Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
9
venv/Lib/site-packages/skimage/draw/tests/__init__.py
Normal file
9
venv/Lib/site-packages/skimage/draw/tests/__init__.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
from ..._shared.testing import setup_test, teardown_test
|
||||
|
||||
|
||||
def setup():
|
||||
setup_test()
|
||||
|
||||
|
||||
def teardown():
|
||||
teardown_test()
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
1111
venv/Lib/site-packages/skimage/draw/tests/test_draw.py
Normal file
1111
venv/Lib/site-packages/skimage/draw/tests/test_draw.py
Normal file
File diff suppressed because it is too large
Load diff
174
venv/Lib/site-packages/skimage/draw/tests/test_draw3d.py
Normal file
174
venv/Lib/site-packages/skimage/draw/tests/test_draw3d.py
Normal file
|
@ -0,0 +1,174 @@
|
|||
import numpy as np
|
||||
from skimage._shared.testing import assert_array_equal, assert_allclose
|
||||
|
||||
from skimage.draw import ellipsoid, ellipsoid_stats, rectangle
|
||||
from skimage._shared import testing
|
||||
|
||||
|
||||
def test_ellipsoid_sign_parameters1():
|
||||
with testing.raises(ValueError):
|
||||
ellipsoid(-1, 2, 2)
|
||||
|
||||
|
||||
def test_ellipsoid_sign_parameters2():
|
||||
with testing.raises(ValueError):
|
||||
ellipsoid(0, 2, 2)
|
||||
|
||||
|
||||
def test_ellipsoid_sign_parameters3():
|
||||
with testing.raises(ValueError):
|
||||
ellipsoid(-3, -2, 2)
|
||||
|
||||
|
||||
def test_ellipsoid_bool():
|
||||
test = ellipsoid(2, 2, 2)[1:-1, 1:-1, 1:-1]
|
||||
test_anisotropic = ellipsoid(2, 2, 4, spacing=(1., 1., 2.))
|
||||
test_anisotropic = test_anisotropic[1:-1, 1:-1, 1:-1]
|
||||
|
||||
expected = np.array([[[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]],
|
||||
|
||||
[[0, 0, 0, 0, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 0, 0, 0, 0]],
|
||||
|
||||
[[0, 0, 1, 0, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[1, 1, 1, 1, 1],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 0, 1, 0, 0]],
|
||||
|
||||
[[0, 0, 0, 0, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 0, 0, 0, 0]],
|
||||
|
||||
[[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 1, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]]])
|
||||
|
||||
assert_array_equal(test, expected.astype(bool))
|
||||
assert_array_equal(test_anisotropic, expected.astype(bool))
|
||||
|
||||
|
||||
def test_ellipsoid_levelset():
|
||||
test = ellipsoid(2, 2, 2, levelset=True)[1:-1, 1:-1, 1:-1]
|
||||
test_anisotropic = ellipsoid(2, 2, 4, spacing=(1., 1., 2.),
|
||||
levelset=True)
|
||||
test_anisotropic = test_anisotropic[1:-1, 1:-1, 1:-1]
|
||||
|
||||
expected = np.array([[[ 2. , 1.25, 1. , 1.25, 2. ],
|
||||
[ 1.25, 0.5 , 0.25, 0.5 , 1.25],
|
||||
[ 1. , 0.25, 0. , 0.25, 1. ],
|
||||
[ 1.25, 0.5 , 0.25, 0.5 , 1.25],
|
||||
[ 2. , 1.25, 1. , 1.25, 2. ]],
|
||||
|
||||
[[ 1.25, 0.5 , 0.25, 0.5 , 1.25],
|
||||
[ 0.5 , -0.25, -0.5 , -0.25, 0.5 ],
|
||||
[ 0.25, -0.5 , -0.75, -0.5 , 0.25],
|
||||
[ 0.5 , -0.25, -0.5 , -0.25, 0.5 ],
|
||||
[ 1.25, 0.5 , 0.25, 0.5 , 1.25]],
|
||||
|
||||
[[ 1. , 0.25, 0. , 0.25, 1. ],
|
||||
[ 0.25, -0.5 , -0.75, -0.5 , 0.25],
|
||||
[ 0. , -0.75, -1. , -0.75, 0. ],
|
||||
[ 0.25, -0.5 , -0.75, -0.5 , 0.25],
|
||||
[ 1. , 0.25, 0. , 0.25, 1. ]],
|
||||
|
||||
[[ 1.25, 0.5 , 0.25, 0.5 , 1.25],
|
||||
[ 0.5 , -0.25, -0.5 , -0.25, 0.5 ],
|
||||
[ 0.25, -0.5 , -0.75, -0.5 , 0.25],
|
||||
[ 0.5 , -0.25, -0.5 , -0.25, 0.5 ],
|
||||
[ 1.25, 0.5 , 0.25, 0.5 , 1.25]],
|
||||
|
||||
[[ 2. , 1.25, 1. , 1.25, 2. ],
|
||||
[ 1.25, 0.5 , 0.25, 0.5 , 1.25],
|
||||
[ 1. , 0.25, 0. , 0.25, 1. ],
|
||||
[ 1.25, 0.5 , 0.25, 0.5 , 1.25],
|
||||
[ 2. , 1.25, 1. , 1.25, 2. ]]])
|
||||
|
||||
assert_allclose(test, expected)
|
||||
assert_allclose(test_anisotropic, expected)
|
||||
|
||||
|
||||
def test_ellipsoid_stats():
|
||||
# Test comparison values generated by Wolfram Alpha
|
||||
vol, surf = ellipsoid_stats(6, 10, 16)
|
||||
assert_allclose(1280 * np.pi, vol, atol=1e-4)
|
||||
assert_allclose(1383.28, surf, atol=1e-2)
|
||||
|
||||
# Test when a <= b <= c does not hold
|
||||
vol, surf = ellipsoid_stats(16, 6, 10)
|
||||
assert_allclose(1280 * np.pi, vol, atol=1e-4)
|
||||
assert_allclose(1383.28, surf, atol=1e-2)
|
||||
|
||||
# Larger test to ensure reliability over broad range
|
||||
vol, surf = ellipsoid_stats(17, 27, 169)
|
||||
assert_allclose(103428 * np.pi, vol, atol=1e-4)
|
||||
assert_allclose(37426.3, surf, atol=1e-1)
|
||||
|
||||
|
||||
def test_rect_3d_extent():
|
||||
expected = np.array([[[0, 0, 1, 1, 1],
|
||||
[0, 0, 1, 1, 1],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]],
|
||||
[[0, 0, 1, 1, 1],
|
||||
[0, 0, 1, 1, 1],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]],
|
||||
[[0, 0, 1, 1, 1],
|
||||
[0, 0, 1, 1, 1],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]],
|
||||
[[0, 0, 1, 1, 1],
|
||||
[0, 0, 1, 1, 1],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]]], dtype=np.uint8)
|
||||
img = np.zeros((4, 5, 5), dtype=np.uint8)
|
||||
start = (0, 0, 2)
|
||||
extent = (5, 2, 3)
|
||||
pp, rr, cc = rectangle(start, extent=extent, shape=img.shape)
|
||||
img[pp, rr, cc] = 1
|
||||
assert_array_equal(img, expected)
|
||||
|
||||
|
||||
def test_rect_3d_end():
|
||||
expected = np.array([[[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]],
|
||||
[[0, 0, 1, 1, 0],
|
||||
[0, 0, 1, 1, 0],
|
||||
[0, 0, 1, 1, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]],
|
||||
[[0, 0, 1, 1, 0],
|
||||
[0, 0, 1, 1, 0],
|
||||
[0, 0, 1, 1, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]],
|
||||
[[0, 0, 1, 1, 0],
|
||||
[0, 0, 1, 1, 0],
|
||||
[0, 0, 1, 1, 0],
|
||||
[0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0]]], dtype=np.uint8)
|
||||
img = np.zeros((4, 5, 5), dtype=np.uint8)
|
||||
start = (1, 0, 2)
|
||||
end = (3, 2, 3)
|
||||
pp, rr, cc = rectangle(start, end=end, shape=img.shape)
|
||||
img[pp, rr, cc] = 1
|
||||
assert_array_equal(img, expected)
|
18
venv/Lib/site-packages/skimage/draw/tests/test_draw_nd.py
Normal file
18
venv/Lib/site-packages/skimage/draw/tests/test_draw_nd.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
from skimage.draw import line_nd
|
||||
from skimage._shared.testing import assert_equal
|
||||
|
||||
|
||||
def test_empty_line():
|
||||
coords = line_nd((1, 1, 1), (1, 1, 1))
|
||||
assert len(coords) == 3
|
||||
assert all(len(c) == 0 for c in coords)
|
||||
|
||||
|
||||
def test_zero_line():
|
||||
coords = line_nd((-1, -1), (2, 2))
|
||||
assert_equal(coords, [[-1, 0, 1], [-1, 0, 1]])
|
||||
|
||||
|
||||
def test_no_round():
|
||||
coords = line_nd((0.5, 0), (2.5, 0), integer=False, endpoint=True)
|
||||
assert_equal(coords, [[0.5, 1.5, 2.5], [0, 0, 0]])
|
|
@ -0,0 +1,14 @@
|
|||
import numpy as np
|
||||
|
||||
from skimage import draw
|
||||
|
||||
|
||||
image_shape = (512, 512)
|
||||
polygon = np.array([[80, 111, 146, 234, 407, 300, 187, 45],
|
||||
[465, 438, 499, 380, 450, 287, 210, 167]]).T
|
||||
|
||||
|
||||
def test_polygon2mask():
|
||||
mask = draw.polygon2mask(image_shape, polygon)
|
||||
assert mask.shape == image_shape
|
||||
assert mask.sum() == 57647
|
171
venv/Lib/site-packages/skimage/draw/tests/test_random_shapes.py
Normal file
171
venv/Lib/site-packages/skimage/draw/tests/test_random_shapes.py
Normal file
|
@ -0,0 +1,171 @@
|
|||
import numpy as np
|
||||
|
||||
from skimage.draw import random_shapes
|
||||
|
||||
from skimage._shared import testing
|
||||
from skimage._shared._warnings import expected_warnings
|
||||
|
||||
|
||||
def test_generates_color_images_with_correct_shape():
|
||||
image, _ = random_shapes((128, 128), max_shapes=10)
|
||||
assert image.shape == (128, 128, 3)
|
||||
|
||||
|
||||
def test_generates_gray_images_with_correct_shape():
|
||||
image, _ = random_shapes(
|
||||
(4567, 123), min_shapes=3, max_shapes=20, multichannel=False)
|
||||
assert image.shape == (4567, 123)
|
||||
|
||||
|
||||
def test_generates_correct_bounding_boxes_for_rectangles():
|
||||
image, labels = random_shapes(
|
||||
(128, 128),
|
||||
max_shapes=1,
|
||||
shape='rectangle',
|
||||
random_seed=42)
|
||||
assert len(labels) == 1
|
||||
label, bbox = labels[0]
|
||||
assert label == 'rectangle', label
|
||||
|
||||
crop = image[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1]]
|
||||
|
||||
# The crop is filled.
|
||||
assert (crop >= 0).all() and (crop < 255).all()
|
||||
|
||||
# The crop is complete.
|
||||
image[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1]] = 255
|
||||
assert (image == 255).all()
|
||||
|
||||
|
||||
def test_generates_correct_bounding_boxes_for_triangles():
|
||||
image, labels = random_shapes(
|
||||
(128, 128),
|
||||
max_shapes=1,
|
||||
shape='triangle',
|
||||
random_seed=42)
|
||||
assert len(labels) == 1
|
||||
label, bbox = labels[0]
|
||||
assert label == 'triangle', label
|
||||
|
||||
crop = image[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1]]
|
||||
|
||||
# The crop is filled.
|
||||
assert (crop >= 0).any() and (crop < 255).any()
|
||||
|
||||
# The crop is complete.
|
||||
image[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1]] = 255
|
||||
assert (image == 255).all()
|
||||
|
||||
|
||||
def test_generates_correct_bounding_boxes_for_circles():
|
||||
image, labels = random_shapes(
|
||||
(43, 44),
|
||||
max_shapes=1,
|
||||
min_size=20,
|
||||
max_size=20,
|
||||
shape='circle',
|
||||
random_seed=42)
|
||||
assert len(labels) == 1
|
||||
label, bbox = labels[0]
|
||||
assert label == 'circle', label
|
||||
|
||||
crop = image[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1]]
|
||||
|
||||
# The crop is filled.
|
||||
assert (crop >= 0).any() and (crop < 255).any()
|
||||
|
||||
# The crop is complete.
|
||||
image[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1]] = 255
|
||||
assert (image == 255).all()
|
||||
|
||||
|
||||
def test_generates_correct_bounding_boxes_for_ellipses():
|
||||
image, labels = random_shapes(
|
||||
(43, 44),
|
||||
max_shapes=1,
|
||||
min_size=20,
|
||||
max_size=20,
|
||||
shape='ellipse',
|
||||
random_seed=42)
|
||||
assert len(labels) == 1
|
||||
label, bbox = labels[0]
|
||||
assert label == 'ellipse', label
|
||||
|
||||
crop = image[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1]]
|
||||
|
||||
# The crop is filled.
|
||||
assert (crop >= 0).any() and (crop < 255).any()
|
||||
|
||||
# The crop is complete.
|
||||
image[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1]] = 255
|
||||
assert (image == 255).all()
|
||||
|
||||
|
||||
def test_generate_circle_throws_when_size_too_small():
|
||||
with testing.raises(ValueError):
|
||||
random_shapes(
|
||||
(64, 128), max_shapes=1, min_size=1, max_size=1, shape='circle')
|
||||
|
||||
|
||||
def test_generate_ellipse_throws_when_size_too_small():
|
||||
with testing.raises(ValueError):
|
||||
random_shapes(
|
||||
(64, 128), max_shapes=1, min_size=1, max_size=1, shape='ellipse')
|
||||
|
||||
|
||||
def test_generate_triangle_throws_when_size_too_small():
|
||||
with testing.raises(ValueError):
|
||||
random_shapes(
|
||||
(128, 64), max_shapes=1, min_size=1, max_size=1, shape='triangle')
|
||||
|
||||
|
||||
def test_can_generate_one_by_one_rectangle():
|
||||
image, labels = random_shapes(
|
||||
(50, 128),
|
||||
max_shapes=1,
|
||||
min_size=1,
|
||||
max_size=1,
|
||||
shape='rectangle')
|
||||
assert len(labels) == 1
|
||||
_, bbox = labels[0]
|
||||
crop = image[bbox[0][0]:bbox[0][1], bbox[1][0]:bbox[1][1]]
|
||||
|
||||
# rgb
|
||||
assert (np.shape(crop) == (1, 1, 3) and np.any(crop >= 1)
|
||||
and np.any(crop < 255))
|
||||
|
||||
|
||||
def test_throws_when_intensity_range_out_of_range():
|
||||
with testing.raises(ValueError):
|
||||
random_shapes((1000, 1234), max_shapes=1, multichannel=False,
|
||||
intensity_range=(0, 256))
|
||||
with testing.raises(ValueError):
|
||||
random_shapes((2, 2), max_shapes=1,
|
||||
intensity_range=((-1, 255),))
|
||||
|
||||
|
||||
def test_returns_empty_labels_and_white_image_when_cannot_fit_shape():
|
||||
# The circle will never fit this.
|
||||
with expected_warnings(['Could not fit']):
|
||||
image, labels = random_shapes(
|
||||
(10000, 10000), max_shapes=1, min_size=10000, shape='circle')
|
||||
assert len(labels) == 0
|
||||
assert (image == 255).all()
|
||||
|
||||
|
||||
def test_random_shapes_is_reproducible_with_seed():
|
||||
random_seed = 42
|
||||
labels = []
|
||||
for _ in range(5):
|
||||
_, label = random_shapes((128, 128), max_shapes=5,
|
||||
random_seed=random_seed)
|
||||
labels.append(label)
|
||||
assert all(other == labels[0] for other in labels[1:])
|
||||
|
||||
|
||||
def test_generates_white_image_when_intensity_range_255():
|
||||
image, labels = random_shapes((128, 128), max_shapes=3,
|
||||
intensity_range=((255, 255),),
|
||||
random_seed=42)
|
||||
assert len(labels) > 0
|
||||
assert (image == 255).all()
|
Loading…
Add table
Add a link
Reference in a new issue