Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
273
venv/Lib/site-packages/scipy/stats/contingency.py
Normal file
273
venv/Lib/site-packages/scipy/stats/contingency.py
Normal file
|
@ -0,0 +1,273 @@
|
|||
"""Some functions for working with contingency tables (i.e. cross tabulations).
|
||||
"""
|
||||
|
||||
|
||||
from functools import reduce
|
||||
import numpy as np
|
||||
from .stats import power_divergence
|
||||
|
||||
|
||||
__all__ = ['margins', 'expected_freq', 'chi2_contingency']
|
||||
|
||||
|
||||
def margins(a):
|
||||
"""Return a list of the marginal sums of the array `a`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : ndarray
|
||||
The array for which to compute the marginal sums.
|
||||
|
||||
Returns
|
||||
-------
|
||||
margsums : list of ndarrays
|
||||
A list of length `a.ndim`. `margsums[k]` is the result
|
||||
of summing `a` over all axes except `k`; it has the same
|
||||
number of dimensions as `a`, but the length of each axis
|
||||
except axis `k` will be 1.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> a = np.arange(12).reshape(2, 6)
|
||||
>>> a
|
||||
array([[ 0, 1, 2, 3, 4, 5],
|
||||
[ 6, 7, 8, 9, 10, 11]])
|
||||
>>> from scipy.stats.contingency import margins
|
||||
>>> m0, m1 = margins(a)
|
||||
>>> m0
|
||||
array([[15],
|
||||
[51]])
|
||||
>>> m1
|
||||
array([[ 6, 8, 10, 12, 14, 16]])
|
||||
|
||||
>>> b = np.arange(24).reshape(2,3,4)
|
||||
>>> m0, m1, m2 = margins(b)
|
||||
>>> m0
|
||||
array([[[ 66]],
|
||||
[[210]]])
|
||||
>>> m1
|
||||
array([[[ 60],
|
||||
[ 92],
|
||||
[124]]])
|
||||
>>> m2
|
||||
array([[[60, 66, 72, 78]]])
|
||||
"""
|
||||
margsums = []
|
||||
ranged = list(range(a.ndim))
|
||||
for k in ranged:
|
||||
marg = np.apply_over_axes(np.sum, a, [j for j in ranged if j != k])
|
||||
margsums.append(marg)
|
||||
return margsums
|
||||
|
||||
|
||||
def expected_freq(observed):
|
||||
"""
|
||||
Compute the expected frequencies from a contingency table.
|
||||
|
||||
Given an n-dimensional contingency table of observed frequencies,
|
||||
compute the expected frequencies for the table based on the marginal
|
||||
sums under the assumption that the groups associated with each
|
||||
dimension are independent.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
observed : array_like
|
||||
The table of observed frequencies. (While this function can handle
|
||||
a 1-D array, that case is trivial. Generally `observed` is at
|
||||
least 2-D.)
|
||||
|
||||
Returns
|
||||
-------
|
||||
expected : ndarray of float64
|
||||
The expected frequencies, based on the marginal sums of the table.
|
||||
Same shape as `observed`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> observed = np.array([[10, 10, 20],[20, 20, 20]])
|
||||
>>> from scipy.stats.contingency import expected_freq
|
||||
>>> expected_freq(observed)
|
||||
array([[ 12., 12., 16.],
|
||||
[ 18., 18., 24.]])
|
||||
|
||||
"""
|
||||
# Typically `observed` is an integer array. If `observed` has a large
|
||||
# number of dimensions or holds large values, some of the following
|
||||
# computations may overflow, so we first switch to floating point.
|
||||
observed = np.asarray(observed, dtype=np.float64)
|
||||
|
||||
# Create a list of the marginal sums.
|
||||
margsums = margins(observed)
|
||||
|
||||
# Create the array of expected frequencies. The shapes of the
|
||||
# marginal sums returned by apply_over_axes() are just what we
|
||||
# need for broadcasting in the following product.
|
||||
d = observed.ndim
|
||||
expected = reduce(np.multiply, margsums) / observed.sum() ** (d - 1)
|
||||
return expected
|
||||
|
||||
|
||||
def chi2_contingency(observed, correction=True, lambda_=None):
|
||||
"""Chi-square test of independence of variables in a contingency table.
|
||||
|
||||
This function computes the chi-square statistic and p-value for the
|
||||
hypothesis test of independence of the observed frequencies in the
|
||||
contingency table [1]_ `observed`. The expected frequencies are computed
|
||||
based on the marginal sums under the assumption of independence; see
|
||||
`scipy.stats.contingency.expected_freq`. The number of degrees of
|
||||
freedom is (expressed using numpy functions and attributes)::
|
||||
|
||||
dof = observed.size - sum(observed.shape) + observed.ndim - 1
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
observed : array_like
|
||||
The contingency table. The table contains the observed frequencies
|
||||
(i.e. number of occurrences) in each category. In the two-dimensional
|
||||
case, the table is often described as an "R x C table".
|
||||
correction : bool, optional
|
||||
If True, *and* the degrees of freedom is 1, apply Yates' correction
|
||||
for continuity. The effect of the correction is to adjust each
|
||||
observed value by 0.5 towards the corresponding expected value.
|
||||
lambda_ : float or str, optional.
|
||||
By default, the statistic computed in this test is Pearson's
|
||||
chi-squared statistic [2]_. `lambda_` allows a statistic from the
|
||||
Cressie-Read power divergence family [3]_ to be used instead. See
|
||||
`power_divergence` for details.
|
||||
|
||||
Returns
|
||||
-------
|
||||
chi2 : float
|
||||
The test statistic.
|
||||
p : float
|
||||
The p-value of the test
|
||||
dof : int
|
||||
Degrees of freedom
|
||||
expected : ndarray, same shape as `observed`
|
||||
The expected frequencies, based on the marginal sums of the table.
|
||||
|
||||
See Also
|
||||
--------
|
||||
contingency.expected_freq
|
||||
fisher_exact
|
||||
chisquare
|
||||
power_divergence
|
||||
|
||||
Notes
|
||||
-----
|
||||
An often quoted guideline for the validity of this calculation is that
|
||||
the test should be used only if the observed and expected frequencies
|
||||
in each cell are at least 5.
|
||||
|
||||
This is a test for the independence of different categories of a
|
||||
population. The test is only meaningful when the dimension of
|
||||
`observed` is two or more. Applying the test to a one-dimensional
|
||||
table will always result in `expected` equal to `observed` and a
|
||||
chi-square statistic equal to 0.
|
||||
|
||||
This function does not handle masked arrays, because the calculation
|
||||
does not make sense with missing values.
|
||||
|
||||
Like stats.chisquare, this function computes a chi-square statistic;
|
||||
the convenience this function provides is to figure out the expected
|
||||
frequencies and degrees of freedom from the given contingency table.
|
||||
If these were already known, and if the Yates' correction was not
|
||||
required, one could use stats.chisquare. That is, if one calls::
|
||||
|
||||
chi2, p, dof, ex = chi2_contingency(obs, correction=False)
|
||||
|
||||
then the following is true::
|
||||
|
||||
(chi2, p) == stats.chisquare(obs.ravel(), f_exp=ex.ravel(),
|
||||
ddof=obs.size - 1 - dof)
|
||||
|
||||
The `lambda_` argument was added in version 0.13.0 of scipy.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] "Contingency table",
|
||||
https://en.wikipedia.org/wiki/Contingency_table
|
||||
.. [2] "Pearson's chi-squared test",
|
||||
https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
|
||||
.. [3] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit
|
||||
Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984),
|
||||
pp. 440-464.
|
||||
|
||||
Examples
|
||||
--------
|
||||
A two-way example (2 x 3):
|
||||
|
||||
>>> from scipy.stats import chi2_contingency
|
||||
>>> obs = np.array([[10, 10, 20], [20, 20, 20]])
|
||||
>>> chi2_contingency(obs)
|
||||
(2.7777777777777777,
|
||||
0.24935220877729619,
|
||||
2,
|
||||
array([[ 12., 12., 16.],
|
||||
[ 18., 18., 24.]]))
|
||||
|
||||
Perform the test using the log-likelihood ratio (i.e. the "G-test")
|
||||
instead of Pearson's chi-squared statistic.
|
||||
|
||||
>>> g, p, dof, expctd = chi2_contingency(obs, lambda_="log-likelihood")
|
||||
>>> g, p
|
||||
(2.7688587616781319, 0.25046668010954165)
|
||||
|
||||
A four-way example (2 x 2 x 2 x 2):
|
||||
|
||||
>>> obs = np.array(
|
||||
... [[[[12, 17],
|
||||
... [11, 16]],
|
||||
... [[11, 12],
|
||||
... [15, 16]]],
|
||||
... [[[23, 15],
|
||||
... [30, 22]],
|
||||
... [[14, 17],
|
||||
... [15, 16]]]])
|
||||
>>> chi2_contingency(obs)
|
||||
(8.7584514426741897,
|
||||
0.64417725029295503,
|
||||
11,
|
||||
array([[[[ 14.15462386, 14.15462386],
|
||||
[ 16.49423111, 16.49423111]],
|
||||
[[ 11.2461395 , 11.2461395 ],
|
||||
[ 13.10500554, 13.10500554]]],
|
||||
[[[ 19.5591166 , 19.5591166 ],
|
||||
[ 22.79202844, 22.79202844]],
|
||||
[[ 15.54012004, 15.54012004],
|
||||
[ 18.10873492, 18.10873492]]]]))
|
||||
"""
|
||||
observed = np.asarray(observed)
|
||||
if np.any(observed < 0):
|
||||
raise ValueError("All values in `observed` must be nonnegative.")
|
||||
if observed.size == 0:
|
||||
raise ValueError("No data; `observed` has size 0.")
|
||||
|
||||
expected = expected_freq(observed)
|
||||
if np.any(expected == 0):
|
||||
# Include one of the positions where expected is zero in
|
||||
# the exception message.
|
||||
zeropos = list(zip(*np.nonzero(expected == 0)))[0]
|
||||
raise ValueError("The internally computed table of expected "
|
||||
"frequencies has a zero element at %s." % (zeropos,))
|
||||
|
||||
# The degrees of freedom
|
||||
dof = expected.size - sum(expected.shape) + expected.ndim - 1
|
||||
|
||||
if dof == 0:
|
||||
# Degenerate case; this occurs when `observed` is 1D (or, more
|
||||
# generally, when it has only one nontrivial dimension). In this
|
||||
# case, we also have observed == expected, so chi2 is 0.
|
||||
chi2 = 0.0
|
||||
p = 1.0
|
||||
else:
|
||||
if dof == 1 and correction:
|
||||
# Adjust `observed` according to Yates' correction for continuity.
|
||||
observed = observed + 0.5 * np.sign(expected - observed)
|
||||
|
||||
chi2, p = power_divergence(observed, expected,
|
||||
ddof=observed.size - 1 - dof, axis=None,
|
||||
lambda_=lambda_)
|
||||
|
||||
return chi2, p, dof, expected
|
Loading…
Add table
Add a link
Reference in a new issue