Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
474
venv/Lib/site-packages/scipy/stats/mstats_extras.py
Normal file
474
venv/Lib/site-packages/scipy/stats/mstats_extras.py
Normal file
|
@ -0,0 +1,474 @@
|
|||
"""
|
||||
Additional statistics functions with support for masked arrays.
|
||||
|
||||
"""
|
||||
|
||||
# Original author (2007): Pierre GF Gerard-Marchant
|
||||
|
||||
|
||||
__all__ = ['compare_medians_ms',
|
||||
'hdquantiles', 'hdmedian', 'hdquantiles_sd',
|
||||
'idealfourths',
|
||||
'median_cihs','mjci','mquantiles_cimj',
|
||||
'rsh',
|
||||
'trimmed_mean_ci',]
|
||||
|
||||
|
||||
import numpy as np
|
||||
from numpy import float_, int_, ndarray
|
||||
|
||||
import numpy.ma as ma
|
||||
from numpy.ma import MaskedArray
|
||||
|
||||
from . import mstats_basic as mstats
|
||||
|
||||
from scipy.stats.distributions import norm, beta, t, binom
|
||||
|
||||
|
||||
def hdquantiles(data, prob=list([.25,.5,.75]), axis=None, var=False,):
|
||||
"""
|
||||
Computes quantile estimates with the Harrell-Davis method.
|
||||
|
||||
The quantile estimates are calculated as a weighted linear combination
|
||||
of order statistics.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : array_like
|
||||
Data array.
|
||||
prob : sequence, optional
|
||||
Sequence of quantiles to compute.
|
||||
axis : int or None, optional
|
||||
Axis along which to compute the quantiles. If None, use a flattened
|
||||
array.
|
||||
var : bool, optional
|
||||
Whether to return the variance of the estimate.
|
||||
|
||||
Returns
|
||||
-------
|
||||
hdquantiles : MaskedArray
|
||||
A (p,) array of quantiles (if `var` is False), or a (2,p) array of
|
||||
quantiles and variances (if `var` is True), where ``p`` is the
|
||||
number of quantiles.
|
||||
|
||||
See Also
|
||||
--------
|
||||
hdquantiles_sd
|
||||
|
||||
"""
|
||||
def _hd_1D(data,prob,var):
|
||||
"Computes the HD quantiles for a 1D array. Returns nan for invalid data."
|
||||
xsorted = np.squeeze(np.sort(data.compressed().view(ndarray)))
|
||||
# Don't use length here, in case we have a numpy scalar
|
||||
n = xsorted.size
|
||||
|
||||
hd = np.empty((2,len(prob)), float_)
|
||||
if n < 2:
|
||||
hd.flat = np.nan
|
||||
if var:
|
||||
return hd
|
||||
return hd[0]
|
||||
|
||||
v = np.arange(n+1) / float(n)
|
||||
betacdf = beta.cdf
|
||||
for (i,p) in enumerate(prob):
|
||||
_w = betacdf(v, (n+1)*p, (n+1)*(1-p))
|
||||
w = _w[1:] - _w[:-1]
|
||||
hd_mean = np.dot(w, xsorted)
|
||||
hd[0,i] = hd_mean
|
||||
#
|
||||
hd[1,i] = np.dot(w, (xsorted-hd_mean)**2)
|
||||
#
|
||||
hd[0, prob == 0] = xsorted[0]
|
||||
hd[0, prob == 1] = xsorted[-1]
|
||||
if var:
|
||||
hd[1, prob == 0] = hd[1, prob == 1] = np.nan
|
||||
return hd
|
||||
return hd[0]
|
||||
# Initialization & checks
|
||||
data = ma.array(data, copy=False, dtype=float_)
|
||||
p = np.array(prob, copy=False, ndmin=1)
|
||||
# Computes quantiles along axis (or globally)
|
||||
if (axis is None) or (data.ndim == 1):
|
||||
result = _hd_1D(data, p, var)
|
||||
else:
|
||||
if data.ndim > 2:
|
||||
raise ValueError("Array 'data' must be at most two dimensional, "
|
||||
"but got data.ndim = %d" % data.ndim)
|
||||
result = ma.apply_along_axis(_hd_1D, axis, data, p, var)
|
||||
|
||||
return ma.fix_invalid(result, copy=False)
|
||||
|
||||
|
||||
def hdmedian(data, axis=-1, var=False):
|
||||
"""
|
||||
Returns the Harrell-Davis estimate of the median along the given axis.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : ndarray
|
||||
Data array.
|
||||
axis : int, optional
|
||||
Axis along which to compute the quantiles. If None, use a flattened
|
||||
array.
|
||||
var : bool, optional
|
||||
Whether to return the variance of the estimate.
|
||||
|
||||
Returns
|
||||
-------
|
||||
hdmedian : MaskedArray
|
||||
The median values. If ``var=True``, the variance is returned inside
|
||||
the masked array. E.g. for a 1-D array the shape change from (1,) to
|
||||
(2,).
|
||||
|
||||
"""
|
||||
result = hdquantiles(data,[0.5], axis=axis, var=var)
|
||||
return result.squeeze()
|
||||
|
||||
|
||||
def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None):
|
||||
"""
|
||||
The standard error of the Harrell-Davis quantile estimates by jackknife.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : array_like
|
||||
Data array.
|
||||
prob : sequence, optional
|
||||
Sequence of quantiles to compute.
|
||||
axis : int, optional
|
||||
Axis along which to compute the quantiles. If None, use a flattened
|
||||
array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
hdquantiles_sd : MaskedArray
|
||||
Standard error of the Harrell-Davis quantile estimates.
|
||||
|
||||
See Also
|
||||
--------
|
||||
hdquantiles
|
||||
|
||||
"""
|
||||
def _hdsd_1D(data, prob):
|
||||
"Computes the std error for 1D arrays."
|
||||
xsorted = np.sort(data.compressed())
|
||||
n = len(xsorted)
|
||||
|
||||
hdsd = np.empty(len(prob), float_)
|
||||
if n < 2:
|
||||
hdsd.flat = np.nan
|
||||
|
||||
vv = np.arange(n) / float(n-1)
|
||||
betacdf = beta.cdf
|
||||
|
||||
for (i,p) in enumerate(prob):
|
||||
_w = betacdf(vv, (n+1)*p, (n+1)*(1-p))
|
||||
w = _w[1:] - _w[:-1]
|
||||
mx_ = np.fromiter([np.dot(w,xsorted[np.r_[list(range(0,k)),
|
||||
list(range(k+1,n))].astype(int_)])
|
||||
for k in range(n)], dtype=float_)
|
||||
mx_var = np.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1)
|
||||
hdsd[i] = float(n-1) * np.sqrt(np.diag(mx_var).diagonal() / float(n))
|
||||
return hdsd
|
||||
|
||||
# Initialization & checks
|
||||
data = ma.array(data, copy=False, dtype=float_)
|
||||
p = np.array(prob, copy=False, ndmin=1)
|
||||
# Computes quantiles along axis (or globally)
|
||||
if (axis is None):
|
||||
result = _hdsd_1D(data, p)
|
||||
else:
|
||||
if data.ndim > 2:
|
||||
raise ValueError("Array 'data' must be at most two dimensional, "
|
||||
"but got data.ndim = %d" % data.ndim)
|
||||
result = ma.apply_along_axis(_hdsd_1D, axis, data, p)
|
||||
|
||||
return ma.fix_invalid(result, copy=False).ravel()
|
||||
|
||||
|
||||
def trimmed_mean_ci(data, limits=(0.2,0.2), inclusive=(True,True),
|
||||
alpha=0.05, axis=None):
|
||||
"""
|
||||
Selected confidence interval of the trimmed mean along the given axis.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : array_like
|
||||
Input data.
|
||||
limits : {None, tuple}, optional
|
||||
None or a two item tuple.
|
||||
Tuple of the percentages to cut on each side of the array, with respect
|
||||
to the number of unmasked data, as floats between 0. and 1. If ``n``
|
||||
is the number of unmasked data before trimming, then
|
||||
(``n * limits[0]``)th smallest data and (``n * limits[1]``)th
|
||||
largest data are masked. The total number of unmasked data after
|
||||
trimming is ``n * (1. - sum(limits))``.
|
||||
The value of one limit can be set to None to indicate an open interval.
|
||||
|
||||
Defaults to (0.2, 0.2).
|
||||
inclusive : (2,) tuple of boolean, optional
|
||||
If relative==False, tuple indicating whether values exactly equal to
|
||||
the absolute limits are allowed.
|
||||
If relative==True, tuple indicating whether the number of data being
|
||||
masked on each side should be rounded (True) or truncated (False).
|
||||
|
||||
Defaults to (True, True).
|
||||
alpha : float, optional
|
||||
Confidence level of the intervals.
|
||||
|
||||
Defaults to 0.05.
|
||||
axis : int, optional
|
||||
Axis along which to cut. If None, uses a flattened version of `data`.
|
||||
|
||||
Defaults to None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
trimmed_mean_ci : (2,) ndarray
|
||||
The lower and upper confidence intervals of the trimmed data.
|
||||
|
||||
"""
|
||||
data = ma.array(data, copy=False)
|
||||
trimmed = mstats.trimr(data, limits=limits, inclusive=inclusive, axis=axis)
|
||||
tmean = trimmed.mean(axis)
|
||||
tstde = mstats.trimmed_stde(data,limits=limits,inclusive=inclusive,axis=axis)
|
||||
df = trimmed.count(axis) - 1
|
||||
tppf = t.ppf(1-alpha/2.,df)
|
||||
return np.array((tmean - tppf*tstde, tmean+tppf*tstde))
|
||||
|
||||
|
||||
def mjci(data, prob=[0.25,0.5,0.75], axis=None):
|
||||
"""
|
||||
Returns the Maritz-Jarrett estimators of the standard error of selected
|
||||
experimental quantiles of the data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : ndarray
|
||||
Data array.
|
||||
prob : sequence, optional
|
||||
Sequence of quantiles to compute.
|
||||
axis : int or None, optional
|
||||
Axis along which to compute the quantiles. If None, use a flattened
|
||||
array.
|
||||
|
||||
"""
|
||||
def _mjci_1D(data, p):
|
||||
data = np.sort(data.compressed())
|
||||
n = data.size
|
||||
prob = (np.array(p) * n + 0.5).astype(int_)
|
||||
betacdf = beta.cdf
|
||||
|
||||
mj = np.empty(len(prob), float_)
|
||||
x = np.arange(1,n+1, dtype=float_) / n
|
||||
y = x - 1./n
|
||||
for (i,m) in enumerate(prob):
|
||||
W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m)
|
||||
C1 = np.dot(W,data)
|
||||
C2 = np.dot(W,data**2)
|
||||
mj[i] = np.sqrt(C2 - C1**2)
|
||||
return mj
|
||||
|
||||
data = ma.array(data, copy=False)
|
||||
if data.ndim > 2:
|
||||
raise ValueError("Array 'data' must be at most two dimensional, "
|
||||
"but got data.ndim = %d" % data.ndim)
|
||||
|
||||
p = np.array(prob, copy=False, ndmin=1)
|
||||
# Computes quantiles along axis (or globally)
|
||||
if (axis is None):
|
||||
return _mjci_1D(data, p)
|
||||
else:
|
||||
return ma.apply_along_axis(_mjci_1D, axis, data, p)
|
||||
|
||||
|
||||
def mquantiles_cimj(data, prob=[0.25,0.50,0.75], alpha=0.05, axis=None):
|
||||
"""
|
||||
Computes the alpha confidence interval for the selected quantiles of the
|
||||
data, with Maritz-Jarrett estimators.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : ndarray
|
||||
Data array.
|
||||
prob : sequence, optional
|
||||
Sequence of quantiles to compute.
|
||||
alpha : float, optional
|
||||
Confidence level of the intervals.
|
||||
axis : int or None, optional
|
||||
Axis along which to compute the quantiles.
|
||||
If None, use a flattened array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ci_lower : ndarray
|
||||
The lower boundaries of the confidence interval. Of the same length as
|
||||
`prob`.
|
||||
ci_upper : ndarray
|
||||
The upper boundaries of the confidence interval. Of the same length as
|
||||
`prob`.
|
||||
|
||||
"""
|
||||
alpha = min(alpha, 1 - alpha)
|
||||
z = norm.ppf(1 - alpha/2.)
|
||||
xq = mstats.mquantiles(data, prob, alphap=0, betap=0, axis=axis)
|
||||
smj = mjci(data, prob, axis=axis)
|
||||
return (xq - z * smj, xq + z * smj)
|
||||
|
||||
|
||||
def median_cihs(data, alpha=0.05, axis=None):
|
||||
"""
|
||||
Computes the alpha-level confidence interval for the median of the data.
|
||||
|
||||
Uses the Hettmasperger-Sheather method.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : array_like
|
||||
Input data. Masked values are discarded. The input should be 1D only,
|
||||
or `axis` should be set to None.
|
||||
alpha : float, optional
|
||||
Confidence level of the intervals.
|
||||
axis : int or None, optional
|
||||
Axis along which to compute the quantiles. If None, use a flattened
|
||||
array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
median_cihs
|
||||
Alpha level confidence interval.
|
||||
|
||||
"""
|
||||
def _cihs_1D(data, alpha):
|
||||
data = np.sort(data.compressed())
|
||||
n = len(data)
|
||||
alpha = min(alpha, 1-alpha)
|
||||
k = int(binom._ppf(alpha/2., n, 0.5))
|
||||
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
|
||||
if gk < 1-alpha:
|
||||
k -= 1
|
||||
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
|
||||
gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5)
|
||||
I = (gk - 1 + alpha)/(gk - gkk)
|
||||
lambd = (n-k) * I / float(k + (n-2*k)*I)
|
||||
lims = (lambd*data[k] + (1-lambd)*data[k-1],
|
||||
lambd*data[n-k-1] + (1-lambd)*data[n-k])
|
||||
return lims
|
||||
data = ma.array(data, copy=False)
|
||||
# Computes quantiles along axis (or globally)
|
||||
if (axis is None):
|
||||
result = _cihs_1D(data, alpha)
|
||||
else:
|
||||
if data.ndim > 2:
|
||||
raise ValueError("Array 'data' must be at most two dimensional, "
|
||||
"but got data.ndim = %d" % data.ndim)
|
||||
result = ma.apply_along_axis(_cihs_1D, axis, data, alpha)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def compare_medians_ms(group_1, group_2, axis=None):
|
||||
"""
|
||||
Compares the medians from two independent groups along the given axis.
|
||||
|
||||
The comparison is performed using the McKean-Schrader estimate of the
|
||||
standard error of the medians.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
group_1 : array_like
|
||||
First dataset. Has to be of size >=7.
|
||||
group_2 : array_like
|
||||
Second dataset. Has to be of size >=7.
|
||||
axis : int, optional
|
||||
Axis along which the medians are estimated. If None, the arrays are
|
||||
flattened. If `axis` is not None, then `group_1` and `group_2`
|
||||
should have the same shape.
|
||||
|
||||
Returns
|
||||
-------
|
||||
compare_medians_ms : {float, ndarray}
|
||||
If `axis` is None, then returns a float, otherwise returns a 1-D
|
||||
ndarray of floats with a length equal to the length of `group_1`
|
||||
along `axis`.
|
||||
|
||||
"""
|
||||
(med_1, med_2) = (ma.median(group_1,axis=axis), ma.median(group_2,axis=axis))
|
||||
(std_1, std_2) = (mstats.stde_median(group_1, axis=axis),
|
||||
mstats.stde_median(group_2, axis=axis))
|
||||
W = np.abs(med_1 - med_2) / ma.sqrt(std_1**2 + std_2**2)
|
||||
return 1 - norm.cdf(W)
|
||||
|
||||
|
||||
def idealfourths(data, axis=None):
|
||||
"""
|
||||
Returns an estimate of the lower and upper quartiles.
|
||||
|
||||
Uses the ideal fourths algorithm.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : array_like
|
||||
Input array.
|
||||
axis : int, optional
|
||||
Axis along which the quartiles are estimated. If None, the arrays are
|
||||
flattened.
|
||||
|
||||
Returns
|
||||
-------
|
||||
idealfourths : {list of floats, masked array}
|
||||
Returns the two internal values that divide `data` into four parts
|
||||
using the ideal fourths algorithm either along the flattened array
|
||||
(if `axis` is None) or along `axis` of `data`.
|
||||
|
||||
"""
|
||||
def _idf(data):
|
||||
x = data.compressed()
|
||||
n = len(x)
|
||||
if n < 3:
|
||||
return [np.nan,np.nan]
|
||||
(j,h) = divmod(n/4. + 5/12.,1)
|
||||
j = int(j)
|
||||
qlo = (1-h)*x[j-1] + h*x[j]
|
||||
k = n - j
|
||||
qup = (1-h)*x[k] + h*x[k-1]
|
||||
return [qlo, qup]
|
||||
data = ma.sort(data, axis=axis).view(MaskedArray)
|
||||
if (axis is None):
|
||||
return _idf(data)
|
||||
else:
|
||||
return ma.apply_along_axis(_idf, axis, data)
|
||||
|
||||
|
||||
def rsh(data, points=None):
|
||||
"""
|
||||
Evaluates Rosenblatt's shifted histogram estimators for each data point.
|
||||
|
||||
Rosenblatt's estimator is a centered finite-difference approximation to the
|
||||
derivative of the empirical cumulative distribution function.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : sequence
|
||||
Input data, should be 1-D. Masked values are ignored.
|
||||
points : sequence or None, optional
|
||||
Sequence of points where to evaluate Rosenblatt shifted histogram.
|
||||
If None, use the data.
|
||||
|
||||
"""
|
||||
data = ma.array(data, copy=False)
|
||||
if points is None:
|
||||
points = data
|
||||
else:
|
||||
points = np.array(points, copy=False, ndmin=1)
|
||||
|
||||
if data.ndim != 1:
|
||||
raise AttributeError("The input array should be 1D only !")
|
||||
|
||||
n = data.count()
|
||||
r = idealfourths(data, axis=None)
|
||||
h = 1.2 * (r[-1]-r[0]) / n**(1./5)
|
||||
nhi = (data[:,None] <= points[None,:] + h).sum(0)
|
||||
nlo = (data[:,None] < points[None,:] - h).sum(0)
|
||||
return (nhi-nlo) / (2.*n*h)
|
Loading…
Add table
Add a link
Reference in a new issue