Fixed database typo and removed unnecessary class identifier.

This commit is contained in:
Batuhan Berk Başoğlu 2020-10-14 10:10:37 -04:00
parent 00ad49a143
commit 45fb349a7d
5098 changed files with 952558 additions and 85 deletions

View file

@ -0,0 +1,108 @@
NIST/ITL StRD
Dataset Name: AtmWtAg (AtmWtAg.dat)
File Format: ASCII
Certified Values (lines 41 to 47)
Data (lines 61 to 108)
Procedure: Analysis of Variance
Reference: Powell, L.J., Murphy, T.J. and Gramlich, J.W. (1982).
"The Absolute Isotopic Abundance & Atomic Weight
of a Reference Sample of Silver".
NBS Journal of Research, 87, pp. 9-19.
Data: 1 Factor
2 Treatments
24 Replicates/Cell
48 Observations
7 Constant Leading Digits
Average Level of Difficulty
Observed Data
Model: 3 Parameters (mu, tau_1, tau_2)
y_{ij} = mu + tau_i + epsilon_{ij}
Certified Values:
Source of Sums of Mean
Variation df Squares Squares F Statistic
Between Instrument 1 3.63834187500000E-09 3.63834187500000E-09 1.59467335677930E+01
Within Instrument 46 1.04951729166667E-08 2.28155932971014E-10
Certified R-Squared 2.57426544538321E-01
Certified Residual
Standard Deviation 1.51048314446410E-05
Data: Instrument AgWt
1 107.8681568
1 107.8681465
1 107.8681572
1 107.8681785
1 107.8681446
1 107.8681903
1 107.8681526
1 107.8681494
1 107.8681616
1 107.8681587
1 107.8681519
1 107.8681486
1 107.8681419
1 107.8681569
1 107.8681508
1 107.8681672
1 107.8681385
1 107.8681518
1 107.8681662
1 107.8681424
1 107.8681360
1 107.8681333
1 107.8681610
1 107.8681477
2 107.8681079
2 107.8681344
2 107.8681513
2 107.8681197
2 107.8681604
2 107.8681385
2 107.8681642
2 107.8681365
2 107.8681151
2 107.8681082
2 107.8681517
2 107.8681448
2 107.8681198
2 107.8681482
2 107.8681334
2 107.8681609
2 107.8681101
2 107.8681512
2 107.8681469
2 107.8681360
2 107.8681254
2 107.8681261
2 107.8681450
2 107.8681368

View file

@ -0,0 +1,85 @@
NIST/ITL StRD
Dataset Name: SiRstv (SiRstv.dat)
File Format: ASCII
Certified Values (lines 41 to 47)
Data (lines 61 to 85)
Procedure: Analysis of Variance
Reference: Ehrstein, James and Croarkin, M. Carroll.
Unpublished NIST dataset.
Data: 1 Factor
5 Treatments
5 Replicates/Cell
25 Observations
3 Constant Leading Digits
Lower Level of Difficulty
Observed Data
Model: 6 Parameters (mu,tau_1, ... , tau_5)
y_{ij} = mu + tau_i + epsilon_{ij}
Certified Values:
Source of Sums of Mean
Variation df Squares Squares F Statistic
Between Instrument 4 5.11462616000000E-02 1.27865654000000E-02 1.18046237440255E+00
Within Instrument 20 2.16636560000000E-01 1.08318280000000E-02
Certified R-Squared 1.90999039051129E-01
Certified Residual
Standard Deviation 1.04076068334656E-01
Data: Instrument Resistance
1 196.3052
1 196.1240
1 196.1890
1 196.2569
1 196.3403
2 196.3042
2 196.3825
2 196.1669
2 196.3257
2 196.0422
3 196.1303
3 196.2005
3 196.2889
3 196.0343
3 196.1811
4 196.2795
4 196.1748
4 196.1494
4 196.1485
4 195.9885
5 196.2119
5 196.1051
5 196.1850
5 196.0052
5 196.2090

View file

@ -0,0 +1,249 @@
NIST/ITL StRD
Dataset Name: SmLs01 (SmLs01.dat)
File Format: ASCII
Certified Values (lines 41 to 47)
Data (lines 61 to 249)
Procedure: Analysis of Variance
Reference: Simon, Stephen D. and Lesage, James P. (1989).
"Assessing the Accuracy of ANOVA Calculations in
Statistical Software".
Computational Statistics & Data Analysis, 8, pp. 325-332.
Data: 1 Factor
9 Treatments
21 Replicates/Cell
189 Observations
1 Constant Leading Digit
Lower Level of Difficulty
Generated Data
Model: 10 Parameters (mu,tau_1, ... , tau_9)
y_{ij} = mu + tau_i + epsilon_{ij}
Certified Values:
Source of Sums of Mean
Variation df Squares Squares F Statistic
Between Treatment 8 1.68000000000000E+00 2.10000000000000E-01 2.10000000000000E+01
Within Treatment 180 1.80000000000000E+00 1.00000000000000E-02
Certified R-Squared 4.82758620689655E-01
Certified Residual
Standard Deviation 1.00000000000000E-01
Data: Treatment Response
1 1.4
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
1 1.3
1 1.5
2 1.3
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
2 1.2
2 1.4
3 1.5
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
3 1.4
3 1.6
4 1.3
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
4 1.2
4 1.4
5 1.5
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
5 1.4
5 1.6
6 1.3
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
6 1.2
6 1.4
7 1.5
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
7 1.4
7 1.6
8 1.3
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
8 1.2
8 1.4
9 1.5
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6
9 1.4
9 1.6

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,249 @@
NIST/ITL StRD
Dataset Name: SmLs04 (SmLs04.dat)
File Format: ASCII
Certified Values (lines 41 to 47)
Data (lines 61 to 249)
Procedure: Analysis of Variance
Reference: Simon, Stephen D. and Lesage, James P. (1989).
"Assessing the Accuracy of ANOVA Calculations in
Statistical Software".
Computational Statistics & Data Analysis, 8, pp. 325-332.
Data: 1 Factor
9 Treatments
21 Replicates/Cell
189 Observations
7 Constant Leading Digits
Average Level of Difficulty
Generated Data
Model: 10 Parameters (mu,tau_1, ... , tau_9)
y_{ij} = mu + tau_i + epsilon_{ij}
Certified Values:
Source of Sums of Mean
Variation df Squares Squares F Statistic
Between Treatment 8 1.68000000000000E+00 2.10000000000000E-01 2.10000000000000E+01
Within Treatment 180 1.80000000000000E+00 1.00000000000000E-02
Certified R-Squared 4.82758620689655E-01
Certified Residual
Standard Deviation 1.00000000000000E-01
Data: Treatment Response
1 1000000.4
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
1 1000000.3
1 1000000.5
2 1000000.3
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
2 1000000.2
2 1000000.4
3 1000000.5
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
3 1000000.4
3 1000000.6
4 1000000.3
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
4 1000000.2
4 1000000.4
5 1000000.5
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
5 1000000.4
5 1000000.6
6 1000000.3
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
6 1000000.2
6 1000000.4
7 1000000.5
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
7 1000000.4
7 1000000.6
8 1000000.3
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
8 1000000.2
8 1000000.4
9 1000000.5
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6
9 1000000.4
9 1000000.6

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,249 @@
NIST/ITL StRD
Dataset Name: SmLs07 (SmLs07.dat)
File Format: ASCII
Certified Values (lines 41 to 47)
Data (lines 61 to 249)
Procedure: Analysis of Variance
Reference: Simon, Stephen D. and Lesage, James P. (1989).
"Assessing the Accuracy of ANOVA Calculations in
Statistical Software".
Computational Statistics & Data Analysis, 8, pp. 325-332.
Data: 1 Factor
9 Treatments
21 Replicates/Cell
189 Observations
13 Constant Leading Digits
Higher Level of Difficulty
Generated Data
Model: 10 Parameters (mu,tau_1, ... , tau_9)
y_{ij} = mu + tau_i + epsilon_{ij}
Certified Values:
Source of Sums of Mean
Variation df Squares Squares F Statistic
Between Treatment 8 1.68000000000000E+00 2.10000000000000E-01 2.10000000000000E+01
Within Treatment 180 1.80000000000000E+00 1.00000000000000E-02
Certified R-Squared 4.82758620689655E-01
Certified Residual
Standard Deviation 1.00000000000000E-01
Data: Treatment Response
1 1000000000000.4
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
1 1000000000000.3
1 1000000000000.5
2 1000000000000.3
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
2 1000000000000.2
2 1000000000000.4
3 1000000000000.5
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
3 1000000000000.4
3 1000000000000.6
4 1000000000000.3
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
4 1000000000000.2
4 1000000000000.4
5 1000000000000.5
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
5 1000000000000.4
5 1000000000000.6
6 1000000000000.3
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
6 1000000000000.2
6 1000000000000.4
7 1000000000000.5
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
7 1000000000000.4
7 1000000000000.6
8 1000000000000.3
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
8 1000000000000.2
8 1000000000000.4
9 1000000000000.5
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6
9 1000000000000.4
9 1000000000000.6

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff