Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
|
@ -0,0 +1,68 @@
|
|||
from scipy.stats import betabinom, hypergeom, bernoulli, boltzmann
|
||||
import numpy as np
|
||||
from numpy.testing import assert_almost_equal, assert_equal, assert_allclose
|
||||
|
||||
|
||||
def test_hypergeom_logpmf():
|
||||
# symmetries test
|
||||
# f(k,N,K,n) = f(n-k,N,N-K,n) = f(K-k,N,K,N-n) = f(k,N,n,K)
|
||||
k = 5
|
||||
N = 50
|
||||
K = 10
|
||||
n = 5
|
||||
logpmf1 = hypergeom.logpmf(k, N, K, n)
|
||||
logpmf2 = hypergeom.logpmf(n - k, N, N - K, n)
|
||||
logpmf3 = hypergeom.logpmf(K - k, N, K, N - n)
|
||||
logpmf4 = hypergeom.logpmf(k, N, n, K)
|
||||
assert_almost_equal(logpmf1, logpmf2, decimal=12)
|
||||
assert_almost_equal(logpmf1, logpmf3, decimal=12)
|
||||
assert_almost_equal(logpmf1, logpmf4, decimal=12)
|
||||
|
||||
# test related distribution
|
||||
# Bernoulli distribution if n = 1
|
||||
k = 1
|
||||
N = 10
|
||||
K = 7
|
||||
n = 1
|
||||
hypergeom_logpmf = hypergeom.logpmf(k, N, K, n)
|
||||
bernoulli_logpmf = bernoulli.logpmf(k, K/N)
|
||||
assert_almost_equal(hypergeom_logpmf, bernoulli_logpmf, decimal=12)
|
||||
|
||||
|
||||
def test_boltzmann_upper_bound():
|
||||
k = np.arange(-3, 5)
|
||||
|
||||
N = 1
|
||||
p = boltzmann.pmf(k, 0.123, N)
|
||||
expected = k == 0
|
||||
assert_equal(p, expected)
|
||||
|
||||
lam = np.log(2)
|
||||
N = 3
|
||||
p = boltzmann.pmf(k, lam, N)
|
||||
expected = [0, 0, 0, 4/7, 2/7, 1/7, 0, 0]
|
||||
assert_allclose(p, expected, rtol=1e-13)
|
||||
|
||||
c = boltzmann.cdf(k, lam, N)
|
||||
expected = [0, 0, 0, 4/7, 6/7, 1, 1, 1]
|
||||
assert_allclose(c, expected, rtol=1e-13)
|
||||
|
||||
|
||||
def test_betabinom_a_and_b_unity():
|
||||
# test limiting case that betabinom(n, 1, 1) is a discrete uniform
|
||||
# distribution from 0 to n
|
||||
n = 20
|
||||
k = np.arange(n + 1)
|
||||
p = betabinom(n, 1, 1).pmf(k)
|
||||
expected = np.repeat(1 / (n + 1), n + 1)
|
||||
assert_almost_equal(p, expected)
|
||||
|
||||
|
||||
def test_betabinom_bernoulli():
|
||||
# test limiting case that betabinom(1, a, b) = bernoulli(a / (a + b))
|
||||
a = 2.3
|
||||
b = 0.63
|
||||
k = np.arange(2)
|
||||
p = betabinom(1, a, b).pmf(k)
|
||||
expected = bernoulli(a / (a + b)).pmf(k)
|
||||
assert_almost_equal(p, expected)
|
Loading…
Add table
Add a link
Reference in a new issue