Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
57
venv/Lib/site-packages/skimage/data/_binary_blobs.py
Normal file
57
venv/Lib/site-packages/skimage/data/_binary_blobs.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def binary_blobs(length=512, blob_size_fraction=0.1, n_dim=2,
|
||||
volume_fraction=0.5, seed=None):
|
||||
"""
|
||||
Generate synthetic binary image with several rounded blob-like objects.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
length : int, optional
|
||||
Linear size of output image.
|
||||
blob_size_fraction : float, optional
|
||||
Typical linear size of blob, as a fraction of ``length``, should be
|
||||
smaller than 1.
|
||||
n_dim : int, optional
|
||||
Number of dimensions of output image.
|
||||
volume_fraction : float, default 0.5
|
||||
Fraction of image pixels covered by the blobs (where the output is 1).
|
||||
Should be in [0, 1].
|
||||
seed : int, optional
|
||||
Seed to initialize the random number generator.
|
||||
If `None`, a random seed from the operating system is used.
|
||||
|
||||
Returns
|
||||
-------
|
||||
blobs : ndarray of bools
|
||||
Output binary image
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from skimage import data
|
||||
>>> data.binary_blobs(length=5, blob_size_fraction=0.2, seed=1)
|
||||
array([[ True, False, True, True, True],
|
||||
[ True, True, True, False, True],
|
||||
[False, True, False, True, True],
|
||||
[ True, False, False, True, True],
|
||||
[ True, False, False, False, True]])
|
||||
>>> blobs = data.binary_blobs(length=256, blob_size_fraction=0.1)
|
||||
>>> # Finer structures
|
||||
>>> blobs = data.binary_blobs(length=256, blob_size_fraction=0.05)
|
||||
>>> # Blobs cover a smaller volume fraction of the image
|
||||
>>> blobs = data.binary_blobs(length=256, volume_fraction=0.3)
|
||||
"""
|
||||
# filters is quite an expensive import since it imports all of scipy.signal
|
||||
# We lazy import here
|
||||
from ..filters import gaussian
|
||||
|
||||
rs = np.random.RandomState(seed)
|
||||
shape = tuple([length] * n_dim)
|
||||
mask = np.zeros(shape)
|
||||
n_pts = max(int(1. / blob_size_fraction) ** n_dim, 1)
|
||||
points = (length * rs.rand(n_dim, n_pts)).astype(np.int)
|
||||
mask[tuple(indices for indices in points)] = 1
|
||||
mask = gaussian(mask, sigma=0.25 * length * blob_size_fraction)
|
||||
threshold = np.percentile(mask, 100 * (1 - volume_fraction))
|
||||
return np.logical_not(mask < threshold)
|
Loading…
Add table
Add a link
Reference in a new issue