Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
109
venv/Lib/site-packages/scipy/special/tests/test_log_softmax.py
Normal file
109
venv/Lib/site-packages/scipy/special/tests/test_log_softmax.py
Normal file
|
@ -0,0 +1,109 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
|
||||
import pytest
|
||||
|
||||
import scipy.special as sc
|
||||
|
||||
|
||||
@pytest.mark.parametrize('x, expected', [
|
||||
(np.array([1000, 1]), np.array([0, -999])),
|
||||
|
||||
# Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
|
||||
# converted to float.
|
||||
(np.arange(4), np.array([-3.4401896985611953,
|
||||
-2.4401896985611953,
|
||||
-1.4401896985611953,
|
||||
-0.44018969856119533]))
|
||||
])
|
||||
def test_log_softmax(x, expected):
|
||||
assert_allclose(sc.log_softmax(x), expected, rtol=1e-13)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def log_softmax_x():
|
||||
x = np.arange(4)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def log_softmax_expected():
|
||||
# Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
|
||||
# converted to float.
|
||||
expected = np.array([-3.4401896985611953,
|
||||
-2.4401896985611953,
|
||||
-1.4401896985611953,
|
||||
-0.44018969856119533])
|
||||
return expected
|
||||
|
||||
|
||||
def test_log_softmax_translation(log_softmax_x, log_softmax_expected):
|
||||
# Translation property. If all the values are changed by the same amount,
|
||||
# the softmax result does not change.
|
||||
x = log_softmax_x + 100
|
||||
expected = log_softmax_expected
|
||||
assert_allclose(sc.log_softmax(x), expected, rtol=1e-13)
|
||||
|
||||
|
||||
def test_log_softmax_noneaxis(log_softmax_x, log_softmax_expected):
|
||||
# When axis=None, softmax operates on the entire array, and preserves
|
||||
# the shape.
|
||||
x = log_softmax_x.reshape(2, 2)
|
||||
expected = log_softmax_expected.reshape(2, 2)
|
||||
assert_allclose(sc.log_softmax(x), expected, rtol=1e-13)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('axis_2d, expected_2d', [
|
||||
(0, np.log(0.5) * np.ones((2, 2))),
|
||||
(1, np.array([[0, -999], [0, -999]]))
|
||||
])
|
||||
def test_axes(axis_2d, expected_2d):
|
||||
assert_allclose(
|
||||
sc.log_softmax([[1000, 1], [1000, 1]], axis=axis_2d),
|
||||
expected_2d,
|
||||
rtol=1e-13,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def log_softmax_2d_x():
|
||||
x = np.arange(8).reshape(2, 4)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def log_softmax_2d_expected():
|
||||
# Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
|
||||
# converted to float.
|
||||
expected = np.array([[-3.4401896985611953,
|
||||
-2.4401896985611953,
|
||||
-1.4401896985611953,
|
||||
-0.44018969856119533],
|
||||
[-3.4401896985611953,
|
||||
-2.4401896985611953,
|
||||
-1.4401896985611953,
|
||||
-0.44018969856119533]])
|
||||
return expected
|
||||
|
||||
|
||||
def test_log_softmax_2d_axis1(log_softmax_2d_x, log_softmax_2d_expected):
|
||||
x = log_softmax_2d_x
|
||||
expected = log_softmax_2d_expected
|
||||
assert_allclose(sc.log_softmax(x, axis=1), expected, rtol=1e-13)
|
||||
|
||||
|
||||
def test_log_softmax_2d_axis0(log_softmax_2d_x, log_softmax_2d_expected):
|
||||
x = log_softmax_2d_x.T
|
||||
expected = log_softmax_2d_expected.T
|
||||
assert_allclose(sc.log_softmax(x, axis=0), expected, rtol=1e-13)
|
||||
|
||||
|
||||
def test_log_softmax_3d(log_softmax_2d_x, log_softmax_2d_expected):
|
||||
# 3-d input, with a tuple for the axis.
|
||||
x_3d = log_softmax_2d_x.reshape(2, 2, 2)
|
||||
expected_3d = log_softmax_2d_expected.reshape(2, 2, 2)
|
||||
assert_allclose(sc.log_softmax(x_3d, axis=(1, 2)), expected_3d, rtol=1e-13)
|
||||
|
||||
|
||||
def test_log_softmax_scalar():
|
||||
assert_allclose(sc.log_softmax(1.0), 0.0, rtol=1e-13)
|
Loading…
Add table
Add a link
Reference in a new issue