Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
|
|
@ -0,0 +1,70 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def _match_cumulative_cdf(source, template):
|
||||
"""
|
||||
Return modified source array so that the cumulative density function of
|
||||
its values matches the cumulative density function of the template.
|
||||
"""
|
||||
src_values, src_unique_indices, src_counts = np.unique(source.ravel(),
|
||||
return_inverse=True,
|
||||
return_counts=True)
|
||||
tmpl_values, tmpl_counts = np.unique(template.ravel(), return_counts=True)
|
||||
|
||||
# calculate normalized quantiles for each array
|
||||
src_quantiles = np.cumsum(src_counts) / source.size
|
||||
tmpl_quantiles = np.cumsum(tmpl_counts) / template.size
|
||||
|
||||
interp_a_values = np.interp(src_quantiles, tmpl_quantiles, tmpl_values)
|
||||
return interp_a_values[src_unique_indices].reshape(source.shape)
|
||||
|
||||
|
||||
def match_histograms(image, reference, *, multichannel=False):
|
||||
"""Adjust an image so that its cumulative histogram matches that of another.
|
||||
|
||||
The adjustment is applied separately for each channel.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
Input image. Can be gray-scale or in color.
|
||||
reference : ndarray
|
||||
Image to match histogram of. Must have the same number of channels as
|
||||
image.
|
||||
multichannel : bool, optional
|
||||
Apply the matching separately for each channel.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matched : ndarray
|
||||
Transformed input image.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
Thrown when the number of channels in the input image and the reference
|
||||
differ.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] http://paulbourke.net/miscellaneous/equalisation/
|
||||
|
||||
"""
|
||||
if image.ndim != reference.ndim:
|
||||
raise ValueError('Image and reference must have the same number '
|
||||
'of channels.')
|
||||
|
||||
if multichannel:
|
||||
if image.shape[-1] != reference.shape[-1]:
|
||||
raise ValueError('Number of channels in the input image and '
|
||||
'reference image must match!')
|
||||
|
||||
matched = np.empty(image.shape, dtype=image.dtype)
|
||||
for channel in range(image.shape[-1]):
|
||||
matched_channel = _match_cumulative_cdf(image[..., channel],
|
||||
reference[..., channel])
|
||||
matched[..., channel] = matched_channel
|
||||
else:
|
||||
matched = _match_cumulative_cdf(image, reference)
|
||||
|
||||
return matched
|
||||
Loading…
Add table
Add a link
Reference in a new issue