Fixed database typo and removed unnecessary class identifier.

This commit is contained in:
Batuhan Berk Başoğlu 2020-10-14 10:10:37 -04:00
parent 00ad49a143
commit 45fb349a7d
5098 changed files with 952558 additions and 85 deletions

View file

@ -0,0 +1,19 @@
from .exposure import histogram, equalize_hist, \
rescale_intensity, cumulative_distribution, \
adjust_gamma, adjust_sigmoid, adjust_log, \
is_low_contrast
from ._adapthist import equalize_adapthist
from .histogram_matching import match_histograms
__all__ = ['histogram',
'equalize_hist',
'equalize_adapthist',
'rescale_intensity',
'cumulative_distribution',
'adjust_gamma',
'adjust_sigmoid',
'adjust_log',
'is_low_contrast',
'match_histograms']

View file

@ -0,0 +1,317 @@
"""
Adapted code from "Contrast Limited Adaptive Histogram Equalization" by Karel
Zuiderveld <karel@cv.ruu.nl>, Graphics Gems IV, Academic Press, 1994.
http://tog.acm.org/resources/GraphicsGems/
The Graphics Gems code is copyright-protected. In other words, you cannot
claim the text of the code as your own and resell it. Using the code is
permitted in any program, product, or library, non-commercial or commercial.
Giving credit is not required, though is a nice gesture. The code comes as-is,
and if there are any flaws or problems with any Gems code, nobody involved with
Gems - authors, editors, publishers, or webmasters - are to be held
responsible. Basically, don't be a jerk, and remember that anything free
comes with no guarantee.
"""
import numbers
import numpy as np
from ..util import img_as_float, img_as_uint
from ..color.adapt_rgb import adapt_rgb, hsv_value
from ..exposure import rescale_intensity
NR_OF_GRAY = 2 ** 14 # number of grayscale levels to use in CLAHE algorithm
@adapt_rgb(hsv_value)
def equalize_adapthist(image, kernel_size=None,
clip_limit=0.01, nbins=256):
"""Contrast Limited Adaptive Histogram Equalization (CLAHE).
An algorithm for local contrast enhancement, that uses histograms computed
over different tile regions of the image. Local details can therefore be
enhanced even in regions that are darker or lighter than most of the image.
Parameters
----------
image : (N1, ...,NN[, C]) ndarray
Input image.
kernel_size: int or array_like, optional
Defines the shape of contextual regions used in the algorithm. If
iterable is passed, it must have the same number of elements as
``image.ndim`` (without color channel). If integer, it is broadcasted
to each `image` dimension. By default, ``kernel_size`` is 1/8 of
``image`` height by 1/8 of its width.
clip_limit : float, optional
Clipping limit, normalized between 0 and 1 (higher values give more
contrast).
nbins : int, optional
Number of gray bins for histogram ("data range").
Returns
-------
out : (N1, ...,NN[, C]) ndarray
Equalized image with float64 dtype.
See Also
--------
equalize_hist, rescale_intensity
Notes
-----
* For color images, the following steps are performed:
- The image is converted to HSV color space
- The CLAHE algorithm is run on the V (Value) channel
- The image is converted back to RGB space and returned
* For RGBA images, the original alpha channel is removed.
.. versionchanged:: 0.17
The values returned by this function are slightly shifted upwards
because of an internal change in rounding behavior.
References
----------
.. [1] http://tog.acm.org/resources/GraphicsGems/
.. [2] https://en.wikipedia.org/wiki/CLAHE#CLAHE
"""
if clip_limit == 1.0:
return img_as_float(image) # convert to float for consistency
image = img_as_uint(image)
image = np.round(
rescale_intensity(image, out_range=(0, NR_OF_GRAY - 1))
).astype(np.uint16)
if kernel_size is None:
kernel_size = tuple([image.shape[dim] // 8
for dim in range(image.ndim)])
elif isinstance(kernel_size, numbers.Number):
kernel_size = (kernel_size,) * image.ndim
elif len(kernel_size) != image.ndim:
ValueError('Incorrect value of `kernel_size`: {}'.format(kernel_size))
kernel_size = [int(k) for k in kernel_size]
image = _clahe(image, kernel_size, clip_limit, nbins)
image = img_as_float(image)
return rescale_intensity(image)
def _clahe(image, kernel_size, clip_limit, nbins):
"""Contrast Limited Adaptive Histogram Equalization.
Parameters
----------
image : (N1,...,NN) ndarray
Input image.
kernel_size: int or N-tuple of int
Defines the shape of contextual regions used in the algorithm.
clip_limit : float
Normalized clipping limit (higher values give more contrast).
nbins : int
Number of gray bins for histogram ("data range").
Returns
-------
out : (N1,...,NN) ndarray
Equalized image.
The number of "effective" graylevels in the output image is set by `nbins`;
selecting a small value (eg. 128) speeds up processing and still produce
an output image of good quality. The output image will have the same
minimum and maximum value as the input image. A clip limit smaller than 1
results in standard (non-contrast limited) AHE.
"""
ndim = image.ndim
dtype = image.dtype
# pad the image such that the shape in each dimension
# - is a multiple of the kernel_size and
# - is preceded by half a kernel size
pad_start_per_dim = [k // 2 for k in kernel_size]
pad_end_per_dim = [(k - s % k) % k + int(np.ceil(k / 2.))
for k, s in zip(kernel_size, image.shape)]
image = np.pad(image, [[p_i, p_f] for p_i, p_f in
zip(pad_start_per_dim, pad_end_per_dim)],
mode='reflect')
# determine gray value bins
bin_size = 1 + NR_OF_GRAY // nbins
lut = np.arange(NR_OF_GRAY)
lut //= bin_size
image = lut[image]
# calculate graylevel mappings for each contextual region
# rearrange image into flattened contextual regions
ns_hist = [int(s / k) - 1 for s, k in zip(image.shape, kernel_size)]
hist_blocks_shape = np.array([ns_hist, kernel_size]).T.flatten()
hist_blocks_axis_order = np.array([np.arange(0, ndim * 2, 2),
np.arange(1, ndim * 2, 2)]).flatten()
hist_slices = [slice(k // 2, k // 2 + n * k)
for k, n in zip(kernel_size, ns_hist)]
hist_blocks = image[tuple(hist_slices)].reshape(hist_blocks_shape)
hist_blocks = np.transpose(hist_blocks, axes=hist_blocks_axis_order)
hist_block_assembled_shape = hist_blocks.shape
hist_blocks = hist_blocks.reshape((np.product(ns_hist), -1))
# Calculate actual clip limit
if clip_limit > 0.0:
clim = int(np.clip(clip_limit * np.product(kernel_size), 1, None))
else:
clim = NR_OF_GRAY # Large value, do not clip (AHE)
hist = np.apply_along_axis(np.bincount, -1, hist_blocks, minlength=nbins)
hist = np.apply_along_axis(clip_histogram, -1, hist, clip_limit=clim)
hist = map_histogram(hist, 0, NR_OF_GRAY - 1, np.product(kernel_size))
hist = hist.reshape(hist_block_assembled_shape[:ndim] + (-1,))
# duplicate leading mappings in each dim
map_array = np.pad(hist,
[[1, 1] for _ in range(ndim)] + [[0, 0]],
mode='edge')
# Perform multilinear interpolation of graylevel mappings
# using the convention described here:
# https://en.wikipedia.org/w/index.php?title=Adaptive_histogram_
# equalization&oldid=936814673#Efficient_computation_by_interpolation
# rearrange image into blocks for vectorized processing
ns_proc = [int(s / k) for s, k in zip(image.shape, kernel_size)]
blocks_shape = np.array([ns_proc, kernel_size]).T.flatten()
blocks_axis_order = np.array([np.arange(0, ndim * 2, 2),
np.arange(1, ndim * 2, 2)]).flatten()
blocks = image.reshape(blocks_shape)
blocks = np.transpose(blocks, axes=blocks_axis_order)
blocks_flattened_shape = blocks.shape
blocks = np.reshape(blocks, (np.product(ns_proc),
np.product(blocks.shape[ndim:])))
# calculate interpolation coefficients
coeffs = np.meshgrid(*tuple([np.arange(k) / k
for k in kernel_size[::-1]]), indexing='ij')
coeffs = [np.transpose(c).flatten() for c in coeffs]
inv_coeffs = [1 - c for dim, c in enumerate(coeffs)]
# sum over contributions of neighboring contextual
# regions in each direction
result = np.zeros(blocks.shape, dtype=np.float32)
for iedge, edge in enumerate(np.ndindex(*([2] * ndim))):
edge_maps = map_array[tuple([slice(e, e + n)
for e, n in zip(edge, ns_proc)])]
edge_maps = edge_maps.reshape((np.product(ns_proc), -1))
# apply map
edge_mapped = np.take_along_axis(edge_maps, blocks, axis=-1)
# interpolate
edge_coeffs = np.product([[inv_coeffs, coeffs][e][d]
for d, e in enumerate(edge[::-1])], 0)
result += (edge_mapped * edge_coeffs).astype(result.dtype)
result = result.astype(dtype)
# rebuild result image from blocks
result = result.reshape(blocks_flattened_shape)
blocks_axis_rebuild_order =\
np.array([np.arange(0, ndim),
np.arange(ndim, ndim * 2)]).T.flatten()
result = np.transpose(result, axes=blocks_axis_rebuild_order)
result = result.reshape(image.shape)
# undo padding
unpad_slices = tuple([slice(p_i, s - p_f) for p_i, p_f, s in
zip(pad_start_per_dim, pad_end_per_dim,
image.shape)])
result = result[unpad_slices]
return result
def clip_histogram(hist, clip_limit):
"""Perform clipping of the histogram and redistribution of bins.
The histogram is clipped and the number of excess pixels is counted.
Afterwards the excess pixels are equally redistributed across the
whole histogram (providing the bin count is smaller than the cliplimit).
Parameters
----------
hist : ndarray
Histogram array.
clip_limit : int
Maximum allowed bin count.
Returns
-------
hist : ndarray
Clipped histogram.
"""
# calculate total number of excess pixels
excess_mask = hist > clip_limit
excess = hist[excess_mask]
n_excess = excess.sum() - excess.size * clip_limit
hist[excess_mask] = clip_limit
# Second part: clip histogram and redistribute excess pixels in each bin
bin_incr = n_excess // hist.size # average binincrement
upper = clip_limit - bin_incr # Bins larger than upper set to cliplimit
low_mask = hist < upper
n_excess -= hist[low_mask].size * bin_incr
hist[low_mask] += bin_incr
mid_mask = np.logical_and(hist >= upper, hist < clip_limit)
mid = hist[mid_mask]
n_excess += mid.sum() - mid.size * clip_limit
hist[mid_mask] = clip_limit
while n_excess > 0: # Redistribute remaining excess
prev_n_excess = n_excess
for index in range(hist.size):
under_mask = hist < clip_limit
step_size = max(1, np.count_nonzero(under_mask) // n_excess)
under_mask = under_mask[index::step_size]
hist[index::step_size][under_mask] += 1
n_excess -= np.count_nonzero(under_mask)
if n_excess <= 0:
break
if prev_n_excess == n_excess:
break
return hist
def map_histogram(hist, min_val, max_val, n_pixels):
"""Calculate the equalized lookup table (mapping).
It does so by cumulating the input histogram.
Histogram bins are assumed to be represented by the last array dimension.
Parameters
----------
hist : ndarray
Clipped histogram.
min_val : int
Minimum value for mapping.
max_val : int
Maximum value for mapping.
n_pixels : int
Number of pixels in the region.
Returns
-------
out : ndarray
Mapped intensity LUT.
"""
out = np.cumsum(hist, axis=-1).astype(float)
out *= (max_val - min_val) / n_pixels
out += min_val
np.clip(out, a_min=None, a_max=max_val, out=out)
return out.astype(int)

View file

@ -0,0 +1,640 @@
import numpy as np
from ..color.colorconv import rgb2gray, rgba2rgb
from ..util.dtype import dtype_range, dtype_limits
from .._shared.utils import warn
__all__ = ['histogram', 'cumulative_distribution', 'equalize_hist',
'rescale_intensity', 'adjust_gamma', 'adjust_log', 'adjust_sigmoid']
DTYPE_RANGE = dtype_range.copy()
DTYPE_RANGE.update((d.__name__, limits) for d, limits in dtype_range.items())
DTYPE_RANGE.update({'uint10': (0, 2 ** 10 - 1),
'uint12': (0, 2 ** 12 - 1),
'uint14': (0, 2 ** 14 - 1),
'bool': dtype_range[np.bool_],
'float': dtype_range[np.float64]})
def _offset_array(arr, low_boundary, high_boundary):
"""Offset the array to get the lowest value at 0 if negative."""
if low_boundary < 0:
offset = low_boundary
dyn_range = high_boundary - low_boundary
# get smallest dtype that can hold both minimum and offset maximum
offset_dtype = np.promote_types(np.min_scalar_type(dyn_range),
np.min_scalar_type(low_boundary))
if arr.dtype != offset_dtype:
# prevent overflow errors when offsetting
arr = arr.astype(offset_dtype)
arr = arr - offset
else:
offset = 0
return arr, offset
def _bincount_histogram(image, source_range):
"""
Efficient histogram calculation for an image of integers.
This function is significantly more efficient than np.histogram but
works only on images of integers. It is based on np.bincount.
Parameters
----------
image : array
Input image.
source_range : string
'image' determines the range from the input image.
'dtype' determines the range from the expected range of the images
of that data type.
Returns
-------
hist : array
The values of the histogram.
bin_centers : array
The values at the center of the bins.
"""
if source_range not in ['image', 'dtype']:
raise ValueError('Incorrect value for `source_range` argument: {}'.format(source_range))
if source_range == 'image':
image_min = int(image.min().astype(np.int64))
image_max = int(image.max().astype(np.int64))
elif source_range == 'dtype':
image_min, image_max = dtype_limits(image, clip_negative=False)
image, offset = _offset_array(image, image_min, image_max)
hist = np.bincount(image.ravel(), minlength=image_max - image_min + 1)
bin_centers = np.arange(image_min, image_max + 1)
if source_range == 'image':
idx = max(image_min, 0)
hist = hist[idx:]
return hist, bin_centers
def histogram(image, nbins=256, source_range='image', normalize=False):
"""Return histogram of image.
Unlike `numpy.histogram`, this function returns the centers of bins and
does not rebin integer arrays. For integer arrays, each integer value has
its own bin, which improves speed and intensity-resolution.
The histogram is computed on the flattened image: for color images, the
function should be used separately on each channel to obtain a histogram
for each color channel.
Parameters
----------
image : array
Input image.
nbins : int, optional
Number of bins used to calculate histogram. This value is ignored for
integer arrays.
source_range : string, optional
'image' (default) determines the range from the input image.
'dtype' determines the range from the expected range of the images
of that data type.
normalize : bool, optional
If True, normalize the histogram by the sum of its values.
Returns
-------
hist : array
The values of the histogram.
bin_centers : array
The values at the center of the bins.
See Also
--------
cumulative_distribution
Examples
--------
>>> from skimage import data, exposure, img_as_float
>>> image = img_as_float(data.camera())
>>> np.histogram(image, bins=2)
(array([107432, 154712]), array([0. , 0.5, 1. ]))
>>> exposure.histogram(image, nbins=2)
(array([107432, 154712]), array([0.25, 0.75]))
"""
sh = image.shape
if len(sh) == 3 and sh[-1] < 4:
warn("This might be a color image. The histogram will be "
"computed on the flattened image. You can instead "
"apply this function to each color channel.")
image = image.flatten()
# For integer types, histogramming with bincount is more efficient.
if np.issubdtype(image.dtype, np.integer):
hist, bin_centers = _bincount_histogram(image, source_range)
else:
if source_range == 'image':
hist_range = None
elif source_range == 'dtype':
hist_range = dtype_limits(image, clip_negative=False)
else:
ValueError('Wrong value for the `source_range` argument')
hist, bin_edges = np.histogram(image, bins=nbins, range=hist_range)
bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2.
if normalize:
hist = hist / np.sum(hist)
return hist, bin_centers
def cumulative_distribution(image, nbins=256):
"""Return cumulative distribution function (cdf) for the given image.
Parameters
----------
image : array
Image array.
nbins : int, optional
Number of bins for image histogram.
Returns
-------
img_cdf : array
Values of cumulative distribution function.
bin_centers : array
Centers of bins.
See Also
--------
histogram
References
----------
.. [1] https://en.wikipedia.org/wiki/Cumulative_distribution_function
Examples
--------
>>> from skimage import data, exposure, img_as_float
>>> image = img_as_float(data.camera())
>>> hi = exposure.histogram(image)
>>> cdf = exposure.cumulative_distribution(image)
>>> np.alltrue(cdf[0] == np.cumsum(hi[0])/float(image.size))
True
"""
hist, bin_centers = histogram(image, nbins)
img_cdf = hist.cumsum()
img_cdf = img_cdf / float(img_cdf[-1])
return img_cdf, bin_centers
def equalize_hist(image, nbins=256, mask=None):
"""Return image after histogram equalization.
Parameters
----------
image : array
Image array.
nbins : int, optional
Number of bins for image histogram. Note: this argument is
ignored for integer images, for which each integer is its own
bin.
mask: ndarray of bools or 0s and 1s, optional
Array of same shape as `image`. Only points at which mask == True
are used for the equalization, which is applied to the whole image.
Returns
-------
out : float array
Image array after histogram equalization.
Notes
-----
This function is adapted from [1]_ with the author's permission.
References
----------
.. [1] http://www.janeriksolem.net/histogram-equalization-with-python-and.html
.. [2] https://en.wikipedia.org/wiki/Histogram_equalization
"""
if mask is not None:
mask = np.array(mask, dtype=bool)
cdf, bin_centers = cumulative_distribution(image[mask], nbins)
else:
cdf, bin_centers = cumulative_distribution(image, nbins)
out = np.interp(image.flat, bin_centers, cdf)
return out.reshape(image.shape)
def intensity_range(image, range_values='image', clip_negative=False):
"""Return image intensity range (min, max) based on desired value type.
Parameters
----------
image : array
Input image.
range_values : str or 2-tuple, optional
The image intensity range is configured by this parameter.
The possible values for this parameter are enumerated below.
'image'
Return image min/max as the range.
'dtype'
Return min/max of the image's dtype as the range.
dtype-name
Return intensity range based on desired `dtype`. Must be valid key
in `DTYPE_RANGE`. Note: `image` is ignored for this range type.
2-tuple
Return `range_values` as min/max intensities. Note that there's no
reason to use this function if you just want to specify the
intensity range explicitly. This option is included for functions
that use `intensity_range` to support all desired range types.
clip_negative : bool, optional
If True, clip the negative range (i.e. return 0 for min intensity)
even if the image dtype allows negative values.
"""
if range_values == 'dtype':
range_values = image.dtype.type
if range_values == 'image':
i_min = np.min(image)
i_max = np.max(image)
elif range_values in DTYPE_RANGE:
i_min, i_max = DTYPE_RANGE[range_values]
if clip_negative:
i_min = 0
else:
i_min, i_max = range_values
return i_min, i_max
def _output_dtype(dtype_or_range):
"""Determine the output dtype for rescale_intensity.
The dtype is determined according to the following rules:
- if ``dtype_or_range`` is a dtype, that is the output dtype.
- if ``dtype_or_range`` is a dtype string, that is the dtype used, unless
it is not a NumPy data type (e.g. 'uint12' for 12-bit unsigned integers),
in which case the data type that can contain it will be used
(e.g. uint16 in this case).
- if ``dtype_or_range`` is a pair of values, the output data type will be
float.
Parameters
----------
dtype_or_range : type, string, or 2-tuple of int/float
The desired range for the output, expressed as either a NumPy dtype or
as a (min, max) pair of numbers.
Returns
-------
out_dtype : type
The data type appropriate for the desired output.
"""
if type(dtype_or_range) in [list, tuple, np.ndarray]:
# pair of values: always return float.
return np.float_
if type(dtype_or_range) == type:
# already a type: return it
return dtype_or_range
if dtype_or_range in DTYPE_RANGE:
# string key in DTYPE_RANGE dictionary
try:
# if it's a canonical numpy dtype, convert
return np.dtype(dtype_or_range).type
except TypeError: # uint10, uint12, uint14
# otherwise, return uint16
return np.uint16
else:
raise ValueError(
'Incorrect value for out_range, should be a valid image data '
f'type or a pair of values, got {dtype_or_range}.'
)
def rescale_intensity(image, in_range='image', out_range='dtype'):
"""Return image after stretching or shrinking its intensity levels.
The desired intensity range of the input and output, `in_range` and
`out_range` respectively, are used to stretch or shrink the intensity range
of the input image. See examples below.
Parameters
----------
image : array
Image array.
in_range, out_range : str or 2-tuple, optional
Min and max intensity values of input and output image.
The possible values for this parameter are enumerated below.
'image'
Use image min/max as the intensity range.
'dtype'
Use min/max of the image's dtype as the intensity range.
dtype-name
Use intensity range based on desired `dtype`. Must be valid key
in `DTYPE_RANGE`.
2-tuple
Use `range_values` as explicit min/max intensities.
Returns
-------
out : array
Image array after rescaling its intensity. This image is the same dtype
as the input image.
Notes
-----
.. versionchanged:: 0.17
The dtype of the output array has changed to match the output dtype, or
float if the output range is specified by a pair of floats.
See Also
--------
equalize_hist
Examples
--------
By default, the min/max intensities of the input image are stretched to
the limits allowed by the image's dtype, since `in_range` defaults to
'image' and `out_range` defaults to 'dtype':
>>> image = np.array([51, 102, 153], dtype=np.uint8)
>>> rescale_intensity(image)
array([ 0, 127, 255], dtype=uint8)
It's easy to accidentally convert an image dtype from uint8 to float:
>>> 1.0 * image
array([ 51., 102., 153.])
Use `rescale_intensity` to rescale to the proper range for float dtypes:
>>> image_float = 1.0 * image
>>> rescale_intensity(image_float)
array([0. , 0.5, 1. ])
To maintain the low contrast of the original, use the `in_range` parameter:
>>> rescale_intensity(image_float, in_range=(0, 255))
array([0.2, 0.4, 0.6])
If the min/max value of `in_range` is more/less than the min/max image
intensity, then the intensity levels are clipped:
>>> rescale_intensity(image_float, in_range=(0, 102))
array([0.5, 1. , 1. ])
If you have an image with signed integers but want to rescale the image to
just the positive range, use the `out_range` parameter. In that case, the
output dtype will be float:
>>> image = np.array([-10, 0, 10], dtype=np.int8)
>>> rescale_intensity(image, out_range=(0, 127))
array([ 0. , 63.5, 127. ])
To get the desired range with a specific dtype, use ``.astype()``:
>>> rescale_intensity(image, out_range=(0, 127)).astype(np.int8)
array([ 0, 63, 127], dtype=int8)
If the input image is constant, the output will be clipped directly to the
output range:
>>> image = np.array([130, 130, 130], dtype=np.int32)
>>> rescale_intensity(image, out_range=(0, 127)).astype(np.int32)
array([127, 127, 127], dtype=int32)
"""
if out_range in ['dtype', 'image']:
out_dtype = _output_dtype(image.dtype.type)
else:
out_dtype = _output_dtype(out_range)
imin, imax = map(float, intensity_range(image, in_range))
omin, omax = map(float, intensity_range(image, out_range,
clip_negative=(imin >= 0)))
if np.any(np.isnan([imin, imax, omin, omax])):
warn(
"One or more intensity levels are NaN. Rescaling will broadcast "
"NaN to the full image. Provide intensity levels yourself to "
"avoid this. E.g. with np.nanmin(image), np.nanmax(image).",
stacklevel=2
)
image = np.clip(image, imin, imax)
if imin != imax:
image = (image - imin) / (imax - imin)
return np.asarray(image * (omax - omin) + omin, dtype=out_dtype)
else:
return np.clip(image, omin, omax).astype(out_dtype)
def _assert_non_negative(image):
if np.any(image < 0):
raise ValueError('Image Correction methods work correctly only on '
'images with non-negative values. Use '
'skimage.exposure.rescale_intensity.')
def adjust_gamma(image, gamma=1, gain=1):
"""Performs Gamma Correction on the input image.
Also known as Power Law Transform.
This function transforms the input image pixelwise according to the
equation ``O = I**gamma`` after scaling each pixel to the range 0 to 1.
Parameters
----------
image : ndarray
Input image.
gamma : float, optional
Non negative real number. Default value is 1.
gain : float, optional
The constant multiplier. Default value is 1.
Returns
-------
out : ndarray
Gamma corrected output image.
See Also
--------
adjust_log
Notes
-----
For gamma greater than 1, the histogram will shift towards left and
the output image will be darker than the input image.
For gamma less than 1, the histogram will shift towards right and
the output image will be brighter than the input image.
References
----------
.. [1] https://en.wikipedia.org/wiki/Gamma_correction
Examples
--------
>>> from skimage import data, exposure, img_as_float
>>> image = img_as_float(data.moon())
>>> gamma_corrected = exposure.adjust_gamma(image, 2)
>>> # Output is darker for gamma > 1
>>> image.mean() > gamma_corrected.mean()
True
"""
_assert_non_negative(image)
dtype = image.dtype.type
if gamma < 0:
raise ValueError("Gamma should be a non-negative real number.")
scale = float(dtype_limits(image, True)[1] - dtype_limits(image, True)[0])
out = ((image / scale) ** gamma) * scale * gain
return out.astype(dtype)
def adjust_log(image, gain=1, inv=False):
"""Performs Logarithmic correction on the input image.
This function transforms the input image pixelwise according to the
equation ``O = gain*log(1 + I)`` after scaling each pixel to the range 0 to 1.
For inverse logarithmic correction, the equation is ``O = gain*(2**I - 1)``.
Parameters
----------
image : ndarray
Input image.
gain : float, optional
The constant multiplier. Default value is 1.
inv : float, optional
If True, it performs inverse logarithmic correction,
else correction will be logarithmic. Defaults to False.
Returns
-------
out : ndarray
Logarithm corrected output image.
See Also
--------
adjust_gamma
References
----------
.. [1] http://www.ece.ucsb.edu/Faculty/Manjunath/courses/ece178W03/EnhancePart1.pdf
"""
_assert_non_negative(image)
dtype = image.dtype.type
scale = float(dtype_limits(image, True)[1] - dtype_limits(image, True)[0])
if inv:
out = (2 ** (image / scale) - 1) * scale * gain
return dtype(out)
out = np.log2(1 + image / scale) * scale * gain
return out.astype(dtype)
def adjust_sigmoid(image, cutoff=0.5, gain=10, inv=False):
"""Performs Sigmoid Correction on the input image.
Also known as Contrast Adjustment.
This function transforms the input image pixelwise according to the
equation ``O = 1/(1 + exp*(gain*(cutoff - I)))`` after scaling each pixel
to the range 0 to 1.
Parameters
----------
image : ndarray
Input image.
cutoff : float, optional
Cutoff of the sigmoid function that shifts the characteristic curve
in horizontal direction. Default value is 0.5.
gain : float, optional
The constant multiplier in exponential's power of sigmoid function.
Default value is 10.
inv : bool, optional
If True, returns the negative sigmoid correction. Defaults to False.
Returns
-------
out : ndarray
Sigmoid corrected output image.
See Also
--------
adjust_gamma
References
----------
.. [1] Gustav J. Braun, "Image Lightness Rescaling Using Sigmoidal Contrast
Enhancement Functions",
http://www.cis.rit.edu/fairchild/PDFs/PAP07.pdf
"""
_assert_non_negative(image)
dtype = image.dtype.type
scale = float(dtype_limits(image, True)[1] - dtype_limits(image, True)[0])
if inv:
out = (1 - 1 / (1 + np.exp(gain * (cutoff - image / scale)))) * scale
return dtype(out)
out = (1 / (1 + np.exp(gain * (cutoff - image / scale)))) * scale
return out.astype(dtype)
def is_low_contrast(image, fraction_threshold=0.05, lower_percentile=1,
upper_percentile=99, method='linear'):
"""Determine if an image is low contrast.
Parameters
----------
image : array-like
The image under test.
fraction_threshold : float, optional
The low contrast fraction threshold. An image is considered low-
contrast when its range of brightness spans less than this
fraction of its data type's full range. [1]_
lower_percentile : float, optional
Disregard values below this percentile when computing image contrast.
upper_percentile : float, optional
Disregard values above this percentile when computing image contrast.
method : str, optional
The contrast determination method. Right now the only available
option is "linear".
Returns
-------
out : bool
True when the image is determined to be low contrast.
References
----------
.. [1] https://scikit-image.org/docs/dev/user_guide/data_types.html
Examples
--------
>>> image = np.linspace(0, 0.04, 100)
>>> is_low_contrast(image)
True
>>> image[-1] = 1
>>> is_low_contrast(image)
True
>>> is_low_contrast(image, upper_percentile=100)
False
"""
image = np.asanyarray(image)
if image.ndim == 3:
if image.shape[2] == 4:
image = rgba2rgb(image)
if image.shape[2] == 3:
image = rgb2gray(image)
dlimits = dtype_limits(image, clip_negative=False)
limits = np.percentile(image, [lower_percentile, upper_percentile])
ratio = (limits[1] - limits[0]) / (dlimits[1] - dlimits[0])
return ratio < fraction_threshold

View file

@ -0,0 +1,70 @@
import numpy as np
def _match_cumulative_cdf(source, template):
"""
Return modified source array so that the cumulative density function of
its values matches the cumulative density function of the template.
"""
src_values, src_unique_indices, src_counts = np.unique(source.ravel(),
return_inverse=True,
return_counts=True)
tmpl_values, tmpl_counts = np.unique(template.ravel(), return_counts=True)
# calculate normalized quantiles for each array
src_quantiles = np.cumsum(src_counts) / source.size
tmpl_quantiles = np.cumsum(tmpl_counts) / template.size
interp_a_values = np.interp(src_quantiles, tmpl_quantiles, tmpl_values)
return interp_a_values[src_unique_indices].reshape(source.shape)
def match_histograms(image, reference, *, multichannel=False):
"""Adjust an image so that its cumulative histogram matches that of another.
The adjustment is applied separately for each channel.
Parameters
----------
image : ndarray
Input image. Can be gray-scale or in color.
reference : ndarray
Image to match histogram of. Must have the same number of channels as
image.
multichannel : bool, optional
Apply the matching separately for each channel.
Returns
-------
matched : ndarray
Transformed input image.
Raises
------
ValueError
Thrown when the number of channels in the input image and the reference
differ.
References
----------
.. [1] http://paulbourke.net/miscellaneous/equalisation/
"""
if image.ndim != reference.ndim:
raise ValueError('Image and reference must have the same number '
'of channels.')
if multichannel:
if image.shape[-1] != reference.shape[-1]:
raise ValueError('Number of channels in the input image and '
'reference image must match!')
matched = np.empty(image.shape, dtype=image.dtype)
for channel in range(image.shape[-1]):
matched_channel = _match_cumulative_cdf(image[..., channel],
reference[..., channel])
matched[..., channel] = matched_channel
else:
matched = _match_cumulative_cdf(image, reference)
return matched

View file

@ -0,0 +1,25 @@
#!/usr/bin/env python
import os
base_path = os.path.abspath(os.path.dirname(__file__))
def configuration(parent_package='', top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration('exposure', parent_package, top_path)
return config
if __name__ == '__main__':
from numpy.distutils.core import setup
setup(maintainer='scikit-image Developers',
author='scikit-image Developers',
maintainer_email='scikit-image@python.org',
description='Exposure corrections',
url='https://github.com/scikit-image/scikit-image',
license='SciPy License (BSD Style)',
**(configuration(top_path='').todict())
)

View file

@ -0,0 +1,9 @@
from ..._shared.testing import setup_test, teardown_test
def setup():
setup_test()
def teardown():
teardown_test()

View file

@ -0,0 +1,762 @@
import warnings
import numpy as np
import pytest
from skimage import util
from skimage import data
from skimage import exposure
from skimage.exposure.exposure import intensity_range
from skimage.color import rgb2gray
from skimage.util.dtype import dtype_range
from skimage._shared._warnings import expected_warnings
from skimage._shared import testing
from skimage._shared.testing import (assert_array_equal,
assert_array_almost_equal,
assert_equal,
assert_almost_equal)
# Test integer histograms
# =======================
def test_wrong_source_range():
im = np.array([-1, 100], dtype=np.int8)
with testing.raises(ValueError):
frequencies, bin_centers = exposure.histogram(im, source_range='foobar')
def test_negative_overflow():
im = np.array([-1, 100], dtype=np.int8)
frequencies, bin_centers = exposure.histogram(im)
assert_array_equal(bin_centers, np.arange(-1, 101))
assert frequencies[0] == 1
assert frequencies[-1] == 1
assert_array_equal(frequencies[1:-1], 0)
def test_all_negative_image():
im = np.array([-100, -1], dtype=np.int8)
frequencies, bin_centers = exposure.histogram(im)
assert_array_equal(bin_centers, np.arange(-100, 0))
assert frequencies[0] == 1
assert frequencies[-1] == 1
assert_array_equal(frequencies[1:-1], 0)
def test_int_range_image():
im = np.array([10, 100], dtype=np.int8)
frequencies, bin_centers = exposure.histogram(im)
assert_equal(len(bin_centers), len(frequencies))
assert_equal(bin_centers[0], 10)
assert_equal(bin_centers[-1], 100)
def test_peak_uint_range_dtype():
im = np.array([10, 100], dtype=np.uint8)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
assert_array_equal(bin_centers, np.arange(0, 256))
assert_equal(frequencies[10], 1)
assert_equal(frequencies[100], 1)
assert_equal(frequencies[101], 0)
assert_equal(frequencies.shape, (256,))
def test_peak_int_range_dtype():
im = np.array([10, 100], dtype=np.int8)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
assert_array_equal(bin_centers, np.arange(-128, 128))
assert_equal(frequencies[128+10], 1)
assert_equal(frequencies[128+100], 1)
assert_equal(frequencies[128+101], 0)
assert_equal(frequencies.shape, (256,))
def test_flat_uint_range_dtype():
im = np.linspace(0, 255, 256, dtype=np.uint8)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
assert_array_equal(bin_centers, np.arange(0, 256))
assert_equal(frequencies.shape, (256,))
def test_flat_int_range_dtype():
im = np.linspace(-128, 128, 256, dtype=np.int8)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype')
assert_array_equal(bin_centers, np.arange(-128, 128))
assert_equal(frequencies.shape, (256,))
def test_peak_float_out_of_range_image():
im = np.array([10, 100], dtype=np.float16)
frequencies, bin_centers = exposure.histogram(im, nbins=90)
# offset values by 0.5 for float...
assert_array_equal(bin_centers, np.arange(10, 100) + 0.5)
def test_peak_float_out_of_range_dtype():
im = np.array([10, 100], dtype=np.float16)
nbins = 10
frequencies, bin_centers = exposure.histogram(im, nbins=nbins, source_range='dtype')
assert_almost_equal(np.min(bin_centers), -0.9, 3)
assert_almost_equal(np.max(bin_centers), 0.9, 3)
assert_equal(len(bin_centers), 10)
def test_normalize():
im = np.array([0, 255, 255], dtype=np.uint8)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype',
normalize=False)
expected = np.zeros(256)
expected[0] = 1
expected[-1] = 2
assert_equal(frequencies, expected)
frequencies, bin_centers = exposure.histogram(im, source_range='dtype',
normalize=True)
expected /= 3.
assert_equal(frequencies, expected)
# Test histogram equalization
# ===========================
np.random.seed(0)
test_img_int = data.camera()
# squeeze image intensities to lower image contrast
test_img = util.img_as_float(test_img_int)
test_img = exposure.rescale_intensity(test_img / 5. + 100)
def test_equalize_uint8_approx():
"""Check integer bins used for uint8 images."""
img_eq0 = exposure.equalize_hist(test_img_int)
img_eq1 = exposure.equalize_hist(test_img_int, nbins=3)
np.testing.assert_allclose(img_eq0, img_eq1)
def test_equalize_ubyte():
img = util.img_as_ubyte(test_img)
img_eq = exposure.equalize_hist(img)
cdf, bin_edges = exposure.cumulative_distribution(img_eq)
check_cdf_slope(cdf)
def test_equalize_float():
img = util.img_as_float(test_img)
img_eq = exposure.equalize_hist(img)
cdf, bin_edges = exposure.cumulative_distribution(img_eq)
check_cdf_slope(cdf)
def test_equalize_masked():
img = util.img_as_float(test_img)
mask = np.zeros(test_img.shape)
mask[50:150, 50:250] = 1
img_mask_eq = exposure.equalize_hist(img, mask=mask)
img_eq = exposure.equalize_hist(img)
cdf, bin_edges = exposure.cumulative_distribution(img_mask_eq)
check_cdf_slope(cdf)
assert not (img_eq == img_mask_eq).all()
def check_cdf_slope(cdf):
"""Slope of cdf which should equal 1 for an equalized histogram."""
norm_intensity = np.linspace(0, 1, len(cdf))
slope, intercept = np.polyfit(norm_intensity, cdf, 1)
assert 0.9 < slope < 1.1
# Test intensity range
# ====================
@testing.parametrize("test_input,expected", [
('image', [0, 1]),
('dtype', [0, 255]),
((10, 20), [10, 20])
])
def test_intensity_range_uint8(test_input, expected):
image = np.array([0, 1], dtype=np.uint8)
out = intensity_range(image, range_values=test_input)
assert_array_equal(out, expected)
@testing.parametrize("test_input,expected", [
('image', [0.1, 0.2]),
('dtype', [-1, 1]),
((0.3, 0.4), [0.3, 0.4])
])
def test_intensity_range_float(test_input, expected):
image = np.array([0.1, 0.2], dtype=np.float64)
out = intensity_range(image, range_values=test_input)
assert_array_equal(out, expected)
def test_intensity_range_clipped_float():
image = np.array([0.1, 0.2], dtype=np.float64)
out = intensity_range(image, range_values='dtype', clip_negative=True)
assert_array_equal(out, (0, 1))
# Test rescale intensity
# ======================
uint10_max = 2**10 - 1
uint12_max = 2**12 - 1
uint14_max = 2**14 - 1
uint16_max = 2**16 - 1
def test_rescale_stretch():
image = np.array([51, 102, 153], dtype=np.uint8)
out = exposure.rescale_intensity(image)
assert out.dtype == np.uint8
assert_array_almost_equal(out, [0, 127, 255])
def test_rescale_shrink():
image = np.array([51., 102., 153.])
out = exposure.rescale_intensity(image)
assert_array_almost_equal(out, [0, 0.5, 1])
def test_rescale_in_range():
image = np.array([51., 102., 153.])
out = exposure.rescale_intensity(image, in_range=(0, 255))
assert_array_almost_equal(out, [0.2, 0.4, 0.6])
def test_rescale_in_range_clip():
image = np.array([51., 102., 153.])
out = exposure.rescale_intensity(image, in_range=(0, 102))
assert_array_almost_equal(out, [0.5, 1, 1])
def test_rescale_out_range():
"""Check that output range is correct.
.. versionchanged:: 0.17
This function used to return dtype matching the input dtype. It now
matches the output.
"""
image = np.array([-10, 0, 10], dtype=np.int8)
out = exposure.rescale_intensity(image, out_range=(0, 127))
assert out.dtype == np.float_
assert_array_almost_equal(out, [0, 63.5, 127])
def test_rescale_named_in_range():
image = np.array([0, uint10_max, uint10_max + 100], dtype=np.uint16)
out = exposure.rescale_intensity(image, in_range='uint10')
assert_array_almost_equal(out, [0, uint16_max, uint16_max])
def test_rescale_named_out_range():
image = np.array([0, uint16_max], dtype=np.uint16)
out = exposure.rescale_intensity(image, out_range='uint10')
assert_array_almost_equal(out, [0, uint10_max])
def test_rescale_uint12_limits():
image = np.array([0, uint16_max], dtype=np.uint16)
out = exposure.rescale_intensity(image, out_range='uint12')
assert_array_almost_equal(out, [0, uint12_max])
def test_rescale_uint14_limits():
image = np.array([0, uint16_max], dtype=np.uint16)
out = exposure.rescale_intensity(image, out_range='uint14')
assert_array_almost_equal(out, [0, uint14_max])
def test_rescale_all_zeros():
image = np.zeros((2, 2), dtype=np.uint8)
out = exposure.rescale_intensity(image)
assert ~np.isnan(out).all()
assert_array_almost_equal(out, image)
def test_rescale_constant():
image = np.array([130, 130], dtype=np.uint16)
out = exposure.rescale_intensity(image, out_range=(0, 127))
assert_array_almost_equal(out, [127, 127])
def test_rescale_same_values():
image = np.ones((2, 2))
out = exposure.rescale_intensity(image)
assert ~np.isnan(out).all()
assert_array_almost_equal(out, image)
@pytest.mark.parametrize(
"in_range,out_range", [("image", "dtype"),
("dtype", "image")]
)
def test_rescale_nan_warning(in_range, out_range):
image = np.arange(12, dtype=float).reshape(3, 4)
image[1, 1] = np.nan
msg = (
r"One or more intensity levels are NaN\."
r" Rescaling will broadcast NaN to the full image\."
)
# 2019/11/10 Passing NaN to np.clip raises a DeprecationWarning for
# versions above 1.17
# TODO: Remove once NumPy removes this DeprecationWarning
numpy_warning_1_17_plus = (
r"Passing `np.nan` to mean no clipping in np.clip "
r"has always been unreliable|\A\Z"
)
# 2019/12/06 Passing NaN to np.min and np.max raises a RuntimeWarning for
# NumPy < 1.16
# TODO: Remove once minimal required NumPy version is 1.16
numpy_warning_smaller_1_16 = r"invalid value encountered in reduce|\A\Z"
with expected_warnings(
[msg, numpy_warning_1_17_plus, numpy_warning_smaller_1_16]
):
exposure.rescale_intensity(image, in_range, out_range)
@pytest.mark.parametrize(
"out_range, out_dtype", [
('uint8', np.uint8),
('uint10', np.uint16),
('uint12', np.uint16),
('uint16', np.uint16),
('float', np.float_),
]
)
def test_rescale_output_dtype(out_range, out_dtype):
image = np.array([-128, 0, 127], dtype=np.int8)
output_image = exposure.rescale_intensity(image, out_range=out_range)
assert output_image.dtype == out_dtype
def test_rescale_no_overflow():
image = np.array([-128, 0, 127], dtype=np.int8)
output_image = exposure.rescale_intensity(image, out_range=np.uint8)
testing.assert_array_equal(output_image, [0, 128, 255])
assert output_image.dtype == np.uint8
def test_rescale_float_output():
image = np.array([-128, 0, 127], dtype=np.int8)
output_image = exposure.rescale_intensity(image, out_range=(0, 255))
testing.assert_array_equal(output_image, [0, 128, 255])
assert output_image.dtype == np.float_
def test_rescale_raises_on_incorrect_out_range():
image = np.array([-128, 0, 127], dtype=np.int8)
with testing.raises(ValueError):
_ = exposure.rescale_intensity(image, out_range='flat')
# Test adaptive histogram equalization
# ====================================
def test_adapthist_grayscale():
"""Test a grayscale float image
"""
img = util.img_as_float(data.astronaut())
img = rgb2gray(img)
img = np.dstack((img, img, img))
adapted = exposure.equalize_adapthist(img, kernel_size=(57, 51),
clip_limit=0.01, nbins=128)
assert img.shape == adapted.shape
assert_almost_equal(peak_snr(img, adapted), 100.140, 3)
assert_almost_equal(norm_brightness_err(img, adapted), 0.0529, 3)
def test_adapthist_color():
"""Test an RGB color uint16 image
"""
img = util.img_as_uint(data.astronaut())
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
hist, bin_centers = exposure.histogram(img)
assert len(w) > 0
adapted = exposure.equalize_adapthist(img, clip_limit=0.01)
assert adapted.min() == 0
assert adapted.max() == 1.0
assert img.shape == adapted.shape
full_scale = exposure.rescale_intensity(img)
assert_almost_equal(peak_snr(full_scale, adapted), 109.393, 1)
assert_almost_equal(norm_brightness_err(full_scale, adapted), 0.02, 2)
return data, adapted
def test_adapthist_alpha():
"""Test an RGBA color image
"""
img = util.img_as_float(data.astronaut())
alpha = np.ones((img.shape[0], img.shape[1]), dtype=float)
img = np.dstack((img, alpha))
adapted = exposure.equalize_adapthist(img)
assert adapted.shape != img.shape
img = img[:, :, :3]
full_scale = exposure.rescale_intensity(img)
assert img.shape == adapted.shape
assert_almost_equal(peak_snr(full_scale, adapted), 109.393, 2)
assert_almost_equal(norm_brightness_err(full_scale, adapted), 0.0248, 3)
def test_adapthist_grayscale_Nd():
"""
Test for n-dimensional consistency with float images
Note: Currently if img.ndim == 3, img.shape[2] > 4 must hold for the image
not to be interpreted as a color image by @adapt_rgb
"""
# take 2d image, subsample and stack it
img = util.img_as_float(data.astronaut())
img = rgb2gray(img)
a = 15
img2d = util.img_as_float(img[0:-1:a, 0:-1:a])
img3d = np.array([img2d] * (img.shape[0] // a))
# apply CLAHE
adapted2d = exposure.equalize_adapthist(img2d,
kernel_size=5,
clip_limit=0.05)
adapted3d = exposure.equalize_adapthist(img3d,
kernel_size=5,
clip_limit=0.05)
# check that dimensions of input and output match
assert img2d.shape == adapted2d.shape
assert img3d.shape == adapted3d.shape
# check that the result from the stack of 2d images is similar
# to the underlying 2d image
assert np.mean(np.abs(adapted2d
- adapted3d[adapted3d.shape[0] // 2])) < 0.02
def test_adapthist_constant():
"""Test constant image, float and uint
"""
img = np.zeros((8, 8))
img += 2
img = img.astype(np.uint16)
adapted = exposure.equalize_adapthist(img, 3)
assert np.min(adapted) == np.max(adapted)
img = np.zeros((8, 8))
img += 0.1
img = img.astype(np.float64)
adapted = exposure.equalize_adapthist(img, 3)
assert np.min(adapted) == np.max(adapted)
def test_adapthist_borders():
"""Test border processing
"""
img = rgb2gray(util.img_as_float(data.astronaut()))
# maximize difference between orig and processed img
img /= 100.
img[img.shape[0] // 2, img.shape[1] // 2] = 1.
# check borders are processed for different kernel sizes
border_index = -1
for kernel_size in range(51, 71, 2):
adapted = exposure.equalize_adapthist(img, kernel_size, clip_limit=0.5)
# Check last columns are processed
assert norm_brightness_err(adapted[:, border_index],
img[:, border_index]) > 0.1
# Check last rows are processed
assert norm_brightness_err(adapted[border_index, :],
img[border_index, :]) > 0.1
def test_adapthist_clip_limit():
img_u = data.moon()
img_f = util.img_as_float(img_u)
# uint8 input
img_clahe = exposure.equalize_adapthist(img_u, clip_limit=1)
assert_array_equal(img_f, img_clahe)
# float64 input
img_clahe = exposure.equalize_adapthist(img_f, clip_limit=1)
assert_array_equal(img_f, img_clahe)
def peak_snr(img1, img2):
"""Peak signal to noise ratio of two images
Parameters
----------
img1 : array-like
img2 : array-like
Returns
-------
peak_snr : float
Peak signal to noise ratio
"""
if img1.ndim == 3:
img1, img2 = rgb2gray(img1.copy()), rgb2gray(img2.copy())
img1 = util.img_as_float(img1)
img2 = util.img_as_float(img2)
mse = 1. / img1.size * np.square(img1 - img2).sum()
_, max_ = dtype_range[img1.dtype.type]
return 20 * np.log(max_ / mse)
def norm_brightness_err(img1, img2):
"""Normalized Absolute Mean Brightness Error between two images
Parameters
----------
img1 : array-like
img2 : array-like
Returns
-------
norm_brightness_error : float
Normalized absolute mean brightness error
"""
if img1.ndim == 3:
img1, img2 = rgb2gray(img1), rgb2gray(img2)
ambe = np.abs(img1.mean() - img2.mean())
nbe = ambe / dtype_range[img1.dtype.type][1]
return nbe
# Test Gamma Correction
# =====================
def test_adjust_gamma_1x1_shape():
"""Check that the shape is maintained"""
img = np.ones([1,1])
result = exposure.adjust_gamma(img, 1.5)
assert img.shape == result.shape
def test_adjust_gamma_one():
"""Same image should be returned for gamma equal to one"""
image = np.random.uniform(0, 255, (8, 8))
result = exposure.adjust_gamma(image, 1)
assert_array_equal(result, image)
def test_adjust_gamma_zero():
"""White image should be returned for gamma equal to zero"""
image = np.random.uniform(0, 255, (8, 8))
result = exposure.adjust_gamma(image, 0)
dtype = image.dtype.type
assert_array_equal(result, dtype_range[dtype][1])
def test_adjust_gamma_less_one():
"""Verifying the output with expected results for gamma
correction with gamma equal to half"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 0, 31, 45, 55, 63, 71, 78, 84],
[ 90, 95, 100, 105, 110, 115, 119, 123],
[127, 131, 135, 139, 142, 146, 149, 153],
[156, 159, 162, 165, 168, 171, 174, 177],
[180, 183, 186, 188, 191, 194, 196, 199],
[201, 204, 206, 209, 211, 214, 216, 218],
[221, 223, 225, 228, 230, 232, 234, 236],
[238, 241, 243, 245, 247, 249, 251, 253]], dtype=np.uint8)
result = exposure.adjust_gamma(image, 0.5)
assert_array_equal(result, expected)
def test_adjust_gamma_greater_one():
"""Verifying the output with expected results for gamma
correction with gamma equal to two"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 0, 0, 0, 0, 1, 1, 2, 3],
[ 4, 5, 6, 7, 9, 10, 12, 14],
[ 16, 18, 20, 22, 25, 27, 30, 33],
[ 36, 39, 42, 45, 49, 52, 56, 60],
[ 64, 68, 72, 76, 81, 85, 90, 95],
[100, 105, 110, 116, 121, 127, 132, 138],
[144, 150, 156, 163, 169, 176, 182, 189],
[196, 203, 211, 218, 225, 233, 241, 249]], dtype=np.uint8)
result = exposure.adjust_gamma(image, 2)
assert_array_equal(result, expected)
def test_adjust_gamma_neggative():
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
with testing.raises(ValueError):
exposure.adjust_gamma(image, -1)
# Test Logarithmic Correction
# ===========================
def test_adjust_log_1x1_shape():
"""Check that the shape is maintained"""
img = np.ones([1, 1])
result = exposure.adjust_log(img, 1)
assert img.shape == result.shape
def test_adjust_log():
"""Verifying the output with expected results for logarithmic
correction with multiplier constant multiplier equal to unity"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 0, 5, 11, 16, 22, 27, 33, 38],
[ 43, 48, 53, 58, 63, 68, 73, 77],
[ 82, 86, 91, 95, 100, 104, 109, 113],
[117, 121, 125, 129, 133, 137, 141, 145],
[149, 153, 157, 160, 164, 168, 172, 175],
[179, 182, 186, 189, 193, 196, 199, 203],
[206, 209, 213, 216, 219, 222, 225, 228],
[231, 234, 238, 241, 244, 246, 249, 252]], dtype=np.uint8)
result = exposure.adjust_log(image, 1)
assert_array_equal(result, expected)
def test_adjust_inv_log():
"""Verifying the output with expected results for inverse logarithmic
correction with multiplier constant multiplier equal to unity"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 0, 2, 5, 8, 11, 14, 17, 20],
[ 23, 26, 29, 32, 35, 38, 41, 45],
[ 48, 51, 55, 58, 61, 65, 68, 72],
[ 76, 79, 83, 87, 90, 94, 98, 102],
[106, 110, 114, 118, 122, 126, 130, 134],
[138, 143, 147, 151, 156, 160, 165, 170],
[174, 179, 184, 188, 193, 198, 203, 208],
[213, 218, 224, 229, 234, 239, 245, 250]], dtype=np.uint8)
result = exposure.adjust_log(image, 1, True)
assert_array_equal(result, expected)
# Test Sigmoid Correction
# =======================
def test_adjust_sigmoid_1x1_shape():
"""Check that the shape is maintained"""
img = np.ones([1, 1])
result = exposure.adjust_sigmoid(img, 1, 5)
assert img.shape == result.shape
def test_adjust_sigmoid_cutoff_one():
"""Verifying the output with expected results for sigmoid correction
with cutoff equal to one and gain of 5"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 1, 1, 1, 2, 2, 2, 2, 2],
[ 3, 3, 3, 4, 4, 4, 5, 5],
[ 5, 6, 6, 7, 7, 8, 9, 10],
[ 10, 11, 12, 13, 14, 15, 16, 18],
[ 19, 20, 22, 24, 25, 27, 29, 32],
[ 34, 36, 39, 41, 44, 47, 50, 54],
[ 57, 61, 64, 68, 72, 76, 80, 85],
[ 89, 94, 99, 104, 108, 113, 118, 123]], dtype=np.uint8)
result = exposure.adjust_sigmoid(image, 1, 5)
assert_array_equal(result, expected)
def test_adjust_sigmoid_cutoff_zero():
"""Verifying the output with expected results for sigmoid correction
with cutoff equal to zero and gain of 10"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[127, 137, 147, 156, 166, 175, 183, 191],
[198, 205, 211, 216, 221, 225, 229, 232],
[235, 238, 240, 242, 244, 245, 247, 248],
[249, 250, 250, 251, 251, 252, 252, 253],
[253, 253, 253, 253, 254, 254, 254, 254],
[254, 254, 254, 254, 254, 254, 254, 254],
[254, 254, 254, 254, 254, 254, 254, 254],
[254, 254, 254, 254, 254, 254, 254, 254]], dtype=np.uint8)
result = exposure.adjust_sigmoid(image, 0, 10)
assert_array_equal(result, expected)
def test_adjust_sigmoid_cutoff_half():
"""Verifying the output with expected results for sigmoid correction
with cutoff equal to half and gain of 10"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[ 1, 1, 2, 2, 3, 3, 4, 5],
[ 5, 6, 7, 9, 10, 12, 14, 16],
[ 19, 22, 25, 29, 34, 39, 44, 50],
[ 57, 64, 72, 80, 89, 99, 108, 118],
[128, 138, 148, 158, 167, 176, 184, 192],
[199, 205, 211, 217, 221, 226, 229, 233],
[236, 238, 240, 242, 244, 246, 247, 248],
[249, 250, 250, 251, 251, 252, 252, 253]], dtype=np.uint8)
result = exposure.adjust_sigmoid(image, 0.5, 10)
assert_array_equal(result, expected)
def test_adjust_inv_sigmoid_cutoff_half():
"""Verifying the output with expected results for inverse sigmoid
correction with cutoff equal to half and gain of 10"""
image = np.arange(0, 255, 4, np.uint8).reshape((8, 8))
expected = np.array([
[253, 253, 252, 252, 251, 251, 250, 249],
[249, 248, 247, 245, 244, 242, 240, 238],
[235, 232, 229, 225, 220, 215, 210, 204],
[197, 190, 182, 174, 165, 155, 146, 136],
[126, 116, 106, 96, 87, 78, 70, 62],
[ 55, 49, 43, 37, 33, 28, 25, 21],
[ 18, 16, 14, 12, 10, 8, 7, 6],
[ 5, 4, 4, 3, 3, 2, 2, 1]], dtype=np.uint8)
result = exposure.adjust_sigmoid(image, 0.5, 10, True)
assert_array_equal(result, expected)
def test_negative():
image = np.arange(-10, 245, 4).reshape((8, 8)).astype(np.double)
with testing.raises(ValueError):
exposure.adjust_gamma(image)
def test_is_low_contrast():
image = np.linspace(0, 0.04, 100)
assert exposure.is_low_contrast(image)
image[-1] = 1
assert exposure.is_low_contrast(image)
assert not exposure.is_low_contrast(image, upper_percentile=100)
image = (image * 255).astype(np.uint8)
assert exposure.is_low_contrast(image)
assert not exposure.is_low_contrast(image, upper_percentile=100)
image = (image.astype(np.uint16)) * 2**8
assert exposure.is_low_contrast(image)
assert not exposure.is_low_contrast(image, upper_percentile=100)
# Test Dask Compatibility
# =======================
def test_dask_histogram():
pytest.importorskip('dask', reason="dask python library is not installed")
import dask.array as da
dask_array = da.from_array(np.array([[0, 1], [1, 2]]), chunks=(1, 2))
output_hist, output_bins = exposure.histogram(dask_array)
expected_bins = [0, 1, 2]
expected_hist = [1, 2, 1]
assert np.allclose(expected_bins, output_bins)
assert np.allclose(expected_hist, output_hist)

View file

@ -0,0 +1,83 @@
import numpy as np
from skimage.exposure import histogram_matching
from skimage import exposure
from skimage import data
from skimage._shared.testing import assert_array_almost_equal, \
assert_almost_equal
import pytest
@pytest.mark.parametrize('array, template, expected_array', [
(np.arange(10), np.arange(100), np.arange(9, 100, 10)),
(np.random.rand(4), np.ones(3), np.ones(4))
])
def test_match_array_values(array, template, expected_array):
# when
matched = histogram_matching._match_cumulative_cdf(array, template)
# then
assert_array_almost_equal(matched, expected_array)
class TestMatchHistogram:
image_rgb = data.chelsea()
template_rgb = data.astronaut()
@pytest.mark.parametrize('image, reference, multichannel', [
(image_rgb, template_rgb, True),
(image_rgb[:, :, 0], template_rgb[:, :, 0], False)
])
def test_match_histograms(self, image, reference, multichannel):
"""Assert that pdf of matched image is close to the reference's pdf for
all channels and all values of matched"""
# when
matched = exposure.match_histograms(image, reference,
multichannel=multichannel)
matched_pdf = self._calculate_image_empirical_pdf(matched)
reference_pdf = self._calculate_image_empirical_pdf(reference)
# then
for channel in range(len(matched_pdf)):
reference_values, reference_quantiles = reference_pdf[channel]
matched_values, matched_quantiles = matched_pdf[channel]
for i, matched_value in enumerate(matched_values):
closest_id = (
np.abs(reference_values - matched_value)
).argmin()
assert_almost_equal(matched_quantiles[i],
reference_quantiles[closest_id],
decimal=1)
@pytest.mark.parametrize('image, reference', [
(image_rgb, template_rgb[:, :, 0]),
(image_rgb[:, :, 0], template_rgb)
])
def test_raises_value_error_on_channels_mismatch(self, image, reference):
with pytest.raises(ValueError):
exposure.match_histograms(image, reference)
@classmethod
def _calculate_image_empirical_pdf(cls, image):
"""Helper function for calculating empirical probability density
function of a given image for all channels"""
if image.ndim > 2:
image = image.transpose(2, 0, 1)
channels = np.array(image, copy=False, ndmin=3)
channels_pdf = []
for channel in channels:
channel_values, counts = np.unique(channel, return_counts=True)
channel_quantiles = np.cumsum(counts).astype(np.float64)
channel_quantiles /= channel_quantiles[-1]
channels_pdf.append((channel_values, channel_quantiles))
return np.asarray(channels_pdf)