Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
357
venv/Lib/site-packages/skimage/feature/peak.py
Normal file
357
venv/Lib/site-packages/skimage/feature/peak.py
Normal file
|
@ -0,0 +1,357 @@
|
|||
import numpy as np
|
||||
import scipy.ndimage as ndi
|
||||
from .. import measure
|
||||
from ..filters import rank_order
|
||||
|
||||
|
||||
def _get_high_intensity_peaks(image, mask, num_peaks):
|
||||
"""
|
||||
Return the highest intensity peak coordinates.
|
||||
"""
|
||||
# get coordinates of peaks
|
||||
coord = np.nonzero(mask)
|
||||
intensities = image[coord]
|
||||
# Highest peak first
|
||||
idx_maxsort = np.argsort(-intensities)
|
||||
coord = np.transpose(coord)[idx_maxsort]
|
||||
# select num_peaks peaks
|
||||
if len(coord) > num_peaks:
|
||||
coord = coord[:num_peaks]
|
||||
return coord
|
||||
|
||||
|
||||
def _get_peak_mask(image, min_distance, footprint, threshold_abs,
|
||||
threshold_rel):
|
||||
"""
|
||||
Return the mask containing all peak candidates above thresholds.
|
||||
"""
|
||||
if footprint is not None:
|
||||
image_max = ndi.maximum_filter(image, footprint=footprint,
|
||||
mode='constant')
|
||||
else:
|
||||
size = 2 * min_distance + 1
|
||||
image_max = ndi.maximum_filter(image, size=size, mode='constant')
|
||||
mask = image == image_max
|
||||
if threshold_rel is not None:
|
||||
threshold = max(threshold_abs, threshold_rel * image.max())
|
||||
else:
|
||||
threshold = threshold_abs
|
||||
mask &= image > threshold
|
||||
return mask
|
||||
|
||||
|
||||
def _exclude_border(mask, exclude_border):
|
||||
"""
|
||||
Remove peaks near the borders
|
||||
"""
|
||||
# zero out the image borders
|
||||
for i, excluded in enumerate(exclude_border):
|
||||
if excluded == 0:
|
||||
continue
|
||||
mask[(slice(None),) * i + (slice(None, excluded),)] = False
|
||||
mask[(slice(None),) * i + (slice(-excluded, None),)] = False
|
||||
return mask
|
||||
|
||||
|
||||
def peak_local_max(image, min_distance=1, threshold_abs=None,
|
||||
threshold_rel=None, exclude_border=True, indices=True,
|
||||
num_peaks=np.inf, footprint=None, labels=None,
|
||||
num_peaks_per_label=np.inf):
|
||||
"""Find peaks in an image as coordinate list or boolean mask.
|
||||
|
||||
Peaks are the local maxima in a region of `2 * min_distance + 1`
|
||||
(i.e. peaks are separated by at least `min_distance`).
|
||||
|
||||
If there are multiple local maxima with identical pixel intensities
|
||||
inside the region defined with `min_distance`,
|
||||
the coordinates of all such pixels are returned.
|
||||
|
||||
If both `threshold_abs` and `threshold_rel` are provided, the maximum
|
||||
of the two is chosen as the minimum intensity threshold of peaks.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
Input image.
|
||||
min_distance : int, optional
|
||||
Minimum number of pixels separating peaks in a region of `2 *
|
||||
min_distance + 1` (i.e. peaks are separated by at least
|
||||
`min_distance`).
|
||||
To find the maximum number of peaks, use `min_distance=1`.
|
||||
threshold_abs : float, optional
|
||||
Minimum intensity of peaks. By default, the absolute threshold is
|
||||
the minimum intensity of the image.
|
||||
threshold_rel : float, optional
|
||||
Minimum intensity of peaks, calculated as `max(image) * threshold_rel`.
|
||||
exclude_border : int, tuple of ints, or bool, optional
|
||||
If positive integer, `exclude_border` excludes peaks from within
|
||||
`exclude_border`-pixels of the border of the image.
|
||||
If tuple of non-negative ints, the length of the tuple must match the
|
||||
input array's dimensionality. Each element of the tuple will exclude
|
||||
peaks from within `exclude_border`-pixels of the border of the image
|
||||
along that dimension.
|
||||
If True, takes the `min_distance` parameter as value.
|
||||
If zero or False, peaks are identified regardless of their distance
|
||||
from the border.
|
||||
indices : bool, optional
|
||||
If True, the output will be an array representing peak
|
||||
coordinates. The coordinates are sorted according to peaks
|
||||
values (Larger first). If False, the output will be a boolean
|
||||
array shaped as `image.shape` with peaks present at True
|
||||
elements.
|
||||
num_peaks : int, optional
|
||||
Maximum number of peaks. When the number of peaks exceeds `num_peaks`,
|
||||
return `num_peaks` peaks based on highest peak intensity.
|
||||
footprint : ndarray of bools, optional
|
||||
If provided, `footprint == 1` represents the local region within which
|
||||
to search for peaks at every point in `image`. Overrides
|
||||
`min_distance`.
|
||||
labels : ndarray of ints, optional
|
||||
If provided, each unique region `labels == value` represents a unique
|
||||
region to search for peaks. Zero is reserved for background.
|
||||
num_peaks_per_label : int, optional
|
||||
Maximum number of peaks for each label.
|
||||
|
||||
Returns
|
||||
-------
|
||||
output : ndarray or ndarray of bools
|
||||
|
||||
* If `indices = True` : (row, column, ...) coordinates of peaks.
|
||||
* If `indices = False` : Boolean array shaped like `image`, with peaks
|
||||
represented by True values.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The peak local maximum function returns the coordinates of local peaks
|
||||
(maxima) in an image. A maximum filter is used for finding local maxima.
|
||||
This operation dilates the original image. After comparison of the dilated
|
||||
and original image, this function returns the coordinates or a mask of the
|
||||
peaks where the dilated image equals the original image.
|
||||
|
||||
See also
|
||||
--------
|
||||
skimage.feature.corner_peaks
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> img1 = np.zeros((7, 7))
|
||||
>>> img1[3, 4] = 1
|
||||
>>> img1[3, 2] = 1.5
|
||||
>>> img1
|
||||
array([[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
|
||||
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
|
||||
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
|
||||
[0. , 0. , 1.5, 0. , 1. , 0. , 0. ],
|
||||
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
|
||||
[0. , 0. , 0. , 0. , 0. , 0. , 0. ],
|
||||
[0. , 0. , 0. , 0. , 0. , 0. , 0. ]])
|
||||
|
||||
>>> peak_local_max(img1, min_distance=1)
|
||||
array([[3, 2],
|
||||
[3, 4]])
|
||||
|
||||
>>> peak_local_max(img1, min_distance=2)
|
||||
array([[3, 2]])
|
||||
|
||||
>>> img2 = np.zeros((20, 20, 20))
|
||||
>>> img2[10, 10, 10] = 1
|
||||
>>> peak_local_max(img2, exclude_border=0)
|
||||
array([[10, 10, 10]])
|
||||
|
||||
"""
|
||||
out = np.zeros_like(image, dtype=np.bool)
|
||||
|
||||
threshold_abs = threshold_abs if threshold_abs is not None else image.min()
|
||||
|
||||
if isinstance(exclude_border, bool):
|
||||
exclude_border = (min_distance if exclude_border else 0,) * image.ndim
|
||||
elif isinstance(exclude_border, int):
|
||||
if exclude_border < 0:
|
||||
raise ValueError("`exclude_border` cannot be a negative value")
|
||||
exclude_border = (exclude_border,) * image.ndim
|
||||
elif isinstance(exclude_border, tuple):
|
||||
if len(exclude_border) != image.ndim:
|
||||
raise ValueError(
|
||||
"`exclude_border` should have the same length as the "
|
||||
"dimensionality of the image.")
|
||||
for exclude in exclude_border:
|
||||
if not isinstance(exclude, int):
|
||||
raise ValueError(
|
||||
"`exclude_border`, when expressed as a tuple, must only "
|
||||
"contain ints."
|
||||
)
|
||||
if exclude < 0:
|
||||
raise ValueError(
|
||||
"`exclude_border` cannot contain a negative value")
|
||||
else:
|
||||
raise TypeError(
|
||||
"`exclude_border` must be bool, int, or tuple with the same "
|
||||
"length as the dimensionality of the image.")
|
||||
|
||||
# no peak for a trivial image
|
||||
if np.all(image == image.flat[0]):
|
||||
if indices is True:
|
||||
return np.empty((0, image.ndim), np.int)
|
||||
else:
|
||||
return out
|
||||
|
||||
# In the case of labels, call ndi on each label
|
||||
if labels is not None:
|
||||
label_values = np.unique(labels)
|
||||
# Reorder label values to have consecutive integers (no gaps)
|
||||
if np.any(np.diff(label_values) != 1):
|
||||
mask = labels >= 1
|
||||
labels[mask] = 1 + rank_order(labels[mask])[0].astype(labels.dtype)
|
||||
labels = labels.astype(np.int32)
|
||||
|
||||
# create a mask for the non-exclude region
|
||||
inner_mask = _exclude_border(np.ones_like(labels, dtype=bool),
|
||||
exclude_border)
|
||||
|
||||
# For each label, extract a smaller image enclosing the object of
|
||||
# interest, identify num_peaks_per_label peaks and mark them in
|
||||
# variable out.
|
||||
for label_idx, obj in enumerate(ndi.find_objects(labels)):
|
||||
img_object = image[obj] * (labels[obj] == label_idx + 1)
|
||||
mask = _get_peak_mask(img_object, min_distance, footprint,
|
||||
threshold_abs, threshold_rel)
|
||||
if exclude_border:
|
||||
# remove peaks fall in the exclude region
|
||||
mask &= inner_mask[obj]
|
||||
coordinates = _get_high_intensity_peaks(img_object, mask,
|
||||
num_peaks_per_label)
|
||||
nd_indices = tuple(coordinates.T)
|
||||
mask.fill(False)
|
||||
mask[nd_indices] = True
|
||||
out[obj] += mask
|
||||
|
||||
if not indices and np.isinf(num_peaks):
|
||||
return out
|
||||
|
||||
coordinates = _get_high_intensity_peaks(image, out, num_peaks)
|
||||
if indices:
|
||||
return coordinates
|
||||
else:
|
||||
out.fill(False)
|
||||
nd_indices = tuple(coordinates.T)
|
||||
out[nd_indices] = True
|
||||
return out
|
||||
|
||||
# Non maximum filter
|
||||
mask = _get_peak_mask(image, min_distance, footprint, threshold_abs,
|
||||
threshold_rel)
|
||||
|
||||
mask = _exclude_border(mask, exclude_border)
|
||||
|
||||
# Select highest intensities (num_peaks)
|
||||
coordinates = _get_high_intensity_peaks(image, mask, num_peaks)
|
||||
|
||||
if indices is True:
|
||||
return coordinates
|
||||
else:
|
||||
nd_indices = tuple(coordinates.T)
|
||||
out[nd_indices] = True
|
||||
return out
|
||||
|
||||
|
||||
def _prominent_peaks(image, min_xdistance=1, min_ydistance=1,
|
||||
threshold=None, num_peaks=np.inf):
|
||||
"""Return peaks with non-maximum suppression.
|
||||
|
||||
Identifies most prominent features separated by certain distances.
|
||||
Non-maximum suppression with different sizes is applied separately
|
||||
in the first and second dimension of the image to identify peaks.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : (M, N) ndarray
|
||||
Input image.
|
||||
min_xdistance : int
|
||||
Minimum distance separating features in the x dimension.
|
||||
min_ydistance : int
|
||||
Minimum distance separating features in the y dimension.
|
||||
threshold : float
|
||||
Minimum intensity of peaks. Default is `0.5 * max(image)`.
|
||||
num_peaks : int
|
||||
Maximum number of peaks. When the number of peaks exceeds `num_peaks`,
|
||||
return `num_peaks` coordinates based on peak intensity.
|
||||
|
||||
Returns
|
||||
-------
|
||||
intensity, xcoords, ycoords : tuple of array
|
||||
Peak intensity values, x and y indices.
|
||||
"""
|
||||
|
||||
img = image.copy()
|
||||
rows, cols = img.shape
|
||||
|
||||
if threshold is None:
|
||||
threshold = 0.5 * np.max(img)
|
||||
|
||||
ycoords_size = 2 * min_ydistance + 1
|
||||
xcoords_size = 2 * min_xdistance + 1
|
||||
img_max = ndi.maximum_filter1d(img, size=ycoords_size, axis=0,
|
||||
mode='constant', cval=0)
|
||||
img_max = ndi.maximum_filter1d(img_max, size=xcoords_size, axis=1,
|
||||
mode='constant', cval=0)
|
||||
mask = (img == img_max)
|
||||
img *= mask
|
||||
img_t = img > threshold
|
||||
|
||||
label_img = measure.label(img_t)
|
||||
props = measure.regionprops(label_img, img_max)
|
||||
|
||||
# Sort the list of peaks by intensity, not left-right, so larger peaks
|
||||
# in Hough space cannot be arbitrarily suppressed by smaller neighbors
|
||||
props = sorted(props, key=lambda x: x.max_intensity)[::-1]
|
||||
coords = np.array([np.round(p.centroid) for p in props], dtype=int)
|
||||
|
||||
img_peaks = []
|
||||
ycoords_peaks = []
|
||||
xcoords_peaks = []
|
||||
|
||||
# relative coordinate grid for local neighbourhood suppression
|
||||
ycoords_ext, xcoords_ext = np.mgrid[-min_ydistance:min_ydistance + 1,
|
||||
-min_xdistance:min_xdistance + 1]
|
||||
|
||||
for ycoords_idx, xcoords_idx in coords:
|
||||
accum = img_max[ycoords_idx, xcoords_idx]
|
||||
if accum > threshold:
|
||||
# absolute coordinate grid for local neighbourhood suppression
|
||||
ycoords_nh = ycoords_idx + ycoords_ext
|
||||
xcoords_nh = xcoords_idx + xcoords_ext
|
||||
|
||||
# no reflection for distance neighbourhood
|
||||
ycoords_in = np.logical_and(ycoords_nh > 0, ycoords_nh < rows)
|
||||
ycoords_nh = ycoords_nh[ycoords_in]
|
||||
xcoords_nh = xcoords_nh[ycoords_in]
|
||||
|
||||
# reflect xcoords and assume xcoords are continuous,
|
||||
# e.g. for angles:
|
||||
# (..., 88, 89, -90, -89, ..., 89, -90, -89, ...)
|
||||
xcoords_low = xcoords_nh < 0
|
||||
ycoords_nh[xcoords_low] = rows - ycoords_nh[xcoords_low]
|
||||
xcoords_nh[xcoords_low] += cols
|
||||
xcoords_high = xcoords_nh >= cols
|
||||
ycoords_nh[xcoords_high] = rows - ycoords_nh[xcoords_high]
|
||||
xcoords_nh[xcoords_high] -= cols
|
||||
|
||||
# suppress neighbourhood
|
||||
img_max[ycoords_nh, xcoords_nh] = 0
|
||||
|
||||
# add current feature to peaks
|
||||
img_peaks.append(accum)
|
||||
ycoords_peaks.append(ycoords_idx)
|
||||
xcoords_peaks.append(xcoords_idx)
|
||||
|
||||
img_peaks = np.array(img_peaks)
|
||||
ycoords_peaks = np.array(ycoords_peaks)
|
||||
xcoords_peaks = np.array(xcoords_peaks)
|
||||
|
||||
if num_peaks < len(img_peaks):
|
||||
idx_maxsort = np.argsort(img_peaks)[::-1][:num_peaks]
|
||||
img_peaks = img_peaks[idx_maxsort]
|
||||
ycoords_peaks = ycoords_peaks[idx_maxsort]
|
||||
xcoords_peaks = xcoords_peaks[idx_maxsort]
|
||||
|
||||
return img_peaks, xcoords_peaks, ycoords_peaks
|
Loading…
Add table
Add a link
Reference in a new issue