinned.
|
||||
|
||||
max_iter : int, number of iterations, optional
|
||||
Regardless of the value of this parameter, the thinned image
|
||||
is returned immediately if an iteration produces no change.
|
||||
If this parameter is specified it thus sets an upper bound on
|
||||
the number of iterations performed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray of bool
|
||||
Thinned image.
|
||||
|
||||
See also
|
||||
--------
|
||||
skeletonize, medial_axis
|
||||
|
||||
Notes
|
||||
-----
|
||||
This algorithm [1]_ works by making multiple passes over the image,
|
||||
removing pixels matching a set of criteria designed to thin
|
||||
connected regions while preserving eight-connected components and
|
||||
2 x 2 squares [2]_. In each of the two sub-iterations the algorithm
|
||||
correlates the intermediate skeleton image with a neighborhood mask,
|
||||
then looks up each neighborhood in a lookup table indicating whether
|
||||
the central pixel should be deleted in that sub-iteration.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Z. Guo and R. W. Hall, "Parallel thinning with
|
||||
two-subiteration algorithms," Comm. ACM, vol. 32, no. 3,
|
||||
pp. 359-373, 1989. :DOI:`10.1145/62065.62074`
|
||||
.. [2] Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning
|
||||
Methodologies-A Comprehensive Survey," IEEE Transactions on
|
||||
Pattern Analysis and Machine Intelligence, Vol 14, No. 9,
|
||||
p. 879, 1992. :DOI:`10.1109/34.161346`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> square = np.zeros((7, 7), dtype=np.uint8)
|
||||
>>> square[1:-1, 2:-2] = 1
|
||||
>>> square[0, 1] = 1
|
||||
>>> square
|
||||
array([[0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
|
||||
>>> skel = thin(square)
|
||||
>>> skel.astype(np.uint8)
|
||||
array([[0, 1, 0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 1, 0, 0, 0],
|
||||
[0, 0, 0, 1, 0, 0, 0],
|
||||
[0, 0, 0, 1, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
|
||||
"""
|
||||
# check that image is 2d
|
||||
check_nD(image, 2)
|
||||
|
||||
# convert image to uint8 with values in {0, 1}
|
||||
skel = np.asanyarray(image, dtype=bool).astype(np.uint8)
|
||||
|
||||
# neighborhood mask
|
||||
mask = np.array([[ 8, 4, 2],
|
||||
[16, 0, 1],
|
||||
[32, 64, 128]], dtype=np.uint8)
|
||||
|
||||
# iterate until convergence, up to the iteration limit
|
||||
max_iter = max_iter or np.inf
|
||||
n_iter = 0
|
||||
n_pts_old, n_pts_new = np.inf, np.sum(skel)
|
||||
while n_pts_old != n_pts_new and n_iter < max_iter:
|
||||
n_pts_old = n_pts_new
|
||||
|
||||
# perform the two "subiterations" described in the paper
|
||||
for lut in [G123_LUT, G123P_LUT]:
|
||||
# correlate image with neighborhood mask
|
||||
N = ndi.correlate(skel, mask, mode='constant')
|
||||
# take deletion decision from this subiteration's LUT
|
||||
D = np.take(lut, N)
|
||||
# perform deletion
|
||||
skel[D] = 0
|
||||
|
||||
n_pts_new = np.sum(skel) # count points after thinning
|
||||
n_iter += 1
|
||||
|
||||
return skel.astype(np.bool)
|
||||
|
||||
|
||||
# --------- Skeletonization by medial axis transform --------
|
||||
|
||||
_eight_connect = ndi.generate_binary_structure(2, 2)
|
||||
|
||||
|
||||
def medial_axis(image, mask=None, return_distance=False):
|
||||
"""
|
||||
Compute the medial axis transform of a binary image
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : binary ndarray, shape (M, N)
|
||||
The image of the shape to be skeletonized.
|
||||
mask : binary ndarray, shape (M, N), optional
|
||||
If a mask is given, only those elements in `image` with a true
|
||||
value in `mask` are used for computing the medial axis.
|
||||
return_distance : bool, optional
|
||||
If true, the distance transform is returned as well as the skeleton.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray of bools
|
||||
Medial axis transform of the image
|
||||
dist : ndarray of ints, optional
|
||||
Distance transform of the image (only returned if `return_distance`
|
||||
is True)
|
||||
|
||||
See also
|
||||
--------
|
||||
skeletonize
|
||||
|
||||
Notes
|
||||
-----
|
||||
This algorithm computes the medial axis transform of an image
|
||||
as the ridges of its distance transform.
|
||||
|
||||
The different steps of the algorithm are as follows
|
||||
* A lookup table is used, that assigns 0 or 1 to each configuration of
|
||||
the 3x3 binary square, whether the central pixel should be removed
|
||||
or kept. We want a point to be removed if it has more than one neighbor
|
||||
and if removing it does not change the number of connected components.
|
||||
|
||||
* The distance transform to the background is computed, as well as
|
||||
the cornerness of the pixel.
|
||||
|
||||
* The foreground (value of 1) points are ordered by
|
||||
the distance transform, then the cornerness.
|
||||
|
||||
* A cython function is called to reduce the image to its skeleton. It
|
||||
processes pixels in the order determined at the previous step, and
|
||||
removes or maintains a pixel according to the lookup table. Because
|
||||
of the ordering, it is possible to process all pixels in only one
|
||||
pass.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> square = np.zeros((7, 7), dtype=np.uint8)
|
||||
>>> square[1:-1, 2:-2] = 1
|
||||
>>> square
|
||||
array([[0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 1, 1, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
|
||||
>>> medial_axis(square).astype(np.uint8)
|
||||
array([[0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 0, 1, 0, 0],
|
||||
[0, 0, 0, 1, 0, 0, 0],
|
||||
[0, 0, 0, 1, 0, 0, 0],
|
||||
[0, 0, 0, 1, 0, 0, 0],
|
||||
[0, 0, 1, 0, 1, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
|
||||
|
||||
"""
|
||||
global _eight_connect
|
||||
if mask is None:
|
||||
masked_image = image.astype(np.bool)
|
||||
else:
|
||||
masked_image = image.astype(bool).copy()
|
||||
masked_image[~mask] = False
|
||||
#
|
||||
# Build lookup table - three conditions
|
||||
# 1. Keep only positive pixels (center_is_foreground array).
|
||||
# AND
|
||||
# 2. Keep if removing the pixel results in a different connectivity
|
||||
# (if the number of connected components is different with and
|
||||
# without the central pixel)
|
||||
# OR
|
||||
# 3. Keep if # pixels in neighbourhood is 2 or less
|
||||
# Note that table is independent of image
|
||||
center_is_foreground = (np.arange(512) & 2**4).astype(bool)
|
||||
table = (center_is_foreground # condition 1.
|
||||
&
|
||||
(np.array([ndi.label(_pattern_of(index), _eight_connect)[1] !=
|
||||
ndi.label(_pattern_of(index & ~ 2**4),
|
||||
_eight_connect)[1]
|
||||
for index in range(512)]) # condition 2
|
||||
|
|
||||
np.array([np.sum(_pattern_of(index)) < 3 for index in range(512)]))
|
||||
# condition 3
|
||||
)
|
||||
|
||||
# Build distance transform
|
||||
distance = ndi.distance_transform_edt(masked_image)
|
||||
if return_distance:
|
||||
store_distance = distance.copy()
|
||||
|
||||
# Corners
|
||||
# The processing order along the edge is critical to the shape of the
|
||||
# resulting skeleton: if you process a corner first, that corner will
|
||||
# be eroded and the skeleton will miss the arm from that corner. Pixels
|
||||
# with fewer neighbors are more "cornery" and should be processed last.
|
||||
# We use a cornerness_table lookup table where the score of a
|
||||
# configuration is the number of background (0-value) pixels in the
|
||||
# 3x3 neighbourhood
|
||||
cornerness_table = np.array([9 - np.sum(_pattern_of(index))
|
||||
for index in range(512)])
|
||||
corner_score = _table_lookup(masked_image, cornerness_table)
|
||||
|
||||
# Define arrays for inner loop
|
||||
i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]]
|
||||
result = masked_image.copy()
|
||||
distance = distance[result]
|
||||
i = np.ascontiguousarray(i[result], dtype=np.intp)
|
||||
j = np.ascontiguousarray(j[result], dtype=np.intp)
|
||||
result = np.ascontiguousarray(result, np.uint8)
|
||||
|
||||
# Determine the order in which pixels are processed.
|
||||
# We use a random # for tiebreaking. Assign each pixel in the image a
|
||||
# predictable, random # so that masking doesn't affect arbitrary choices
|
||||
# of skeletons
|
||||
#
|
||||
generator = np.random.RandomState(0)
|
||||
tiebreaker = generator.permutation(np.arange(masked_image.sum()))
|
||||
order = np.lexsort((tiebreaker,
|
||||
corner_score[masked_image],
|
||||
distance))
|
||||
order = np.ascontiguousarray(order, dtype=np.int32)
|
||||
|
||||
table = np.ascontiguousarray(table, dtype=np.uint8)
|
||||
# Remove pixels not belonging to the medial axis
|
||||
_skeletonize_loop(result, i, j, order, table)
|
||||
|
||||
result = result.astype(bool)
|
||||
if mask is not None:
|
||||
result[~mask] = image[~mask]
|
||||
if return_distance:
|
||||
return result, store_distance
|
||||
else:
|
||||
return result
|
||||
|
||||
|
||||
def _pattern_of(index):
|
||||
"""
|
||||
Return the pattern represented by an index value
|
||||
Byte decomposition of index
|
||||
"""
|
||||
return np.array([[index & 2**0, index & 2**1, index & 2**2],
|
||||
[index & 2**3, index & 2**4, index & 2**5],
|
||||
[index & 2**6, index & 2**7, index & 2**8]], bool)
|
||||
|
||||
|
||||
def _table_lookup(image, table):
|
||||
"""
|
||||
Perform a morphological transform on an image, directed by its
|
||||
neighbors
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
A binary image
|
||||
table : ndarray
|
||||
A 512-element table giving the transform of each pixel given
|
||||
the values of that pixel and its 8-connected neighbors.
|
||||
border_value : bool
|
||||
The value of pixels beyond the border of the image.
|
||||
|
||||
Returns
|
||||
-------
|
||||
result : ndarray of same shape as `image`
|
||||
Transformed image
|
||||
|
||||
Notes
|
||||
-----
|
||||
The pixels are numbered like this::
|
||||
|
||||
|
||||
0 1 2
|
||||
3 4 5
|
||||
6 7 8
|
||||
|
||||
The index at a pixel is the sum of 2**<pixel-number> for pixels
|
||||
that evaluate to true.
|
||||
"""
|
||||
#
|
||||
# We accumulate into the indexer to get the index into the table
|
||||
# at each point in the image
|
||||
#
|
||||
if image.shape[0] < 3 or image.shape[1] < 3:
|
||||
image = image.astype(bool)
|
||||
indexer = np.zeros(image.shape, int)
|
||||
indexer[1:, 1:] += image[:-1, :-1] * 2**0
|
||||
indexer[1:, :] += image[:-1, :] * 2**1
|
||||
indexer[1:, :-1] += image[:-1, 1:] * 2**2
|
||||
|
||||
indexer[:, 1:] += image[:, :-1] * 2**3
|
||||
indexer[:, :] += image[:, :] * 2**4
|
||||
indexer[:, :-1] += image[:, 1:] * 2**5
|
||||
|
||||
indexer[:-1, 1:] += image[1:, :-1] * 2**6
|
||||
indexer[:-1, :] += image[1:, :] * 2**7
|
||||
indexer[:-1, :-1] += image[1:, 1:] * 2**8
|
||||
else:
|
||||
indexer = _table_lookup_index(np.ascontiguousarray(image, np.uint8))
|
||||
image = table[indexer]
|
||||
return image
|
||||
|
||||
|
||||
def skeletonize_3d(image):
|
||||
"""Compute the skeleton of a binary image.
|
||||
|
||||
Thinning is used to reduce each connected component in a binary image
|
||||
to a single-pixel wide skeleton.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray, 2D or 3D
|
||||
A binary image containing the objects to be skeletonized. Zeros
|
||||
represent background, nonzero values are foreground.
|
||||
|
||||
Returns
|
||||
-------
|
||||
skeleton : ndarray
|
||||
The thinned image.
|
||||
|
||||
See also
|
||||
--------
|
||||
skeletonize, medial_axis
|
||||
|
||||
Notes
|
||||
-----
|
||||
The method of [Lee94]_ uses an octree data structure to examine a 3x3x3
|
||||
neighborhood of a pixel. The algorithm proceeds by iteratively sweeping
|
||||
over the image, and removing pixels at each iteration until the image
|
||||
stops changing. Each iteration consists of two steps: first, a list of
|
||||
candidates for removal is assembled; then pixels from this list are
|
||||
rechecked sequentially, to better preserve connectivity of the image.
|
||||
|
||||
The algorithm this function implements is different from the algorithms
|
||||
used by either `skeletonize` or `medial_axis`, thus for 2D images the
|
||||
results produced by this function are generally different.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [Lee94] T.-C. Lee, R.L. Kashyap and C.-N. Chu, Building skeleton models
|
||||
via 3-D medial surface/axis thinning algorithms.
|
||||
Computer Vision, Graphics, and Image Processing, 56(6):462-478, 1994.
|
||||
|
||||
"""
|
||||
# make sure the image is 3D or 2D
|
||||
if image.ndim < 2 or image.ndim > 3:
|
||||
raise ValueError("skeletonize_3d can only handle 2D or 3D images; "
|
||||
"got image.ndim = %s instead." % image.ndim)
|
||||
image = np.ascontiguousarray(image)
|
||||
image = img_as_ubyte(image, force_copy=False)
|
||||
|
||||
# make an in image 3D and pad it w/ zeros to simplify dealing w/ boundaries
|
||||
# NB: careful here to not clobber the original *and* minimize copying
|
||||
image_o = image
|
||||
if image.ndim == 2:
|
||||
image_o = image[np.newaxis, ...]
|
||||
image_o = np.pad(image_o, pad_width=1, mode='constant')
|
||||
|
||||
# normalize to binary
|
||||
maxval = image_o.max()
|
||||
image_o[image_o != 0] = 1
|
||||
|
||||
# do the computation
|
||||
image_o = np.asarray(_compute_thin_image(image_o))
|
||||
|
||||
# crop it back and restore the original intensity range
|
||||
image_o = crop(image_o, crop_width=1)
|
||||
if image.ndim == 2:
|
||||
image_o = image_o[0]
|
||||
image_o *= maxval
|
||||
|
||||
return image_o
|
Loading…
Add table
Add a link
Reference in a new issue