Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
0
venv/Lib/site-packages/scipy/special/tests/__init__.py
Normal file
0
venv/Lib/site-packages/scipy/special/tests/__init__.py
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
578
venv/Lib/site-packages/scipy/special/tests/data/README
Normal file
578
venv/Lib/site-packages/scipy/special/tests/data/README
Normal file
|
@ -0,0 +1,578 @@
|
|||
This directory contains numerical data for testing special functions.
|
||||
The data is in version control as text files.
|
||||
|
||||
The data is automatically packed into npz files by setup.py.
|
||||
The npz files should not be checked in version control.
|
||||
|
||||
The data in gsl is computed using the GNU scientific library, the data
|
||||
in local is computed using mpmath, and the data in boost is a copy of
|
||||
data distributed with the boost library and comes with the following
|
||||
license:
|
||||
|
||||
Boost Software License - Version 1.0 - August 17th, 2003
|
||||
|
||||
Permission is hereby granted, free of charge, to any person or organization
|
||||
obtaining a copy of the software and accompanying documentation covered by
|
||||
this license (the "Software") to use, reproduce, display, distribute,
|
||||
execute, and transmit the Software, and to prepare derivative works of the
|
||||
Software, and to permit third-parties to whom the Software is furnished to
|
||||
do so, all subject to the following:
|
||||
|
||||
The copyright notices in the Software and this entire statement, including
|
||||
the above license grant, this restriction and the following disclaimer,
|
||||
must be included in all copies of the Software, in whole or in part, and
|
||||
all derivative works of the Software, unless such copies or derivative
|
||||
works are solely in the form of machine-executable object code generated by
|
||||
a source language processor.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
||||
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
||||
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
||||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
||||
|
||||
=========
|
||||
|
||||
Copyright holders of each file are listed here:
|
||||
|
||||
Jamfile.v2:# Copyright Daryle Walker, Hubert Holin, John Maddock 2006 - 2007
|
||||
acosh_data.ipp:// Copyright John Maddock 2008.
|
||||
acosh_test.hpp:// (C) Copyright Hubert Holin 2003.
|
||||
almost_equal.ipp:// Copyright (c) 2006 Johan Rade
|
||||
asinh_data.ipp:// Copyright John Maddock 2008.
|
||||
asinh_test.hpp:// (C) Copyright Hubert Holin 2003.
|
||||
assoc_legendre_p.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
atanh_data.ipp:// Copyright John Maddock 2008.
|
||||
atanh_test.hpp:// (C) Copyright Hubert Holin 2003.
|
||||
bessel_i_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
bessel_i_int_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
bessel_j_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
bessel_j_int_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
bessel_j_large_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
bessel_k_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
bessel_k_int_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
bessel_y01_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
bessel_yn_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
bessel_yv_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
beta_exp_data.ipp:// (C) Copyright John Maddock 2006.
|
||||
beta_med_data.ipp:// (C) Copyright John Maddock 2006.
|
||||
beta_small_data.ipp:// (C) Copyright John Maddock 2006.
|
||||
binomial_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
binomial_large_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
binomial_quantile.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
cbrt_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
common_factor_test.cpp:// (C) Copyright Daryle Walker 2001, 2006.
|
||||
compile_test/tools_rational_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tools_real_cast_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tools_remez_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_chi_squared_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_complement_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_sign_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_digamma_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_trunc_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/constants_incl_test.cpp:// Copyright John Maddock 2012.
|
||||
compile_test/sf_sinc_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_binomial_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_binomial_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tools_test_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_normal_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_sinhc_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_ellint_rc_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_sin_pi_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_sph_harm_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_poisson_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/test_traits.cpp:// Copyright John Maddock 2007.
|
||||
compile_test/dist_gamma_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_cos_pi_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_logistic_incl_test.cpp:// Copyright John Maddock 2008.
|
||||
compile_test/sf_fpclassify_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/compl_atanh_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tools_precision_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_hankel_incl_test.cpp:// Copyright John Maddock 2012.
|
||||
compile_test/sf_cbrt_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_nc_beta_incl_test.cpp:// Copyright John Maddock 2008.
|
||||
compile_test/sf_legendre_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tools_stats_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tools_polynomial_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tools_config_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_exponential_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_students_t_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_inv_gamma_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/compl_acosh_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_beta_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_fisher_f_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_triangular_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/instantiate.hpp:// Copyright John Maddock 2006.
|
||||
compile_test/instantiate.hpp:// Copyright Paul A. Bristow 2007, 2010.
|
||||
compile_test/tools_solve_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_next_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/generate.sh:// Copyright John Maddock 2006.
|
||||
compile_test/generate.sh:// Copyright John Maddock 2006.
|
||||
compile_test/generate.sh:// Copyright John Maddock 2006.
|
||||
compile_test/distribution_concept_check.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_laguerre_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tr1_incl_test.cpp:// Copyright John Maddock 2008.
|
||||
compile_test/sf_ellint_rj_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_nc_chi_squ_incl_test.cpp:// Copyright John Maddock 2008.
|
||||
compile_test/dist_skew_norm_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_modf_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_find_location_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/compl_acos_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_ellint_rd_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tools_roots_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tools_test_data_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/compl_abs_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_nc_t_incl_test.cpp:// Copyright John Maddock 2008.
|
||||
compile_test/sf_factorials_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_gamma_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/compl_atan_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_powm1_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_hypot_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_pareto_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_round_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_weibull_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/std_real_concept_check.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_hypergeo_incl_test.cpp:// Copyright John Maddock 2008.
|
||||
compile_test/dist_inv_chi_sq_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_sqrt1pm1_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_log1p_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_jacobi_incl_test.cpp:// Copyright John Maddock 2012.
|
||||
compile_test/dist_neg_binom_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_nc_f_incl_test.cpp:// Copyright John Maddock 2008.
|
||||
compile_test/dist_find_scale_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_bessel_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tools_minima_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/compl_asin_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_extreme_val_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_lanczos_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_uniform_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/test_compile_result.hpp:// Copyright John Maddock 2007.
|
||||
compile_test/tools_series_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_ellint_3_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_ellint_rf_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_ellint_2_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_hermite_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/poison.hpp:// Copyright John Maddock 2013.
|
||||
compile_test/sf_zeta_incl_test.cpp:// Copyright John Maddock 2007.
|
||||
compile_test/dist_laplace_incl_test.cpp:// Copyright John Maddock 2008.
|
||||
compile_test/sf_expint_incl_test.cpp:// Copyright John Maddock 2007.
|
||||
compile_test/sf_expm1_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_bernoulli_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/compl_asinh_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_beta_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/tools_fraction_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_owens_t_incl_test.cpp:// Copyright John Maddock 2012.
|
||||
compile_test/tools_toms748_inc_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_ellint_1_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_erf_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/main.cpp:// Copyright John Maddock 2009.
|
||||
compile_test/sf_math_fwd_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/sf_airy_incl_test.cpp:// Copyright John Maddock 2012.
|
||||
compile_test/dist_lognormal_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
compile_test/dist_cauchy_incl_test.cpp:// Copyright John Maddock 2006.
|
||||
complex_test.cpp:// (C) Copyright John Maddock 2005.
|
||||
digamma_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
digamma_neg_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
digamma_root_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
digamma_small_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
e_float_concept_check.cpp:// Copyright John Maddock 2011.
|
||||
ellint_e2_data.ipp:// Copyright (c) 2006 John Maddock
|
||||
ellint_e_data.ipp:// Copyright (c) 2006 John Maddock
|
||||
ellint_f_data.ipp:// Copyright (c) 2006 John Maddock
|
||||
ellint_k_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
ellint_pi2_data.ipp:// Copyright (c) 2006 John Maddock
|
||||
ellint_pi3_data.ipp:// Copyright (c) 2006 John Maddock
|
||||
ellint_pi3_large_data.ipp:// Copyright (c) 2006 John Maddock
|
||||
ellint_rc_data.ipp:// Copyright (c) 2006 John Maddock
|
||||
ellint_rd_data.ipp:// Copyright (c) 2006 John Maddock
|
||||
ellint_rf_data.ipp:// Copyright (c) 2006 John Maddock
|
||||
ellint_rj_data.ipp:// Copyright (c) 2006 John Maddock
|
||||
erf_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
erf_inv_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
erf_large_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
erf_small_data.ipp:// (C) Copyright John Maddock 2006.
|
||||
erfc_inv_big_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
erfc_inv_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
expint_1_data.ipp:// Copyright John Maddock 2008.
|
||||
expint_data.ipp:// Copyright John Maddock 2008.
|
||||
expint_small_data.ipp:// Copyright John Maddock 2008.
|
||||
expinti_data.ipp:// Copyright John Maddock 2008.
|
||||
expinti_data_double.ipp:// Copyright John Maddock 2008.
|
||||
expinti_data_long.ipp:// Copyright John Maddock 2008.
|
||||
functor.hpp:// (C) Copyright John Maddock 2007.
|
||||
gamma_inv_big_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
gamma_inv_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
gamma_inv_small_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
handle_test_result.hpp:// (C) Copyright John Maddock 2006-7.
|
||||
hermite.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
hypergeometric_dist_data2.ipp:// Copyright John Maddock 2008
|
||||
hypergeometric_test_data.ipp:// Copyright Gautam Sewani 2008
|
||||
hypot_test.cpp:// (C) Copyright John Maddock 2005.
|
||||
ibeta_data.ipp:// (C) Copyright John Maddock 2006.
|
||||
ibeta_int_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
ibeta_inv_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
ibeta_inva_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
ibeta_large_data.ipp:// (C) Copyright John Maddock 2006.
|
||||
ibeta_small_data.ipp:// (C) Copyright John Maddock 2006.
|
||||
igamma_big_data.ipp:// (C) Copyright John Maddock 2006.
|
||||
igamma_int_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
igamma_inva_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
igamma_med_data.ipp:// (C) Copyright John Maddock 2006.
|
||||
igamma_small_data.ipp:// (C) Copyright John Maddock 2006.
|
||||
jacobi_elliptic.ipp:// Copyright John Maddock 2012.
|
||||
jacobi_elliptic_small.ipp:// Copyright John Maddock 2012.
|
||||
jacobi_large_phi.ipp:// Copyright John Maddock 2012.
|
||||
jacobi_near_1.ipp:// Copyright John Maddock 2012.
|
||||
laguerre2.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
laguerre3.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
legendre_p.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
legendre_p_large.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
log1p_expm1_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
log1p_expm1_test.cpp:// Copyright John Maddock 2005.
|
||||
log1p_expm1_test.cpp:// Copyright Paul A. Bristow 2010
|
||||
log1p_expm1_test.hpp:// Copyright John Maddock 2005.
|
||||
log1p_expm1_test.hpp:// Copyright Paul A. Bristow 2010
|
||||
mpfr_concept_check.cpp:// Copyright John Maddock 2007-8.
|
||||
mpreal_concept_check.cpp:// Copyright John Maddock 2007-8.
|
||||
multiprc_concept_check_1.cpp:// Copyright John Maddock 2013.
|
||||
multiprc_concept_check_2.cpp:// Copyright John Maddock 2013.
|
||||
multiprc_concept_check_3.cpp:// Copyright John Maddock 2013.
|
||||
multiprc_concept_check_4.cpp:// Copyright John Maddock 2013.
|
||||
ncbeta.ipp:// Copyright John Maddock 2008.
|
||||
ncbeta_big.ipp:// Copyright John Maddock 2008.
|
||||
nccs.ipp:// Copyright John Maddock 2008.
|
||||
nccs_big.ipp:// Copyright John Maddock 2008.
|
||||
nct.ipp:// Copyright John Maddock 2008.
|
||||
nct_asym.ipp:// Copyright John Maddock 2012.
|
||||
nct_small_delta.ipp:// Copyright John Maddock 2012.
|
||||
negative_binomial_quantile.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
ntl_concept_check.cpp:// Copyright John Maddock 2007-8.
|
||||
ntl_concept_check.cpp:// Copyright Paul A. Bristow 2009, 2011
|
||||
owens_t.ipp:// Copyright John Maddock 2012.
|
||||
owens_t_T7.hpp:// Copyright (C) Benjamin Sobotta 2012
|
||||
owens_t_large_data.ipp:// Copyright John Maddock 2012.
|
||||
pch.hpp:// Copyright John Maddock 2008.
|
||||
pch_light.hpp:// Copyright John Maddock 2008.
|
||||
poisson_quantile.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
pow_test.cpp:// (C) Copyright Bruno Lalande 2008.
|
||||
powm1_sqrtp1m1_test.cpp:// (C) Copyright John Maddock 2006.
|
||||
powm1_sqrtp1m1_test.hpp:// Copyright John Maddock 2006.
|
||||
s_.ipp:// Copyright (c) 2006 Johan Rade
|
||||
s_.ipp:// Copyright (c) 2012 Paul A. Bristow
|
||||
sinc_test.hpp:// (C) Copyright Hubert Holin 2003.
|
||||
sinhc_test.hpp:// (C) Copyright Hubert Holin 2003.
|
||||
special_functions_test.cpp:// (C) Copyright Hubert Holin 2003.
|
||||
special_functions_test.cpp: BOOST_TEST_MESSAGE("(C) Copyright Hubert Holin 2003-2005.");
|
||||
sph_bessel_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
sph_neumann_data.ipp:// Copyright (c) 2007 John Maddock
|
||||
spherical_harmonic.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
std_real_concept_check.cpp:// Copyright John Maddock 2006.
|
||||
table_type.hpp:// Copyright John Maddock 2012.
|
||||
test_airy.cpp:// Copyright John Maddock 2012
|
||||
test_archive.cpp:// Copyright (c) 2006 Johan Rade
|
||||
test_archive.cpp:// Copyright (c) 2011 Paul A. Bristow - filename changes for boost-trunk.
|
||||
test_basic_nonfinite.cpp:// Copyright (c) 2006 Johan Rade
|
||||
test_basic_nonfinite.cpp:// Copyright (c) 2011 Paul A. Bristow comments
|
||||
test_basic_nonfinite.cpp:// Copyright (c) 2011 John Maddock
|
||||
test_bernoulli.cpp:// Copyright John Maddock 2006.
|
||||
test_bernoulli.cpp:// Copyright Paul A. Bristow 2007, 2012.
|
||||
test_bessel_airy_zeros.cpp:// Copyright John Maddock 2013
|
||||
test_bessel_airy_zeros.cpp:// Copyright Christopher Kormanyos 2013.
|
||||
test_bessel_airy_zeros.cpp:// Copyright Paul A. Bristow 2013.
|
||||
test_bessel_hooks.hpp:// (C) Copyright John Maddock 2007.
|
||||
test_bessel_i.cpp:// (C) Copyright John Maddock 2007.
|
||||
test_bessel_i.hpp:// (C) Copyright John Maddock 2007.
|
||||
test_bessel_j.cpp:// (C) Copyright John Maddock 2007.
|
||||
test_bessel_j.hpp:// (C) Copyright John Maddock 2007.
|
||||
test_bessel_k.cpp:// Copyright John Maddock 2006, 2007
|
||||
test_bessel_k.cpp:// Copyright Paul A. Bristow 2007
|
||||
test_bessel_k.hpp:// (C) Copyright John Maddock 2007.
|
||||
test_bessel_y.cpp:// (C) Copyright John Maddock 2007.
|
||||
test_bessel_y.hpp:// (C) Copyright John Maddock 2007.
|
||||
test_beta.cpp:// Copyright John Maddock 2006.
|
||||
test_beta.cpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_beta.hpp:// Copyright John Maddock 2006.
|
||||
test_beta.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_beta_dist.cpp:// Copyright John Maddock 2006.
|
||||
test_beta_dist.cpp:// Copyright Paul A. Bristow 2007, 2009, 2010, 2012.
|
||||
test_beta_hooks.hpp:// (C) Copyright John Maddock 2006.
|
||||
test_binomial.cpp:// Copyright John Maddock 2006.
|
||||
test_binomial.cpp:// Copyright Paul A. Bristow 2007.
|
||||
test_binomial_coeff.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_binomial_coeff.hpp:// Copyright John Maddock 2006.
|
||||
test_binomial_coeff.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_carlson.cpp:// Copyright 2006 John Maddock
|
||||
test_carlson.cpp:// Copyright Paul A. Bristow 2007.
|
||||
test_carlson.hpp:// Copyright John Maddock 2006.
|
||||
test_carlson.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_cauchy.cpp:// Copyright John Maddock 2006, 2007.
|
||||
test_cauchy.cpp:// Copyright Paul A. Bristow 2007
|
||||
test_cbrt.cpp:// Copyright John Maddock 2006.
|
||||
test_cbrt.cpp:// Copyright Paul A. Bristow 2010
|
||||
test_cbrt.hpp:// Copyright John Maddock 2006.
|
||||
test_cbrt.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_chi_squared.cpp:// Copyright Paul A. Bristow 2006.
|
||||
test_chi_squared.cpp:// Copyright John Maddock 2007.
|
||||
test_classify.cpp:// Copyright John Maddock 2006.
|
||||
test_classify.cpp:// Copyright Paul A. Bristow 2007
|
||||
test_common_factor_gmpxx.cpp:// (C) Copyright John Maddock 2010.
|
||||
test_constant_generate.cpp:// Copyright John Maddock 2010.
|
||||
test_constants.cpp:// Copyright Paul Bristow 2007, 2011.
|
||||
test_constants.cpp:// Copyright John Maddock 2006, 2011.
|
||||
test_digamma.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_digamma.hpp:// Copyright John Maddock 2006.
|
||||
test_digamma.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_dist_overloads.cpp:// Copyright John Maddock 2006.
|
||||
test_dist_overloads.cpp:// Copyright Paul A. Bristow 2007.
|
||||
test_ellint_1.cpp:// Copyright Xiaogang Zhang 2006
|
||||
test_ellint_1.cpp:// Copyright John Maddock 2006, 2007
|
||||
test_ellint_1.cpp:// Copyright Paul A. Bristow 2007
|
||||
test_ellint_1.hpp:// Copyright John Maddock 2006.
|
||||
test_ellint_1.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_ellint_2.cpp:// Copyright Xiaogang Zhang 2006
|
||||
test_ellint_2.cpp:// Copyright John Maddock 2006, 2007
|
||||
test_ellint_2.cpp:// Copyright Paul A. Bristow 2007
|
||||
test_ellint_2.hpp:// Copyright John Maddock 2006.
|
||||
test_ellint_2.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_ellint_3.cpp:// Copyright Xiaogang Zhang 2006
|
||||
test_ellint_3.cpp:// Copyright John Maddock 2006, 2007
|
||||
test_ellint_3.cpp:// Copyright Paul A. Bristow 2007
|
||||
test_ellint_3.hpp:// Copyright John Maddock 2006.
|
||||
test_ellint_3.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_erf.cpp:// Copyright John Maddock 2006.
|
||||
test_erf.cpp:// Copyright Paul A. Bristow 2007
|
||||
test_erf.hpp:// Copyright John Maddock 2006.
|
||||
test_erf.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_erf_hooks.hpp:// (C) Copyright John Maddock 2006.
|
||||
test_error_handling.cpp:// Copyright Paul A. Bristow 2006-7.
|
||||
test_error_handling.cpp:// Copyright John Maddock 2006-7.
|
||||
test_expint.cpp:// (C) Copyright John Maddock 2007.
|
||||
test_expint.hpp:// Copyright John Maddock 2006.
|
||||
test_expint.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_expint_hooks.hpp:// (C) Copyright John Maddock 2006.
|
||||
test_exponential_dist.cpp:// Copyright John Maddock 2006.
|
||||
test_exponential_dist.cpp:// Copyright Paul A. Bristow 2007.
|
||||
test_extreme_value.cpp:// Copyright John Maddock 2006.
|
||||
test_factorials.cpp:// Copyright John Maddock 2006.
|
||||
test_find_location.cpp:// Copyright John Maddock 2007.
|
||||
test_find_location.cpp:// Copyright Paul A. Bristow 2007.
|
||||
test_find_scale.cpp:// Copyright John Maddock 2007.
|
||||
test_find_scale.cpp:// Copyright Paul A. Bristow 2007.
|
||||
test_fisher_f.cpp:// Copyright Paul A. Bristow 2006.
|
||||
test_fisher_f.cpp:// Copyright John Maddock 2007.
|
||||
test_fisher_f.cpp: // Distcalc version 1.2 Copyright 2002 H Lohninger, TU Wein
|
||||
test_gamma.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_gamma.hpp:// Copyright John Maddock 2006.
|
||||
test_gamma.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_gamma_data.ipp:// (C) Copyright John Maddock 2006.
|
||||
test_gamma_dist.cpp:// Copyright John Maddock 2006.
|
||||
test_gamma_dist.cpp:// Copyright Paul A. Bristow 2007, 2010.
|
||||
test_gamma_hooks.hpp:// (C) Copyright John Maddock 2006.
|
||||
test_geometric.cpp:// Copyright Paul A. Bristow 2010.
|
||||
test_geometric.cpp:// Copyright John Maddock 2010.
|
||||
test_hankel.cpp:// Copyright John Maddock 2012
|
||||
test_hermite.cpp:// Copyright John Maddock 2006, 2007
|
||||
test_hermite.cpp:// Copyright Paul A. Bristow 2007
|
||||
test_hermite.hpp:// Copyright John Maddock 2006.
|
||||
test_hermite.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_hypergeometric_dist.cpp:// Copyright John Maddock 2008
|
||||
test_hypergeometric_dist.cpp:// Copyright Paul A. Bristow
|
||||
test_hypergeometric_dist.cpp:// Copyright Gautam Sewani
|
||||
test_ibeta.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_ibeta.hpp:// Copyright John Maddock 2006.
|
||||
test_ibeta.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_ibeta_inv.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_ibeta_inv.hpp:// Copyright John Maddock 2006.
|
||||
test_ibeta_inv.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_ibeta_inv_ab.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_ibeta_inv_ab.hpp:// Copyright John Maddock 2006.
|
||||
test_ibeta_inv_ab.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_igamma.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_igamma.hpp:// Copyright John Maddock 2006.
|
||||
test_igamma.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_igamma_inv.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_igamma_inv.hpp:// Copyright John Maddock 2006.
|
||||
test_igamma_inv.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_igamma_inva.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_igamma_inva.hpp:// Copyright John Maddock 2006.
|
||||
test_igamma_inva.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_instances/double_test_instances_4.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/ldouble_test_instances_4.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/float_test_instances_8.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/double_test_instances_9.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/Jamfile.v2:# Copyright ohn Maddock 2012
|
||||
test_instances/real_concept_test_instances_5.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/ldouble_test_instances_6.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/real_concept_test_instances_4.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/double_test_instances_7.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/real_concept_test_instances_2.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/double_test_instances_5.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/ldouble_test_instances_9.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/real_concept_test_instances_1.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/float_test_instances_6.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/real_concept_test_instances_6.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/ldouble_test_instances_7.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/real_concept_test_instances_7.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/float_test_instances_3.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/double_test_instances_6.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/real_concept_test_instances_9.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/double_test_instances_2.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/pch.hpp:// Copyright John Maddock 2012.
|
||||
test_instances/ldouble_test_instances_2.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/long_double_test_instances_1.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/float_test_instances_7.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/test_instances.hpp:// Copyright John Maddock 2011.
|
||||
test_instances/double_test_instances_10.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/double_test_instances_3.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/ldouble_test_instances_3.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/real_concept_test_instances_10.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/float_test_instances_5.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/real_concept_test_instances_8.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/ldouble_test_instances_8.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/double_test_instances_1.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/float_test_instances_10.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/ldouble_test_instances_10.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/float_test_instances_9.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/float_test_instances_4.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/real_concept_test_instances_3.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/float_test_instances_2.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/float_test_instances_1.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/double_test_instances_8.cpp:// Copyright John Maddock 2011.
|
||||
test_instances/ldouble_test_instances_5.cpp:// Copyright John Maddock 2011.
|
||||
test_instantiate1.cpp:// Copyright John Maddock 2006.
|
||||
test_instantiate2.cpp:// Copyright John Maddock 2006.
|
||||
test_inv_hyp.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_inverse_chi_squared.cpp:// Copyright Paul A. Bristow 2010.
|
||||
test_inverse_chi_squared.cpp:// Copyright John Maddock 2010.
|
||||
test_inverse_chi_squared_distribution.cpp:// Copyright Paul A. Bristow 2010.
|
||||
test_inverse_chi_squared_distribution.cpp:// Copyright John Maddock 2010.
|
||||
test_inverse_gamma_distribution.cpp:// Copyright Paul A. Bristow 2010.
|
||||
test_inverse_gamma_distribution.cpp:// Copyright John Maddock 2010.
|
||||
test_inverse_gaussian.cpp:// Copyright Paul A. Bristow 2010.
|
||||
test_inverse_gaussian.cpp:// Copyright John Maddock 2010.
|
||||
test_jacobi.cpp:// Copyright John Maddock 2012
|
||||
test_jacobi.hpp:// Copyright John Maddock 2006.
|
||||
test_jacobi.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_laguerre.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_laguerre.hpp:// Copyright John Maddock 2006.
|
||||
test_laguerre.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_laplace.cpp:// Copyright Thijs van den Berg, 2008.
|
||||
test_laplace.cpp:// Copyright John Maddock 2008.
|
||||
test_laplace.cpp:// Copyright Paul A. Bristow 2008, 2009.
|
||||
test_ldouble_simple.cpp:// Copyright John Maddock 2013.
|
||||
test_legacy_nonfinite.cpp:// Copyright (c) 2006 Johan Rade
|
||||
test_legacy_nonfinite.cpp:// Copyright (c) 2011 Paul A. Bristow comments
|
||||
test_legendre.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_legendre.hpp:// Copyright John Maddock 2006.
|
||||
test_legendre.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_legendre_hooks.hpp:// (C) Copyright John Maddock 2006.
|
||||
test_lexical_cast.cpp:// Copyright (c) 2006 Johan Rade
|
||||
test_lexical_cast.cpp:// Copyright (c) 2011 Paul A. Bristow incorporated Boost.Math
|
||||
test_logistic_dist.cpp:// Copyright 2008 Gautam Sewani
|
||||
test_lognormal.cpp:// Copyright John Maddock 2006.
|
||||
test_lognormal.cpp:// Copyright Paul A. Bristow 2007
|
||||
test_long_double_support.cpp:// Copyright John Maddock 2009
|
||||
test_math_fwd.cpp:// Copyright John Maddock 2010.
|
||||
test_math_fwd.cpp:// Copyright Paul A. Bristow 2010.
|
||||
test_minima.cpp:// Copyright John Maddock 2006.
|
||||
test_minima.cpp:// Copyright Paul A. Bristow 2007.
|
||||
test_nc_beta.cpp:// Copyright John Maddock 2008.
|
||||
test_nc_chi_squared.cpp:// Copyright John Maddock 2008.
|
||||
test_nc_f.cpp:// Copyright John Maddock 2008.
|
||||
test_nc_t.cpp:// Copyright John Maddock 2008, 2012.
|
||||
test_nc_t.cpp:// Copyright Paul A. Bristow 2012.
|
||||
test_ncbeta_hooks.hpp:// (C) Copyright John Maddock 2008.
|
||||
test_nccs_hooks.hpp:// (C) Copyright John Maddock 2008.
|
||||
test_negative_binomial.cpp:// Copyright Paul A. Bristow 2007.
|
||||
test_negative_binomial.cpp:// Copyright John Maddock 2006.
|
||||
test_next.cpp:// (C) Copyright John Maddock 2008.
|
||||
test_nonfinite_io.cpp:// Copyright 2011 Paul A. Bristow
|
||||
test_nonfinite_trap.cpp:// Copyright (c) 2006 Johan Rade
|
||||
test_nonfinite_trap.cpp:// Copyright (c) 2011 Paul A. Bristow To incorporate into Boost.Math
|
||||
test_normal.cpp:// Copyright Paul A. Bristow 2010.
|
||||
test_normal.cpp:// Copyright John Maddock 2007.
|
||||
test_out_of_range.hpp:// Copyright John Maddock 2012.
|
||||
test_owens_t.cpp:// Copyright Paul A. Bristow 2012.
|
||||
test_owens_t.cpp:// Copyright Benjamin Sobotta 2012.
|
||||
test_pareto.cpp:// Copyright Paul A. Bristow 2007, 2009.
|
||||
test_pareto.cpp:// Copyright John Maddock 2006.
|
||||
test_poisson.cpp:// Copyright Paul A. Bristow 2007.
|
||||
test_poisson.cpp:// Copyright John Maddock 2006.
|
||||
test_policy.cpp:// Copyright John Maddock 2007.
|
||||
test_policy_2.cpp:// Copyright John Maddock 2007.
|
||||
test_policy_3.cpp:// Copyright John Maddock 2007.
|
||||
test_policy_4.cpp:// Copyright John Maddock 2007.
|
||||
test_policy_5.cpp:// Copyright John Maddock 2007.
|
||||
test_policy_6.cpp:// Copyright John Maddock 2007.
|
||||
test_policy_7.cpp:// Copyright John Maddock 2007.
|
||||
test_policy_8.cpp:// Copyright John Maddock 2007.
|
||||
test_policy_sf.cpp:// (C) Copyright John Maddock 2007.
|
||||
test_print_info_on_type.cpp:// Copyright John Maddock 2010.
|
||||
test_rational_instances/test_rational_ldouble2.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_float2.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_double2.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_double3.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_ldouble1.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_float4.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_double5.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_double4.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_real_concept1.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_real_concept3.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational.hpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_ldouble3.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_float3.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_real_concept5.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_ldouble5.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_ldouble4.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_double1.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_real_concept4.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_real_concept2.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rational_instances/test_rational_float1.cpp:// (C) Copyright John Maddock 2006-7.
|
||||
test_rationals.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_rayleigh.cpp:// Copyright John Maddock 2006.
|
||||
test_real_concept.cpp:// Copyright John Maddock 2010
|
||||
test_real_concept_neg_bin.cpp:// Copyright Paul A. Bristow 2010.
|
||||
test_real_concept_neg_bin.cpp:// Copyright John Maddock 2010.
|
||||
test_remez.cpp:// Copyright John Maddock 2006
|
||||
test_remez.cpp:// Copyright Paul A. Bristow 2007
|
||||
test_roots.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_round.cpp:// (C) Copyright John Maddock 2007.
|
||||
test_sign.cpp:#define BOOST_TEST_MAIN// Copyright John Maddock 2008
|
||||
test_sign.cpp:// (C) Copyright Paul A. Bristow 2011 (added tests for changesign)
|
||||
test_signed_zero.cpp:// Copyright 2006 Johan Rade
|
||||
test_signed_zero.cpp:// Copyright 2011 Paul A. Bristow To incorporate into Boost.Math
|
||||
test_signed_zero.cpp:// Copyright 2012 Paul A. Bristow with new tests.
|
||||
test_skew_normal.cpp:// Copyright Paul A. Bristow 2012.
|
||||
test_skew_normal.cpp:// Copyright John Maddock 2012.
|
||||
test_skew_normal.cpp:// Copyright Benjamin Sobotta 2012
|
||||
test_spherical_harmonic.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_students_t.cpp:// Copyright Paul A. Bristow 2006.
|
||||
test_students_t.cpp:// Copyright John Maddock 2006.
|
||||
test_tgamma_ratio.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_tgamma_ratio.hpp:// Copyright John Maddock 2006.
|
||||
test_tgamma_ratio.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_toms748_solve.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_tr1.c:/* (C) Copyright John Maddock 2008.
|
||||
test_tr1.cpp:// (C) Copyright John Maddock 2008.
|
||||
test_triangular.cpp:// Copyright Paul Bristow 2006, 2007.
|
||||
test_triangular.cpp:// Copyright John Maddock 2006, 2007.
|
||||
test_uniform.cpp:// Copyright Paul Bristow 2007.
|
||||
test_uniform.cpp:// Copyright John Maddock 2006.
|
||||
test_weibull.cpp:// Copyright John Maddock 2006, 2012.
|
||||
test_weibull.cpp:// Copyright Paul A. Bristow 2007, 2012.
|
||||
test_zeta.cpp:// (C) Copyright John Maddock 2006.
|
||||
test_zeta.hpp:// Copyright John Maddock 2006.
|
||||
test_zeta.hpp:// Copyright Paul A. Bristow 2007, 2009
|
||||
test_zeta_hooks.hpp:// (C) Copyright John Maddock 2006.
|
||||
tgamma_delta_ratio_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
tgamma_delta_ratio_int.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
tgamma_delta_ratio_int2.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
tgamma_ratio_data.ipp:// (C) Copyright John Maddock 2006-7.
|
||||
zeta_1_below_data.ipp:// Copyright John Maddock 2008.
|
||||
zeta_1_up_data.ipp:// Copyright John Maddock 2008.
|
||||
zeta_data.ipp:// Copyright John Maddock 2008.
|
||||
zeta_neg_data.ipp:// Copyright John Maddock 2008.
|
||||
ztest_max_digits10.cpp: // Copyright 2010 Paul A. Bristow
|
||||
zztest_max_digits10.cpp:// Copyright 2010 Paul A. Bristow
|
BIN
venv/Lib/site-packages/scipy/special/tests/data/boost.npz
Normal file
BIN
venv/Lib/site-packages/scipy/special/tests/data/boost.npz
Normal file
Binary file not shown.
BIN
venv/Lib/site-packages/scipy/special/tests/data/gsl.npz
Normal file
BIN
venv/Lib/site-packages/scipy/special/tests/data/gsl.npz
Normal file
Binary file not shown.
BIN
venv/Lib/site-packages/scipy/special/tests/data/local.npz
Normal file
BIN
venv/Lib/site-packages/scipy/special/tests/data/local.npz
Normal file
Binary file not shown.
3391
venv/Lib/site-packages/scipy/special/tests/test_basic.py
Normal file
3391
venv/Lib/site-packages/scipy/special/tests/test_basic.py
Normal file
File diff suppressed because it is too large
Load diff
112
venv/Lib/site-packages/scipy/special/tests/test_bdtr.py
Normal file
112
venv/Lib/site-packages/scipy/special/tests/test_bdtr.py
Normal file
|
@ -0,0 +1,112 @@
|
|||
import numpy as np
|
||||
import scipy.special as sc
|
||||
import pytest
|
||||
from numpy.testing import assert_allclose, assert_array_equal, suppress_warnings
|
||||
|
||||
|
||||
class TestBdtr(object):
|
||||
def test(self):
|
||||
val = sc.bdtr(0, 1, 0.5)
|
||||
assert_allclose(val, 0.5)
|
||||
|
||||
def test_sum_is_one(self):
|
||||
val = sc.bdtr([0, 1, 2], 2, 0.5)
|
||||
assert_array_equal(val, [0.25, 0.75, 1.0])
|
||||
|
||||
def test_rounding(self):
|
||||
double_val = sc.bdtr([0.1, 1.1, 2.1], 2, 0.5)
|
||||
int_val = sc.bdtr([0, 1, 2], 2, 0.5)
|
||||
assert_array_equal(double_val, int_val)
|
||||
|
||||
@pytest.mark.parametrize('k, n, p', [
|
||||
(np.inf, 2, 0.5),
|
||||
(1.0, np.inf, 0.5),
|
||||
(1.0, 2, np.inf)
|
||||
])
|
||||
def test_inf(self, k, n, p):
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(DeprecationWarning)
|
||||
val = sc.bdtr(k, n, p)
|
||||
assert np.isnan(val)
|
||||
|
||||
def test_domain(self):
|
||||
val = sc.bdtr(-1.1, 1, 0.5)
|
||||
assert np.isnan(val)
|
||||
|
||||
|
||||
class TestBdtrc(object):
|
||||
def test_value(self):
|
||||
val = sc.bdtrc(0, 1, 0.5)
|
||||
assert_allclose(val, 0.5)
|
||||
|
||||
def test_sum_is_one(self):
|
||||
val = sc.bdtrc([0, 1, 2], 2, 0.5)
|
||||
assert_array_equal(val, [0.75, 0.25, 0.0])
|
||||
|
||||
def test_rounding(self):
|
||||
double_val = sc.bdtrc([0.1, 1.1, 2.1], 2, 0.5)
|
||||
int_val = sc.bdtrc([0, 1, 2], 2, 0.5)
|
||||
assert_array_equal(double_val, int_val)
|
||||
|
||||
@pytest.mark.parametrize('k, n, p', [
|
||||
(np.inf, 2, 0.5),
|
||||
(1.0, np.inf, 0.5),
|
||||
(1.0, 2, np.inf)
|
||||
])
|
||||
def test_inf(self, k, n, p):
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(DeprecationWarning)
|
||||
val = sc.bdtrc(k, n, p)
|
||||
assert np.isnan(val)
|
||||
|
||||
def test_domain(self):
|
||||
val = sc.bdtrc(-1.1, 1, 0.5)
|
||||
val2 = sc.bdtrc(2.1, 1, 0.5)
|
||||
assert np.isnan(val2)
|
||||
assert_allclose(val, 1.0)
|
||||
|
||||
def test_bdtr_bdtrc_sum_to_one(self):
|
||||
bdtr_vals = sc.bdtr([0, 1, 2], 2, 0.5)
|
||||
bdtrc_vals = sc.bdtrc([0, 1, 2], 2, 0.5)
|
||||
vals = bdtr_vals + bdtrc_vals
|
||||
assert_allclose(vals, [1.0, 1.0, 1.0])
|
||||
|
||||
|
||||
class TestBdtri(object):
|
||||
def test_value(self):
|
||||
val = sc.bdtri(0, 1, 0.5)
|
||||
assert_allclose(val, 0.5)
|
||||
|
||||
def test_sum_is_one(self):
|
||||
val = sc.bdtri([0, 1], 2, 0.5)
|
||||
actual = np.asarray([1 - 1/np.sqrt(2), 1/np.sqrt(2)])
|
||||
assert_allclose(val, actual)
|
||||
|
||||
def test_rounding(self):
|
||||
double_val = sc.bdtri([0.1, 1.1], 2, 0.5)
|
||||
int_val = sc.bdtri([0, 1], 2, 0.5)
|
||||
assert_allclose(double_val, int_val)
|
||||
|
||||
@pytest.mark.parametrize('k, n, p', [
|
||||
(np.inf, 2, 0.5),
|
||||
(1.0, np.inf, 0.5),
|
||||
(1.0, 2, np.inf)
|
||||
])
|
||||
def test_inf(self, k, n, p):
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(DeprecationWarning)
|
||||
val = sc.bdtri(k, n, p)
|
||||
assert np.isnan(val)
|
||||
|
||||
@pytest.mark.parametrize('k, n, p', [
|
||||
(-1.1, 1, 0.5),
|
||||
(2.1, 1, 0.5)
|
||||
])
|
||||
def test_domain(self, k, n, p):
|
||||
val = sc.bdtri(k, n, p)
|
||||
assert np.isnan(val)
|
||||
|
||||
def test_bdtr_bdtri_roundtrip(self):
|
||||
bdtr_vals = sc.bdtr([0, 1, 2], 2, 0.5)
|
||||
roundtrip_vals = sc.bdtri([0, 1, 2], 2, bdtr_vals)
|
||||
assert_allclose(roundtrip_vals, [0.5, 0.5, np.nan])
|
106
venv/Lib/site-packages/scipy/special/tests/test_boxcox.py
Normal file
106
venv/Lib/site-packages/scipy/special/tests/test_boxcox.py
Normal file
|
@ -0,0 +1,106 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_equal, assert_almost_equal, assert_allclose
|
||||
from scipy.special import boxcox, boxcox1p, inv_boxcox, inv_boxcox1p
|
||||
|
||||
|
||||
# There are more tests of boxcox and boxcox1p in test_mpmath.py.
|
||||
|
||||
def test_boxcox_basic():
|
||||
x = np.array([0.5, 1, 2, 4])
|
||||
|
||||
# lambda = 0 => y = log(x)
|
||||
y = boxcox(x, 0)
|
||||
assert_almost_equal(y, np.log(x))
|
||||
|
||||
# lambda = 1 => y = x - 1
|
||||
y = boxcox(x, 1)
|
||||
assert_almost_equal(y, x - 1)
|
||||
|
||||
# lambda = 2 => y = 0.5*(x**2 - 1)
|
||||
y = boxcox(x, 2)
|
||||
assert_almost_equal(y, 0.5*(x**2 - 1))
|
||||
|
||||
# x = 0 and lambda > 0 => y = -1 / lambda
|
||||
lam = np.array([0.5, 1, 2])
|
||||
y = boxcox(0, lam)
|
||||
assert_almost_equal(y, -1.0 / lam)
|
||||
|
||||
def test_boxcox_underflow():
|
||||
x = 1 + 1e-15
|
||||
lmbda = 1e-306
|
||||
y = boxcox(x, lmbda)
|
||||
assert_allclose(y, np.log(x), rtol=1e-14)
|
||||
|
||||
|
||||
def test_boxcox_nonfinite():
|
||||
# x < 0 => y = nan
|
||||
x = np.array([-1, -1, -0.5])
|
||||
y = boxcox(x, [0.5, 2.0, -1.5])
|
||||
assert_equal(y, np.array([np.nan, np.nan, np.nan]))
|
||||
|
||||
# x = 0 and lambda <= 0 => y = -inf
|
||||
x = 0
|
||||
y = boxcox(x, [-2.5, 0])
|
||||
assert_equal(y, np.array([-np.inf, -np.inf]))
|
||||
|
||||
|
||||
def test_boxcox1p_basic():
|
||||
x = np.array([-0.25, -1e-20, 0, 1e-20, 0.25, 1, 3])
|
||||
|
||||
# lambda = 0 => y = log(1+x)
|
||||
y = boxcox1p(x, 0)
|
||||
assert_almost_equal(y, np.log1p(x))
|
||||
|
||||
# lambda = 1 => y = x
|
||||
y = boxcox1p(x, 1)
|
||||
assert_almost_equal(y, x)
|
||||
|
||||
# lambda = 2 => y = 0.5*((1+x)**2 - 1) = 0.5*x*(2 + x)
|
||||
y = boxcox1p(x, 2)
|
||||
assert_almost_equal(y, 0.5*x*(2 + x))
|
||||
|
||||
# x = -1 and lambda > 0 => y = -1 / lambda
|
||||
lam = np.array([0.5, 1, 2])
|
||||
y = boxcox1p(-1, lam)
|
||||
assert_almost_equal(y, -1.0 / lam)
|
||||
|
||||
|
||||
def test_boxcox1p_underflow():
|
||||
x = np.array([1e-15, 1e-306])
|
||||
lmbda = np.array([1e-306, 1e-18])
|
||||
y = boxcox1p(x, lmbda)
|
||||
assert_allclose(y, np.log1p(x), rtol=1e-14)
|
||||
|
||||
|
||||
def test_boxcox1p_nonfinite():
|
||||
# x < -1 => y = nan
|
||||
x = np.array([-2, -2, -1.5])
|
||||
y = boxcox1p(x, [0.5, 2.0, -1.5])
|
||||
assert_equal(y, np.array([np.nan, np.nan, np.nan]))
|
||||
|
||||
# x = -1 and lambda <= 0 => y = -inf
|
||||
x = -1
|
||||
y = boxcox1p(x, [-2.5, 0])
|
||||
assert_equal(y, np.array([-np.inf, -np.inf]))
|
||||
|
||||
|
||||
def test_inv_boxcox():
|
||||
x = np.array([0., 1., 2.])
|
||||
lam = np.array([0., 1., 2.])
|
||||
y = boxcox(x, lam)
|
||||
x2 = inv_boxcox(y, lam)
|
||||
assert_almost_equal(x, x2)
|
||||
|
||||
x = np.array([0., 1., 2.])
|
||||
lam = np.array([0., 1., 2.])
|
||||
y = boxcox1p(x, lam)
|
||||
x2 = inv_boxcox1p(y, lam)
|
||||
assert_almost_equal(x, x2)
|
||||
|
||||
|
||||
def test_inv_boxcox1p_underflow():
|
||||
x = 1e-15
|
||||
lam = 1e-306
|
||||
y = inv_boxcox1p(x, lam)
|
||||
assert_allclose(y, x, rtol=1e-14)
|
||||
|
406
venv/Lib/site-packages/scipy/special/tests/test_cdflib.py
Normal file
406
venv/Lib/site-packages/scipy/special/tests/test_cdflib.py
Normal file
|
@ -0,0 +1,406 @@
|
|||
"""
|
||||
Test cdflib functions versus mpmath, if available.
|
||||
|
||||
The following functions still need tests:
|
||||
|
||||
- ncfdtr
|
||||
- ncfdtri
|
||||
- ncfdtridfn
|
||||
- ncfdtridfd
|
||||
- ncfdtrinc
|
||||
- nbdtrik
|
||||
- nbdtrin
|
||||
- nrdtrimn
|
||||
- nrdtrisd
|
||||
- pdtrik
|
||||
- nctdtr
|
||||
- nctdtrit
|
||||
- nctdtridf
|
||||
- nctdtrinc
|
||||
|
||||
"""
|
||||
import itertools
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_equal
|
||||
import pytest
|
||||
|
||||
import scipy.special as sp
|
||||
from scipy.special._testutils import (
|
||||
MissingModule, check_version, FuncData)
|
||||
from scipy.special._mptestutils import (
|
||||
Arg, IntArg, get_args, mpf2float, assert_mpmath_equal)
|
||||
|
||||
try:
|
||||
import mpmath # type: ignore[import]
|
||||
except ImportError:
|
||||
mpmath = MissingModule('mpmath')
|
||||
|
||||
|
||||
class ProbArg(object):
|
||||
"""Generate a set of probabilities on [0, 1]."""
|
||||
def __init__(self):
|
||||
# Include the endpoints for compatibility with Arg et. al.
|
||||
self.a = 0
|
||||
self.b = 1
|
||||
|
||||
def values(self, n):
|
||||
"""Return an array containing approximatively n numbers."""
|
||||
m = max(1, n//3)
|
||||
v1 = np.logspace(-30, np.log10(0.3), m)
|
||||
v2 = np.linspace(0.3, 0.7, m + 1, endpoint=False)[1:]
|
||||
v3 = 1 - np.logspace(np.log10(0.3), -15, m)
|
||||
v = np.r_[v1, v2, v3]
|
||||
return np.unique(v)
|
||||
|
||||
|
||||
class EndpointFilter(object):
|
||||
def __init__(self, a, b, rtol, atol):
|
||||
self.a = a
|
||||
self.b = b
|
||||
self.rtol = rtol
|
||||
self.atol = atol
|
||||
|
||||
def __call__(self, x):
|
||||
mask1 = np.abs(x - self.a) < self.rtol*np.abs(self.a) + self.atol
|
||||
mask2 = np.abs(x - self.b) < self.rtol*np.abs(self.b) + self.atol
|
||||
return np.where(mask1 | mask2, False, True)
|
||||
|
||||
|
||||
class _CDFData(object):
|
||||
def __init__(self, spfunc, mpfunc, index, argspec, spfunc_first=True,
|
||||
dps=20, n=5000, rtol=None, atol=None,
|
||||
endpt_rtol=None, endpt_atol=None):
|
||||
self.spfunc = spfunc
|
||||
self.mpfunc = mpfunc
|
||||
self.index = index
|
||||
self.argspec = argspec
|
||||
self.spfunc_first = spfunc_first
|
||||
self.dps = dps
|
||||
self.n = n
|
||||
self.rtol = rtol
|
||||
self.atol = atol
|
||||
|
||||
if not isinstance(argspec, list):
|
||||
self.endpt_rtol = None
|
||||
self.endpt_atol = None
|
||||
elif endpt_rtol is not None or endpt_atol is not None:
|
||||
if isinstance(endpt_rtol, list):
|
||||
self.endpt_rtol = endpt_rtol
|
||||
else:
|
||||
self.endpt_rtol = [endpt_rtol]*len(self.argspec)
|
||||
if isinstance(endpt_atol, list):
|
||||
self.endpt_atol = endpt_atol
|
||||
else:
|
||||
self.endpt_atol = [endpt_atol]*len(self.argspec)
|
||||
else:
|
||||
self.endpt_rtol = None
|
||||
self.endpt_atol = None
|
||||
|
||||
def idmap(self, *args):
|
||||
if self.spfunc_first:
|
||||
res = self.spfunc(*args)
|
||||
if np.isnan(res):
|
||||
return np.nan
|
||||
args = list(args)
|
||||
args[self.index] = res
|
||||
with mpmath.workdps(self.dps):
|
||||
res = self.mpfunc(*tuple(args))
|
||||
# Imaginary parts are spurious
|
||||
res = mpf2float(res.real)
|
||||
else:
|
||||
with mpmath.workdps(self.dps):
|
||||
res = self.mpfunc(*args)
|
||||
res = mpf2float(res.real)
|
||||
args = list(args)
|
||||
args[self.index] = res
|
||||
res = self.spfunc(*tuple(args))
|
||||
return res
|
||||
|
||||
def get_param_filter(self):
|
||||
if self.endpt_rtol is None and self.endpt_atol is None:
|
||||
return None
|
||||
|
||||
filters = []
|
||||
for rtol, atol, spec in zip(self.endpt_rtol, self.endpt_atol, self.argspec):
|
||||
if rtol is None and atol is None:
|
||||
filters.append(None)
|
||||
continue
|
||||
elif rtol is None:
|
||||
rtol = 0.0
|
||||
elif atol is None:
|
||||
atol = 0.0
|
||||
|
||||
filters.append(EndpointFilter(spec.a, spec.b, rtol, atol))
|
||||
return filters
|
||||
|
||||
def check(self):
|
||||
# Generate values for the arguments
|
||||
args = get_args(self.argspec, self.n)
|
||||
param_filter = self.get_param_filter()
|
||||
param_columns = tuple(range(args.shape[1]))
|
||||
result_columns = args.shape[1]
|
||||
args = np.hstack((args, args[:,self.index].reshape(args.shape[0], 1)))
|
||||
FuncData(self.idmap, args,
|
||||
param_columns=param_columns, result_columns=result_columns,
|
||||
rtol=self.rtol, atol=self.atol, vectorized=False,
|
||||
param_filter=param_filter).check()
|
||||
|
||||
|
||||
def _assert_inverts(*a, **kw):
|
||||
d = _CDFData(*a, **kw)
|
||||
d.check()
|
||||
|
||||
|
||||
def _binomial_cdf(k, n, p):
|
||||
k, n, p = mpmath.mpf(k), mpmath.mpf(n), mpmath.mpf(p)
|
||||
if k <= 0:
|
||||
return mpmath.mpf(0)
|
||||
elif k >= n:
|
||||
return mpmath.mpf(1)
|
||||
|
||||
onemp = mpmath.fsub(1, p, exact=True)
|
||||
return mpmath.betainc(n - k, k + 1, x2=onemp, regularized=True)
|
||||
|
||||
|
||||
def _f_cdf(dfn, dfd, x):
|
||||
if x < 0:
|
||||
return mpmath.mpf(0)
|
||||
dfn, dfd, x = mpmath.mpf(dfn), mpmath.mpf(dfd), mpmath.mpf(x)
|
||||
ub = dfn*x/(dfn*x + dfd)
|
||||
res = mpmath.betainc(dfn/2, dfd/2, x2=ub, regularized=True)
|
||||
return res
|
||||
|
||||
|
||||
def _student_t_cdf(df, t, dps=None):
|
||||
if dps is None:
|
||||
dps = mpmath.mp.dps
|
||||
with mpmath.workdps(dps):
|
||||
df, t = mpmath.mpf(df), mpmath.mpf(t)
|
||||
fac = mpmath.hyp2f1(0.5, 0.5*(df + 1), 1.5, -t**2/df)
|
||||
fac *= t*mpmath.gamma(0.5*(df + 1))
|
||||
fac /= mpmath.sqrt(mpmath.pi*df)*mpmath.gamma(0.5*df)
|
||||
return 0.5 + fac
|
||||
|
||||
|
||||
def _noncentral_chi_pdf(t, df, nc):
|
||||
res = mpmath.besseli(df/2 - 1, mpmath.sqrt(nc*t))
|
||||
res *= mpmath.exp(-(t + nc)/2)*(t/nc)**(df/4 - 1/2)/2
|
||||
return res
|
||||
|
||||
|
||||
def _noncentral_chi_cdf(x, df, nc, dps=None):
|
||||
if dps is None:
|
||||
dps = mpmath.mp.dps
|
||||
x, df, nc = mpmath.mpf(x), mpmath.mpf(df), mpmath.mpf(nc)
|
||||
with mpmath.workdps(dps):
|
||||
res = mpmath.quad(lambda t: _noncentral_chi_pdf(t, df, nc), [0, x])
|
||||
return res
|
||||
|
||||
|
||||
def _tukey_lmbda_quantile(p, lmbda):
|
||||
# For lmbda != 0
|
||||
return (p**lmbda - (1 - p)**lmbda)/lmbda
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@check_version(mpmath, '0.19')
|
||||
class TestCDFlib(object):
|
||||
|
||||
@pytest.mark.xfail(run=False)
|
||||
def test_bdtrik(self):
|
||||
_assert_inverts(
|
||||
sp.bdtrik,
|
||||
_binomial_cdf,
|
||||
0, [ProbArg(), IntArg(1, 1000), ProbArg()],
|
||||
rtol=1e-4)
|
||||
|
||||
def test_bdtrin(self):
|
||||
_assert_inverts(
|
||||
sp.bdtrin,
|
||||
_binomial_cdf,
|
||||
1, [IntArg(1, 1000), ProbArg(), ProbArg()],
|
||||
rtol=1e-4, endpt_atol=[None, None, 1e-6])
|
||||
|
||||
def test_btdtria(self):
|
||||
_assert_inverts(
|
||||
sp.btdtria,
|
||||
lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True),
|
||||
0, [ProbArg(), Arg(0, 1e2, inclusive_a=False),
|
||||
Arg(0, 1, inclusive_a=False, inclusive_b=False)],
|
||||
rtol=1e-6)
|
||||
|
||||
def test_btdtrib(self):
|
||||
# Use small values of a or mpmath doesn't converge
|
||||
_assert_inverts(
|
||||
sp.btdtrib,
|
||||
lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True),
|
||||
1, [Arg(0, 1e2, inclusive_a=False), ProbArg(),
|
||||
Arg(0, 1, inclusive_a=False, inclusive_b=False)],
|
||||
rtol=1e-7, endpt_atol=[None, 1e-18, 1e-15])
|
||||
|
||||
@pytest.mark.xfail(run=False)
|
||||
def test_fdtridfd(self):
|
||||
_assert_inverts(
|
||||
sp.fdtridfd,
|
||||
_f_cdf,
|
||||
1, [IntArg(1, 100), ProbArg(), Arg(0, 100, inclusive_a=False)],
|
||||
rtol=1e-7)
|
||||
|
||||
def test_gdtria(self):
|
||||
_assert_inverts(
|
||||
sp.gdtria,
|
||||
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
|
||||
0, [ProbArg(), Arg(0, 1e3, inclusive_a=False),
|
||||
Arg(0, 1e4, inclusive_a=False)], rtol=1e-7,
|
||||
endpt_atol=[None, 1e-7, 1e-10])
|
||||
|
||||
def test_gdtrib(self):
|
||||
# Use small values of a and x or mpmath doesn't converge
|
||||
_assert_inverts(
|
||||
sp.gdtrib,
|
||||
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
|
||||
1, [Arg(0, 1e2, inclusive_a=False), ProbArg(),
|
||||
Arg(0, 1e3, inclusive_a=False)], rtol=1e-5)
|
||||
|
||||
def test_gdtrix(self):
|
||||
_assert_inverts(
|
||||
sp.gdtrix,
|
||||
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
|
||||
2, [Arg(0, 1e3, inclusive_a=False), Arg(0, 1e3, inclusive_a=False),
|
||||
ProbArg()], rtol=1e-7,
|
||||
endpt_atol=[None, 1e-7, 1e-10])
|
||||
|
||||
def test_stdtr(self):
|
||||
# Ideally the left endpoint for Arg() should be 0.
|
||||
assert_mpmath_equal(
|
||||
sp.stdtr,
|
||||
_student_t_cdf,
|
||||
[IntArg(1, 100), Arg(1e-10, np.inf)], rtol=1e-7)
|
||||
|
||||
@pytest.mark.xfail(run=False)
|
||||
def test_stdtridf(self):
|
||||
_assert_inverts(
|
||||
sp.stdtridf,
|
||||
_student_t_cdf,
|
||||
0, [ProbArg(), Arg()], rtol=1e-7)
|
||||
|
||||
def test_stdtrit(self):
|
||||
_assert_inverts(
|
||||
sp.stdtrit,
|
||||
_student_t_cdf,
|
||||
1, [IntArg(1, 100), ProbArg()], rtol=1e-7,
|
||||
endpt_atol=[None, 1e-10])
|
||||
|
||||
def test_chdtriv(self):
|
||||
_assert_inverts(
|
||||
sp.chdtriv,
|
||||
lambda v, x: mpmath.gammainc(v/2, b=x/2, regularized=True),
|
||||
0, [ProbArg(), IntArg(1, 100)], rtol=1e-4)
|
||||
|
||||
@pytest.mark.xfail(run=False)
|
||||
def test_chndtridf(self):
|
||||
# Use a larger atol since mpmath is doing numerical integration
|
||||
_assert_inverts(
|
||||
sp.chndtridf,
|
||||
_noncentral_chi_cdf,
|
||||
1, [Arg(0, 100, inclusive_a=False), ProbArg(),
|
||||
Arg(0, 100, inclusive_a=False)],
|
||||
n=1000, rtol=1e-4, atol=1e-15)
|
||||
|
||||
@pytest.mark.xfail(run=False)
|
||||
def test_chndtrinc(self):
|
||||
# Use a larger atol since mpmath is doing numerical integration
|
||||
_assert_inverts(
|
||||
sp.chndtrinc,
|
||||
_noncentral_chi_cdf,
|
||||
2, [Arg(0, 100, inclusive_a=False), IntArg(1, 100), ProbArg()],
|
||||
n=1000, rtol=1e-4, atol=1e-15)
|
||||
|
||||
def test_chndtrix(self):
|
||||
# Use a larger atol since mpmath is doing numerical integration
|
||||
_assert_inverts(
|
||||
sp.chndtrix,
|
||||
_noncentral_chi_cdf,
|
||||
0, [ProbArg(), IntArg(1, 100), Arg(0, 100, inclusive_a=False)],
|
||||
n=1000, rtol=1e-4, atol=1e-15,
|
||||
endpt_atol=[1e-6, None, None])
|
||||
|
||||
def test_tklmbda_zero_shape(self):
|
||||
# When lmbda = 0 the CDF has a simple closed form
|
||||
one = mpmath.mpf(1)
|
||||
assert_mpmath_equal(
|
||||
lambda x: sp.tklmbda(x, 0),
|
||||
lambda x: one/(mpmath.exp(-x) + one),
|
||||
[Arg()], rtol=1e-7)
|
||||
|
||||
def test_tklmbda_neg_shape(self):
|
||||
_assert_inverts(
|
||||
sp.tklmbda,
|
||||
_tukey_lmbda_quantile,
|
||||
0, [ProbArg(), Arg(-25, 0, inclusive_b=False)],
|
||||
spfunc_first=False, rtol=1e-5,
|
||||
endpt_atol=[1e-9, 1e-5])
|
||||
|
||||
@pytest.mark.xfail(run=False)
|
||||
def test_tklmbda_pos_shape(self):
|
||||
_assert_inverts(
|
||||
sp.tklmbda,
|
||||
_tukey_lmbda_quantile,
|
||||
0, [ProbArg(), Arg(0, 100, inclusive_a=False)],
|
||||
spfunc_first=False, rtol=1e-5)
|
||||
|
||||
|
||||
def test_nonfinite():
|
||||
funcs = [
|
||||
("btdtria", 3),
|
||||
("btdtrib", 3),
|
||||
("bdtrik", 3),
|
||||
("bdtrin", 3),
|
||||
("chdtriv", 2),
|
||||
("chndtr", 3),
|
||||
("chndtrix", 3),
|
||||
("chndtridf", 3),
|
||||
("chndtrinc", 3),
|
||||
("fdtridfd", 3),
|
||||
("ncfdtr", 4),
|
||||
("ncfdtri", 4),
|
||||
("ncfdtridfn", 4),
|
||||
("ncfdtridfd", 4),
|
||||
("ncfdtrinc", 4),
|
||||
("gdtrix", 3),
|
||||
("gdtrib", 3),
|
||||
("gdtria", 3),
|
||||
("nbdtrik", 3),
|
||||
("nbdtrin", 3),
|
||||
("nrdtrimn", 3),
|
||||
("nrdtrisd", 3),
|
||||
("pdtrik", 2),
|
||||
("stdtr", 2),
|
||||
("stdtrit", 2),
|
||||
("stdtridf", 2),
|
||||
("nctdtr", 3),
|
||||
("nctdtrit", 3),
|
||||
("nctdtridf", 3),
|
||||
("nctdtrinc", 3),
|
||||
("tklmbda", 2),
|
||||
]
|
||||
|
||||
np.random.seed(1)
|
||||
|
||||
for func, numargs in funcs:
|
||||
func = getattr(sp, func)
|
||||
|
||||
args_choices = [(float(x), np.nan, np.inf, -np.inf) for x in
|
||||
np.random.rand(numargs)]
|
||||
|
||||
for args in itertools.product(*args_choices):
|
||||
res = func(*args)
|
||||
|
||||
if any(np.isnan(x) for x in args):
|
||||
# Nan inputs should result to nan output
|
||||
assert_equal(res, np.nan)
|
||||
else:
|
||||
# All other inputs should return something (but not
|
||||
# raise exceptions or cause hangs)
|
||||
pass
|
|
@ -0,0 +1,340 @@
|
|||
import pytest
|
||||
from itertools import product
|
||||
from numpy.testing import assert_allclose, suppress_warnings
|
||||
from scipy import special
|
||||
from scipy.special import cython_special
|
||||
|
||||
|
||||
bint_points = [True, False]
|
||||
int_points = [-10, -1, 1, 10]
|
||||
real_points = [-10.0, -1.0, 1.0, 10.0]
|
||||
complex_points = [complex(*tup) for tup in product(real_points, repeat=2)]
|
||||
|
||||
|
||||
CYTHON_SIGNATURE_MAP = {
|
||||
'b': 'bint',
|
||||
'f': 'float',
|
||||
'd': 'double',
|
||||
'g': 'long double',
|
||||
'F': 'float complex',
|
||||
'D': 'double complex',
|
||||
'G': 'long double complex',
|
||||
'i':'int',
|
||||
'l': 'long'
|
||||
}
|
||||
|
||||
|
||||
TEST_POINTS = {
|
||||
'b': bint_points,
|
||||
'f': real_points,
|
||||
'd': real_points,
|
||||
'g': real_points,
|
||||
'F': complex_points,
|
||||
'D': complex_points,
|
||||
'G': complex_points,
|
||||
'i': int_points,
|
||||
'l': int_points,
|
||||
}
|
||||
|
||||
|
||||
PARAMS = [
|
||||
(special.agm, cython_special.agm, ('dd',), None),
|
||||
(special.airy, cython_special._airy_pywrap, ('d', 'D'), None),
|
||||
(special.airye, cython_special._airye_pywrap, ('d', 'D'), None),
|
||||
(special.bdtr, cython_special.bdtr, ('dld', 'ddd'), None),
|
||||
(special.bdtrc, cython_special.bdtrc, ('dld', 'ddd'), None),
|
||||
(special.bdtri, cython_special.bdtri, ('dld', 'ddd'), None),
|
||||
(special.bdtrik, cython_special.bdtrik, ('ddd',), None),
|
||||
(special.bdtrin, cython_special.bdtrin, ('ddd',), None),
|
||||
(special.bei, cython_special.bei, ('d',), None),
|
||||
(special.beip, cython_special.beip, ('d',), None),
|
||||
(special.ber, cython_special.ber, ('d',), None),
|
||||
(special.berp, cython_special.berp, ('d',), None),
|
||||
(special.besselpoly, cython_special.besselpoly, ('ddd',), None),
|
||||
(special.beta, cython_special.beta, ('dd',), None),
|
||||
(special.betainc, cython_special.betainc, ('ddd',), None),
|
||||
(special.betaincinv, cython_special.betaincinv, ('ddd',), None),
|
||||
(special.betaln, cython_special.betaln, ('dd',), None),
|
||||
(special.binom, cython_special.binom, ('dd',), None),
|
||||
(special.boxcox, cython_special.boxcox, ('dd',), None),
|
||||
(special.boxcox1p, cython_special.boxcox1p, ('dd',), None),
|
||||
(special.btdtr, cython_special.btdtr, ('ddd',), None),
|
||||
(special.btdtri, cython_special.btdtri, ('ddd',), None),
|
||||
(special.btdtria, cython_special.btdtria, ('ddd',), None),
|
||||
(special.btdtrib, cython_special.btdtrib, ('ddd',), None),
|
||||
(special.cbrt, cython_special.cbrt, ('d',), None),
|
||||
(special.chdtr, cython_special.chdtr, ('dd',), None),
|
||||
(special.chdtrc, cython_special.chdtrc, ('dd',), None),
|
||||
(special.chdtri, cython_special.chdtri, ('dd',), None),
|
||||
(special.chdtriv, cython_special.chdtriv, ('dd',), None),
|
||||
(special.chndtr, cython_special.chndtr, ('ddd',), None),
|
||||
(special.chndtridf, cython_special.chndtridf, ('ddd',), None),
|
||||
(special.chndtrinc, cython_special.chndtrinc, ('ddd',), None),
|
||||
(special.chndtrix, cython_special.chndtrix, ('ddd',), None),
|
||||
(special.cosdg, cython_special.cosdg, ('d',), None),
|
||||
(special.cosm1, cython_special.cosm1, ('d',), None),
|
||||
(special.cotdg, cython_special.cotdg, ('d',), None),
|
||||
(special.dawsn, cython_special.dawsn, ('d', 'D'), None),
|
||||
(special.ellipe, cython_special.ellipe, ('d',), None),
|
||||
(special.ellipeinc, cython_special.ellipeinc, ('dd',), None),
|
||||
(special.ellipj, cython_special._ellipj_pywrap, ('dd',), None),
|
||||
(special.ellipkinc, cython_special.ellipkinc, ('dd',), None),
|
||||
(special.ellipkm1, cython_special.ellipkm1, ('d',), None),
|
||||
(special.ellipk, cython_special.ellipk, ('d',), None),
|
||||
(special.entr, cython_special.entr, ('d',), None),
|
||||
(special.erf, cython_special.erf, ('d', 'D'), None),
|
||||
(special.erfc, cython_special.erfc, ('d', 'D'), None),
|
||||
(special.erfcx, cython_special.erfcx, ('d', 'D'), None),
|
||||
(special.erfi, cython_special.erfi, ('d', 'D'), None),
|
||||
(special.erfinv, cython_special.erfinv, ('d'), None),
|
||||
(special.erfcinv, cython_special.erfcinv, ('d'), None),
|
||||
(special.eval_chebyc, cython_special.eval_chebyc, ('dd', 'dD', 'ld'), None),
|
||||
(special.eval_chebys, cython_special.eval_chebys, ('dd', 'dD', 'ld'),
|
||||
'd and l differ for negative int'),
|
||||
(special.eval_chebyt, cython_special.eval_chebyt, ('dd', 'dD', 'ld'),
|
||||
'd and l differ for negative int'),
|
||||
(special.eval_chebyu, cython_special.eval_chebyu, ('dd', 'dD', 'ld'),
|
||||
'd and l differ for negative int'),
|
||||
(special.eval_gegenbauer, cython_special.eval_gegenbauer, ('ddd', 'ddD', 'ldd'),
|
||||
'd and l differ for negative int'),
|
||||
(special.eval_genlaguerre, cython_special.eval_genlaguerre, ('ddd', 'ddD', 'ldd'),
|
||||
'd and l differ for negative int'),
|
||||
(special.eval_hermite, cython_special.eval_hermite, ('ld',), None),
|
||||
(special.eval_hermitenorm, cython_special.eval_hermitenorm, ('ld',), None),
|
||||
(special.eval_jacobi, cython_special.eval_jacobi, ('dddd', 'dddD', 'lddd'),
|
||||
'd and l differ for negative int'),
|
||||
(special.eval_laguerre, cython_special.eval_laguerre, ('dd', 'dD', 'ld'),
|
||||
'd and l differ for negative int'),
|
||||
(special.eval_legendre, cython_special.eval_legendre, ('dd', 'dD', 'ld'), None),
|
||||
(special.eval_sh_chebyt, cython_special.eval_sh_chebyt, ('dd', 'dD', 'ld'), None),
|
||||
(special.eval_sh_chebyu, cython_special.eval_sh_chebyu, ('dd', 'dD', 'ld'),
|
||||
'd and l differ for negative int'),
|
||||
(special.eval_sh_jacobi, cython_special.eval_sh_jacobi, ('dddd', 'dddD', 'lddd'),
|
||||
'd and l differ for negative int'),
|
||||
(special.eval_sh_legendre, cython_special.eval_sh_legendre, ('dd', 'dD', 'ld'), None),
|
||||
(special.exp1, cython_special.exp1, ('d', 'D'), None),
|
||||
(special.exp10, cython_special.exp10, ('d',), None),
|
||||
(special.exp2, cython_special.exp2, ('d',), None),
|
||||
(special.expi, cython_special.expi, ('d', 'D'), None),
|
||||
(special.expit, cython_special.expit, ('f', 'd', 'g'), None),
|
||||
(special.expm1, cython_special.expm1, ('d', 'D'), None),
|
||||
(special.expn, cython_special.expn, ('ld', 'dd'), None),
|
||||
(special.exprel, cython_special.exprel, ('d',), None),
|
||||
(special.fdtr, cython_special.fdtr, ('ddd',), None),
|
||||
(special.fdtrc, cython_special.fdtrc, ('ddd',), None),
|
||||
(special.fdtri, cython_special.fdtri, ('ddd',), None),
|
||||
(special.fdtridfd, cython_special.fdtridfd, ('ddd',), None),
|
||||
(special.fresnel, cython_special._fresnel_pywrap, ('d', 'D'), None),
|
||||
(special.gamma, cython_special.gamma, ('d', 'D'), None),
|
||||
(special.gammainc, cython_special.gammainc, ('dd',), None),
|
||||
(special.gammaincc, cython_special.gammaincc, ('dd',), None),
|
||||
(special.gammainccinv, cython_special.gammainccinv, ('dd',), None),
|
||||
(special.gammaincinv, cython_special.gammaincinv, ('dd',), None),
|
||||
(special.gammaln, cython_special.gammaln, ('d',), None),
|
||||
(special.gammasgn, cython_special.gammasgn, ('d',), None),
|
||||
(special.gdtr, cython_special.gdtr, ('ddd',), None),
|
||||
(special.gdtrc, cython_special.gdtrc, ('ddd',), None),
|
||||
(special.gdtria, cython_special.gdtria, ('ddd',), None),
|
||||
(special.gdtrib, cython_special.gdtrib, ('ddd',), None),
|
||||
(special.gdtrix, cython_special.gdtrix, ('ddd',), None),
|
||||
(special.hankel1, cython_special.hankel1, ('dD',), None),
|
||||
(special.hankel1e, cython_special.hankel1e, ('dD',), None),
|
||||
(special.hankel2, cython_special.hankel2, ('dD',), None),
|
||||
(special.hankel2e, cython_special.hankel2e, ('dD',), None),
|
||||
(special.huber, cython_special.huber, ('dd',), None),
|
||||
(special.hyp0f1, cython_special.hyp0f1, ('dd', 'dD'), None),
|
||||
(special.hyp1f1, cython_special.hyp1f1, ('ddd', 'ddD'), None),
|
||||
(special.hyp2f1, cython_special.hyp2f1, ('dddd', 'dddD'), None),
|
||||
(special.hyperu, cython_special.hyperu, ('ddd',), None),
|
||||
(special.i0, cython_special.i0, ('d',), None),
|
||||
(special.i0e, cython_special.i0e, ('d',), None),
|
||||
(special.i1, cython_special.i1, ('d',), None),
|
||||
(special.i1e, cython_special.i1e, ('d',), None),
|
||||
(special.inv_boxcox, cython_special.inv_boxcox, ('dd',), None),
|
||||
(special.inv_boxcox1p, cython_special.inv_boxcox1p, ('dd',), None),
|
||||
(special.it2i0k0, cython_special._it2i0k0_pywrap, ('d',), None),
|
||||
(special.it2j0y0, cython_special._it2j0y0_pywrap, ('d',), None),
|
||||
(special.it2struve0, cython_special.it2struve0, ('d',), None),
|
||||
(special.itairy, cython_special._itairy_pywrap, ('d',), None),
|
||||
(special.iti0k0, cython_special._iti0k0_pywrap, ('d',), None),
|
||||
(special.itj0y0, cython_special._itj0y0_pywrap, ('d',), None),
|
||||
(special.itmodstruve0, cython_special.itmodstruve0, ('d',), None),
|
||||
(special.itstruve0, cython_special.itstruve0, ('d',), None),
|
||||
(special.iv, cython_special.iv, ('dd', 'dD'), None),
|
||||
(special.ive, cython_special.ive, ('dd', 'dD'), None),
|
||||
(special.j0, cython_special.j0, ('d',), None),
|
||||
(special.j1, cython_special.j1, ('d',), None),
|
||||
(special.jv, cython_special.jv, ('dd', 'dD'), None),
|
||||
(special.jve, cython_special.jve, ('dd', 'dD'), None),
|
||||
(special.k0, cython_special.k0, ('d',), None),
|
||||
(special.k0e, cython_special.k0e, ('d',), None),
|
||||
(special.k1, cython_special.k1, ('d',), None),
|
||||
(special.k1e, cython_special.k1e, ('d',), None),
|
||||
(special.kei, cython_special.kei, ('d',), None),
|
||||
(special.keip, cython_special.keip, ('d',), None),
|
||||
(special.kelvin, cython_special._kelvin_pywrap, ('d',), None),
|
||||
(special.ker, cython_special.ker, ('d',), None),
|
||||
(special.kerp, cython_special.kerp, ('d',), None),
|
||||
(special.kl_div, cython_special.kl_div, ('dd',), None),
|
||||
(special.kn, cython_special.kn, ('ld', 'dd'), None),
|
||||
(special.kolmogi, cython_special.kolmogi, ('d',), None),
|
||||
(special.kolmogorov, cython_special.kolmogorov, ('d',), None),
|
||||
(special.kv, cython_special.kv, ('dd', 'dD'), None),
|
||||
(special.kve, cython_special.kve, ('dd', 'dD'), None),
|
||||
(special.log1p, cython_special.log1p, ('d', 'D'), None),
|
||||
(special.log_ndtr, cython_special.log_ndtr, ('d', 'D'), None),
|
||||
(special.loggamma, cython_special.loggamma, ('D',), None),
|
||||
(special.logit, cython_special.logit, ('f', 'd', 'g'), None),
|
||||
(special.lpmv, cython_special.lpmv, ('ddd',), None),
|
||||
(special.mathieu_a, cython_special.mathieu_a, ('dd',), None),
|
||||
(special.mathieu_b, cython_special.mathieu_b, ('dd',), None),
|
||||
(special.mathieu_cem, cython_special._mathieu_cem_pywrap, ('ddd',), None),
|
||||
(special.mathieu_modcem1, cython_special._mathieu_modcem1_pywrap, ('ddd',), None),
|
||||
(special.mathieu_modcem2, cython_special._mathieu_modcem2_pywrap, ('ddd',), None),
|
||||
(special.mathieu_modsem1, cython_special._mathieu_modsem1_pywrap, ('ddd',), None),
|
||||
(special.mathieu_modsem2, cython_special._mathieu_modsem2_pywrap, ('ddd',), None),
|
||||
(special.mathieu_sem, cython_special._mathieu_sem_pywrap, ('ddd',), None),
|
||||
(special.modfresnelm, cython_special._modfresnelm_pywrap, ('d',), None),
|
||||
(special.modfresnelp, cython_special._modfresnelp_pywrap, ('d',), None),
|
||||
(special.modstruve, cython_special.modstruve, ('dd',), None),
|
||||
(special.nbdtr, cython_special.nbdtr, ('lld', 'ddd'), None),
|
||||
(special.nbdtrc, cython_special.nbdtrc, ('lld', 'ddd'), None),
|
||||
(special.nbdtri, cython_special.nbdtri, ('lld', 'ddd'), None),
|
||||
(special.nbdtrik, cython_special.nbdtrik, ('ddd',), None),
|
||||
(special.nbdtrin, cython_special.nbdtrin, ('ddd',), None),
|
||||
(special.ncfdtr, cython_special.ncfdtr, ('dddd',), None),
|
||||
(special.ncfdtri, cython_special.ncfdtri, ('dddd',), None),
|
||||
(special.ncfdtridfd, cython_special.ncfdtridfd, ('dddd',), None),
|
||||
(special.ncfdtridfn, cython_special.ncfdtridfn, ('dddd',), None),
|
||||
(special.ncfdtrinc, cython_special.ncfdtrinc, ('dddd',), None),
|
||||
(special.nctdtr, cython_special.nctdtr, ('ddd',), None),
|
||||
(special.nctdtridf, cython_special.nctdtridf, ('ddd',), None),
|
||||
(special.nctdtrinc, cython_special.nctdtrinc, ('ddd',), None),
|
||||
(special.nctdtrit, cython_special.nctdtrit, ('ddd',), None),
|
||||
(special.ndtr, cython_special.ndtr, ('d', 'D'), None),
|
||||
(special.ndtri, cython_special.ndtri, ('d',), None),
|
||||
(special.nrdtrimn, cython_special.nrdtrimn, ('ddd',), None),
|
||||
(special.nrdtrisd, cython_special.nrdtrisd, ('ddd',), None),
|
||||
(special.obl_ang1, cython_special._obl_ang1_pywrap, ('dddd',), None),
|
||||
(special.obl_ang1_cv, cython_special._obl_ang1_cv_pywrap, ('ddddd',), None),
|
||||
(special.obl_cv, cython_special.obl_cv, ('ddd',), None),
|
||||
(special.obl_rad1, cython_special._obl_rad1_pywrap, ('dddd',), "see gh-6211"),
|
||||
(special.obl_rad1_cv, cython_special._obl_rad1_cv_pywrap, ('ddddd',), "see gh-6211"),
|
||||
(special.obl_rad2, cython_special._obl_rad2_pywrap, ('dddd',), "see gh-6211"),
|
||||
(special.obl_rad2_cv, cython_special._obl_rad2_cv_pywrap, ('ddddd',), "see gh-6211"),
|
||||
(special.pbdv, cython_special._pbdv_pywrap, ('dd',), None),
|
||||
(special.pbvv, cython_special._pbvv_pywrap, ('dd',), None),
|
||||
(special.pbwa, cython_special._pbwa_pywrap, ('dd',), None),
|
||||
(special.pdtr, cython_special.pdtr, ('dd', 'dd'), None),
|
||||
(special.pdtrc, cython_special.pdtrc, ('dd', 'dd'), None),
|
||||
(special.pdtri, cython_special.pdtri, ('ld', 'dd'), None),
|
||||
(special.pdtrik, cython_special.pdtrik, ('dd',), None),
|
||||
(special.poch, cython_special.poch, ('dd',), None),
|
||||
(special.pro_ang1, cython_special._pro_ang1_pywrap, ('dddd',), None),
|
||||
(special.pro_ang1_cv, cython_special._pro_ang1_cv_pywrap, ('ddddd',), None),
|
||||
(special.pro_cv, cython_special.pro_cv, ('ddd',), None),
|
||||
(special.pro_rad1, cython_special._pro_rad1_pywrap, ('dddd',), "see gh-6211"),
|
||||
(special.pro_rad1_cv, cython_special._pro_rad1_cv_pywrap, ('ddddd',), "see gh-6211"),
|
||||
(special.pro_rad2, cython_special._pro_rad2_pywrap, ('dddd',), "see gh-6211"),
|
||||
(special.pro_rad2_cv, cython_special._pro_rad2_cv_pywrap, ('ddddd',), "see gh-6211"),
|
||||
(special.pseudo_huber, cython_special.pseudo_huber, ('dd',), None),
|
||||
(special.psi, cython_special.psi, ('d', 'D'), None),
|
||||
(special.radian, cython_special.radian, ('ddd',), None),
|
||||
(special.rel_entr, cython_special.rel_entr, ('dd',), None),
|
||||
(special.rgamma, cython_special.rgamma, ('d', 'D'), None),
|
||||
(special.round, cython_special.round, ('d',), None),
|
||||
(special.spherical_jn, cython_special.spherical_jn, ('ld', 'ldb', 'lD', 'lDb'), None),
|
||||
(special.spherical_yn, cython_special.spherical_yn, ('ld', 'ldb', 'lD', 'lDb'), None),
|
||||
(special.spherical_in, cython_special.spherical_in, ('ld', 'ldb', 'lD', 'lDb'), None),
|
||||
(special.spherical_kn, cython_special.spherical_kn, ('ld', 'ldb', 'lD', 'lDb'), None),
|
||||
(special.shichi, cython_special._shichi_pywrap, ('d', 'D'), None),
|
||||
(special.sici, cython_special._sici_pywrap, ('d', 'D'), None),
|
||||
(special.sindg, cython_special.sindg, ('d',), None),
|
||||
(special.smirnov, cython_special.smirnov, ('ld', 'dd'), None),
|
||||
(special.smirnovi, cython_special.smirnovi, ('ld', 'dd'), None),
|
||||
(special.spence, cython_special.spence, ('d', 'D'), None),
|
||||
(special.sph_harm, cython_special.sph_harm, ('lldd', 'dddd'), None),
|
||||
(special.stdtr, cython_special.stdtr, ('dd',), None),
|
||||
(special.stdtridf, cython_special.stdtridf, ('dd',), None),
|
||||
(special.stdtrit, cython_special.stdtrit, ('dd',), None),
|
||||
(special.struve, cython_special.struve, ('dd',), None),
|
||||
(special.tandg, cython_special.tandg, ('d',), None),
|
||||
(special.tklmbda, cython_special.tklmbda, ('dd',), None),
|
||||
(special.voigt_profile, cython_special.voigt_profile, ('ddd',), None),
|
||||
(special.wofz, cython_special.wofz, ('D',), None),
|
||||
(special.wrightomega, cython_special.wrightomega, ('D',), None),
|
||||
(special.xlog1py, cython_special.xlog1py, ('dd', 'DD'), None),
|
||||
(special.xlogy, cython_special.xlogy, ('dd', 'DD'), None),
|
||||
(special.y0, cython_special.y0, ('d',), None),
|
||||
(special.y1, cython_special.y1, ('d',), None),
|
||||
(special.yn, cython_special.yn, ('ld', 'dd'), None),
|
||||
(special.yv, cython_special.yv, ('dd', 'dD'), None),
|
||||
(special.yve, cython_special.yve, ('dd', 'dD'), None),
|
||||
(special.zetac, cython_special.zetac, ('d',), None),
|
||||
(special.owens_t, cython_special.owens_t, ('dd',), None)
|
||||
]
|
||||
|
||||
|
||||
IDS = [x[0].__name__ for x in PARAMS]
|
||||
|
||||
|
||||
def _generate_test_points(typecodes):
|
||||
axes = tuple(map(lambda x: TEST_POINTS[x], typecodes))
|
||||
pts = list(product(*axes))
|
||||
return pts
|
||||
|
||||
|
||||
def test_cython_api_completeness():
|
||||
# Check that everything is tested
|
||||
for name in dir(cython_special):
|
||||
func = getattr(cython_special, name)
|
||||
if callable(func) and not name.startswith('_'):
|
||||
for _, cyfun, _, _ in PARAMS:
|
||||
if cyfun is func:
|
||||
break
|
||||
else:
|
||||
raise RuntimeError("{} missing from tests!".format(name))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("param", PARAMS, ids=IDS)
|
||||
def test_cython_api(param):
|
||||
pyfunc, cyfunc, specializations, knownfailure = param
|
||||
if knownfailure:
|
||||
pytest.xfail(reason=knownfailure)
|
||||
|
||||
# Check which parameters are expected to be fused types
|
||||
max_params = max(len(spec) for spec in specializations)
|
||||
values = [set() for _ in range(max_params)]
|
||||
for typecodes in specializations:
|
||||
for j, v in enumerate(typecodes):
|
||||
values[j].add(v)
|
||||
seen = set()
|
||||
is_fused_code = [False] * len(values)
|
||||
for j, v in enumerate(values):
|
||||
vv = tuple(sorted(v))
|
||||
if vv in seen:
|
||||
continue
|
||||
is_fused_code[j] = (len(v) > 1)
|
||||
seen.add(vv)
|
||||
|
||||
# Check results
|
||||
for typecodes in specializations:
|
||||
# Pick the correct specialized function
|
||||
signature = [CYTHON_SIGNATURE_MAP[code]
|
||||
for j, code in enumerate(typecodes)
|
||||
if is_fused_code[j]]
|
||||
|
||||
if signature:
|
||||
cy_spec_func = cyfunc[tuple(signature)]
|
||||
else:
|
||||
signature = None
|
||||
cy_spec_func = cyfunc
|
||||
|
||||
# Test it
|
||||
pts = _generate_test_points(typecodes)
|
||||
for pt in pts:
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(DeprecationWarning)
|
||||
pyval = pyfunc(*pt)
|
||||
cyval = cy_spec_func(*pt)
|
||||
assert_allclose(cyval, pyval, err_msg="{} {} {}".format(pt, typecodes, signature))
|
495
venv/Lib/site-packages/scipy/special/tests/test_data.py
Normal file
495
venv/Lib/site-packages/scipy/special/tests/test_data.py
Normal file
|
@ -0,0 +1,495 @@
|
|||
import os
|
||||
|
||||
import numpy as np
|
||||
from numpy import arccosh, arcsinh, arctanh
|
||||
from numpy.testing import suppress_warnings
|
||||
import pytest
|
||||
|
||||
from scipy.special import (
|
||||
lpn, lpmn, lpmv, lqn, lqmn, sph_harm, eval_legendre, eval_hermite,
|
||||
eval_laguerre, eval_genlaguerre, binom, cbrt, expm1, log1p, zeta,
|
||||
jn, jv, yn, yv, iv, kv, kn,
|
||||
gamma, gammaln, gammainc, gammaincc, gammaincinv, gammainccinv, digamma,
|
||||
beta, betainc, betaincinv, poch,
|
||||
ellipe, ellipeinc, ellipk, ellipkm1, ellipkinc, ellipj,
|
||||
erf, erfc, erfinv, erfcinv, exp1, expi, expn,
|
||||
bdtrik, btdtr, btdtri, btdtria, btdtrib, chndtr, gdtr, gdtrc, gdtrix, gdtrib,
|
||||
nbdtrik, pdtrik, owens_t,
|
||||
mathieu_a, mathieu_b, mathieu_cem, mathieu_sem, mathieu_modcem1,
|
||||
mathieu_modsem1, mathieu_modcem2, mathieu_modsem2,
|
||||
ellip_harm, ellip_harm_2, spherical_jn, spherical_yn,
|
||||
)
|
||||
from scipy.integrate import IntegrationWarning
|
||||
|
||||
from scipy.special._testutils import FuncData
|
||||
|
||||
DATASETS_BOOST = np.load(os.path.join(os.path.dirname(__file__),
|
||||
"data", "boost.npz"))
|
||||
|
||||
DATASETS_GSL = np.load(os.path.join(os.path.dirname(__file__),
|
||||
"data", "gsl.npz"))
|
||||
|
||||
DATASETS_LOCAL = np.load(os.path.join(os.path.dirname(__file__),
|
||||
"data", "local.npz"))
|
||||
|
||||
|
||||
def data(func, dataname, *a, **kw):
|
||||
kw.setdefault('dataname', dataname)
|
||||
return FuncData(func, DATASETS_BOOST[dataname], *a, **kw)
|
||||
|
||||
|
||||
def data_gsl(func, dataname, *a, **kw):
|
||||
kw.setdefault('dataname', dataname)
|
||||
return FuncData(func, DATASETS_GSL[dataname], *a, **kw)
|
||||
|
||||
|
||||
def data_local(func, dataname, *a, **kw):
|
||||
kw.setdefault('dataname', dataname)
|
||||
return FuncData(func, DATASETS_LOCAL[dataname], *a, **kw)
|
||||
|
||||
|
||||
def ellipk_(k):
|
||||
return ellipk(k*k)
|
||||
|
||||
|
||||
def ellipkinc_(f, k):
|
||||
return ellipkinc(f, k*k)
|
||||
|
||||
|
||||
def ellipe_(k):
|
||||
return ellipe(k*k)
|
||||
|
||||
|
||||
def ellipeinc_(f, k):
|
||||
return ellipeinc(f, k*k)
|
||||
|
||||
|
||||
def ellipj_(k):
|
||||
return ellipj(k*k)
|
||||
|
||||
|
||||
def zeta_(x):
|
||||
return zeta(x, 1.)
|
||||
|
||||
|
||||
def assoc_legendre_p_boost_(nu, mu, x):
|
||||
# the boost test data is for integer orders only
|
||||
return lpmv(mu, nu.astype(int), x)
|
||||
|
||||
def legendre_p_via_assoc_(nu, x):
|
||||
return lpmv(0, nu, x)
|
||||
|
||||
def lpn_(n, x):
|
||||
return lpn(n.astype('l'), x)[0][-1]
|
||||
|
||||
def lqn_(n, x):
|
||||
return lqn(n.astype('l'), x)[0][-1]
|
||||
|
||||
def legendre_p_via_lpmn(n, x):
|
||||
return lpmn(0, n, x)[0][0,-1]
|
||||
|
||||
def legendre_q_via_lqmn(n, x):
|
||||
return lqmn(0, n, x)[0][0,-1]
|
||||
|
||||
def mathieu_ce_rad(m, q, x):
|
||||
return mathieu_cem(m, q, x*180/np.pi)[0]
|
||||
|
||||
|
||||
def mathieu_se_rad(m, q, x):
|
||||
return mathieu_sem(m, q, x*180/np.pi)[0]
|
||||
|
||||
|
||||
def mathieu_mc1_scaled(m, q, x):
|
||||
# GSL follows a different normalization.
|
||||
# We follow Abramowitz & Stegun, they apparently something else.
|
||||
return mathieu_modcem1(m, q, x)[0] * np.sqrt(np.pi/2)
|
||||
|
||||
|
||||
def mathieu_ms1_scaled(m, q, x):
|
||||
return mathieu_modsem1(m, q, x)[0] * np.sqrt(np.pi/2)
|
||||
|
||||
|
||||
def mathieu_mc2_scaled(m, q, x):
|
||||
return mathieu_modcem2(m, q, x)[0] * np.sqrt(np.pi/2)
|
||||
|
||||
|
||||
def mathieu_ms2_scaled(m, q, x):
|
||||
return mathieu_modsem2(m, q, x)[0] * np.sqrt(np.pi/2)
|
||||
|
||||
def eval_legendre_ld(n, x):
|
||||
return eval_legendre(n.astype('l'), x)
|
||||
|
||||
def eval_legendre_dd(n, x):
|
||||
return eval_legendre(n.astype('d'), x)
|
||||
|
||||
def eval_hermite_ld(n, x):
|
||||
return eval_hermite(n.astype('l'), x)
|
||||
|
||||
def eval_laguerre_ld(n, x):
|
||||
return eval_laguerre(n.astype('l'), x)
|
||||
|
||||
def eval_laguerre_dd(n, x):
|
||||
return eval_laguerre(n.astype('d'), x)
|
||||
|
||||
def eval_genlaguerre_ldd(n, a, x):
|
||||
return eval_genlaguerre(n.astype('l'), a, x)
|
||||
|
||||
def eval_genlaguerre_ddd(n, a, x):
|
||||
return eval_genlaguerre(n.astype('d'), a, x)
|
||||
|
||||
def bdtrik_comp(y, n, p):
|
||||
return bdtrik(1-y, n, p)
|
||||
|
||||
def btdtri_comp(a, b, p):
|
||||
return btdtri(a, b, 1-p)
|
||||
|
||||
def btdtria_comp(p, b, x):
|
||||
return btdtria(1-p, b, x)
|
||||
|
||||
def btdtrib_comp(a, p, x):
|
||||
return btdtrib(a, 1-p, x)
|
||||
|
||||
def gdtr_(p, x):
|
||||
return gdtr(1.0, p, x)
|
||||
|
||||
def gdtrc_(p, x):
|
||||
return gdtrc(1.0, p, x)
|
||||
|
||||
def gdtrix_(b, p):
|
||||
return gdtrix(1.0, b, p)
|
||||
|
||||
def gdtrix_comp(b, p):
|
||||
return gdtrix(1.0, b, 1-p)
|
||||
|
||||
def gdtrib_(p, x):
|
||||
return gdtrib(1.0, p, x)
|
||||
|
||||
def gdtrib_comp(p, x):
|
||||
return gdtrib(1.0, 1-p, x)
|
||||
|
||||
def nbdtrik_comp(y, n, p):
|
||||
return nbdtrik(1-y, n, p)
|
||||
|
||||
def pdtrik_comp(p, m):
|
||||
return pdtrik(1-p, m)
|
||||
|
||||
def poch_(z, m):
|
||||
return 1.0 / poch(z, m)
|
||||
|
||||
def poch_minus(z, m):
|
||||
return 1.0 / poch(z, -m)
|
||||
|
||||
def spherical_jn_(n, x):
|
||||
return spherical_jn(n.astype('l'), x)
|
||||
|
||||
def spherical_yn_(n, x):
|
||||
return spherical_yn(n.astype('l'), x)
|
||||
|
||||
def sph_harm_(m, n, theta, phi):
|
||||
y = sph_harm(m, n, theta, phi)
|
||||
return (y.real, y.imag)
|
||||
|
||||
def cexpm1(x, y):
|
||||
z = expm1(x + 1j*y)
|
||||
return z.real, z.imag
|
||||
|
||||
def clog1p(x, y):
|
||||
z = log1p(x + 1j*y)
|
||||
return z.real, z.imag
|
||||
|
||||
|
||||
BOOST_TESTS = [
|
||||
data(arccosh, 'acosh_data_ipp-acosh_data', 0, 1, rtol=5e-13),
|
||||
data(arccosh, 'acosh_data_ipp-acosh_data', 0j, 1, rtol=5e-13),
|
||||
|
||||
data(arcsinh, 'asinh_data_ipp-asinh_data', 0, 1, rtol=1e-11),
|
||||
data(arcsinh, 'asinh_data_ipp-asinh_data', 0j, 1, rtol=1e-11),
|
||||
|
||||
data(arctanh, 'atanh_data_ipp-atanh_data', 0, 1, rtol=1e-11),
|
||||
data(arctanh, 'atanh_data_ipp-atanh_data', 0j, 1, rtol=1e-11),
|
||||
|
||||
data(assoc_legendre_p_boost_, 'assoc_legendre_p_ipp-assoc_legendre_p', (0,1,2), 3, rtol=1e-11),
|
||||
|
||||
data(legendre_p_via_assoc_, 'legendre_p_ipp-legendre_p', (0,1), 2, rtol=1e-11),
|
||||
data(legendre_p_via_assoc_, 'legendre_p_large_ipp-legendre_p_large', (0,1), 2, rtol=9.6e-14),
|
||||
data(legendre_p_via_lpmn, 'legendre_p_ipp-legendre_p', (0,1), 2, rtol=5e-14, vectorized=False),
|
||||
data(legendre_p_via_lpmn, 'legendre_p_large_ipp-legendre_p_large', (0,1), 2, rtol=9.6e-14, vectorized=False),
|
||||
data(lpn_, 'legendre_p_ipp-legendre_p', (0,1), 2, rtol=5e-14, vectorized=False),
|
||||
data(lpn_, 'legendre_p_large_ipp-legendre_p_large', (0,1), 2, rtol=3e-13, vectorized=False),
|
||||
data(eval_legendre_ld, 'legendre_p_ipp-legendre_p', (0,1), 2, rtol=6e-14),
|
||||
data(eval_legendre_ld, 'legendre_p_large_ipp-legendre_p_large', (0,1), 2, rtol=2e-13),
|
||||
data(eval_legendre_dd, 'legendre_p_ipp-legendre_p', (0,1), 2, rtol=2e-14),
|
||||
data(eval_legendre_dd, 'legendre_p_large_ipp-legendre_p_large', (0,1), 2, rtol=2e-13),
|
||||
|
||||
data(lqn_, 'legendre_p_ipp-legendre_p', (0,1), 3, rtol=2e-14, vectorized=False),
|
||||
data(lqn_, 'legendre_p_large_ipp-legendre_p_large', (0,1), 3, rtol=2e-12, vectorized=False),
|
||||
data(legendre_q_via_lqmn, 'legendre_p_ipp-legendre_p', (0,1), 3, rtol=2e-14, vectorized=False),
|
||||
data(legendre_q_via_lqmn, 'legendre_p_large_ipp-legendre_p_large', (0,1), 3, rtol=2e-12, vectorized=False),
|
||||
|
||||
data(beta, 'beta_exp_data_ipp-beta_exp_data', (0,1), 2, rtol=1e-13),
|
||||
data(beta, 'beta_exp_data_ipp-beta_exp_data', (0,1), 2, rtol=1e-13),
|
||||
data(beta, 'beta_small_data_ipp-beta_small_data', (0,1), 2),
|
||||
data(beta, 'beta_med_data_ipp-beta_med_data', (0,1), 2, rtol=5e-13),
|
||||
|
||||
data(betainc, 'ibeta_small_data_ipp-ibeta_small_data', (0,1,2), 5, rtol=6e-15),
|
||||
data(betainc, 'ibeta_data_ipp-ibeta_data', (0,1,2), 5, rtol=5e-13),
|
||||
data(betainc, 'ibeta_int_data_ipp-ibeta_int_data', (0,1,2), 5, rtol=2e-14),
|
||||
data(betainc, 'ibeta_large_data_ipp-ibeta_large_data', (0,1,2), 5, rtol=4e-10),
|
||||
|
||||
data(betaincinv, 'ibeta_inv_data_ipp-ibeta_inv_data', (0,1,2), 3, rtol=1e-5),
|
||||
|
||||
data(btdtr, 'ibeta_small_data_ipp-ibeta_small_data', (0,1,2), 5, rtol=6e-15),
|
||||
data(btdtr, 'ibeta_data_ipp-ibeta_data', (0,1,2), 5, rtol=4e-13),
|
||||
data(btdtr, 'ibeta_int_data_ipp-ibeta_int_data', (0,1,2), 5, rtol=2e-14),
|
||||
data(btdtr, 'ibeta_large_data_ipp-ibeta_large_data', (0,1,2), 5, rtol=4e-10),
|
||||
|
||||
data(btdtri, 'ibeta_inv_data_ipp-ibeta_inv_data', (0,1,2), 3, rtol=1e-5),
|
||||
data(btdtri_comp, 'ibeta_inv_data_ipp-ibeta_inv_data', (0,1,2), 4, rtol=8e-7),
|
||||
|
||||
data(btdtria, 'ibeta_inva_data_ipp-ibeta_inva_data', (2,0,1), 3, rtol=5e-9),
|
||||
data(btdtria_comp, 'ibeta_inva_data_ipp-ibeta_inva_data', (2,0,1), 4, rtol=5e-9),
|
||||
|
||||
data(btdtrib, 'ibeta_inva_data_ipp-ibeta_inva_data', (0,2,1), 5, rtol=5e-9),
|
||||
data(btdtrib_comp, 'ibeta_inva_data_ipp-ibeta_inva_data', (0,2,1), 6, rtol=5e-9),
|
||||
|
||||
data(binom, 'binomial_data_ipp-binomial_data', (0,1), 2, rtol=1e-13),
|
||||
data(binom, 'binomial_large_data_ipp-binomial_large_data', (0,1), 2, rtol=5e-13),
|
||||
|
||||
data(bdtrik, 'binomial_quantile_ipp-binomial_quantile_data', (2,0,1), 3, rtol=5e-9),
|
||||
data(bdtrik_comp, 'binomial_quantile_ipp-binomial_quantile_data', (2,0,1), 4, rtol=5e-9),
|
||||
|
||||
data(nbdtrik, 'negative_binomial_quantile_ipp-negative_binomial_quantile_data', (2,0,1), 3, rtol=4e-9),
|
||||
data(nbdtrik_comp, 'negative_binomial_quantile_ipp-negative_binomial_quantile_data', (2,0,1), 4, rtol=4e-9),
|
||||
|
||||
data(pdtrik, 'poisson_quantile_ipp-poisson_quantile_data', (1,0), 2, rtol=3e-9),
|
||||
data(pdtrik_comp, 'poisson_quantile_ipp-poisson_quantile_data', (1,0), 3, rtol=4e-9),
|
||||
|
||||
data(cbrt, 'cbrt_data_ipp-cbrt_data', 1, 0),
|
||||
|
||||
data(digamma, 'digamma_data_ipp-digamma_data', 0, 1),
|
||||
data(digamma, 'digamma_data_ipp-digamma_data', 0j, 1),
|
||||
data(digamma, 'digamma_neg_data_ipp-digamma_neg_data', 0, 1, rtol=2e-13),
|
||||
data(digamma, 'digamma_neg_data_ipp-digamma_neg_data', 0j, 1, rtol=1e-13),
|
||||
data(digamma, 'digamma_root_data_ipp-digamma_root_data', 0, 1, rtol=1e-15),
|
||||
data(digamma, 'digamma_root_data_ipp-digamma_root_data', 0j, 1, rtol=1e-15),
|
||||
data(digamma, 'digamma_small_data_ipp-digamma_small_data', 0, 1, rtol=1e-15),
|
||||
data(digamma, 'digamma_small_data_ipp-digamma_small_data', 0j, 1, rtol=1e-14),
|
||||
|
||||
data(ellipk_, 'ellint_k_data_ipp-ellint_k_data', 0, 1),
|
||||
data(ellipkinc_, 'ellint_f_data_ipp-ellint_f_data', (0,1), 2, rtol=1e-14),
|
||||
data(ellipe_, 'ellint_e_data_ipp-ellint_e_data', 0, 1),
|
||||
data(ellipeinc_, 'ellint_e2_data_ipp-ellint_e2_data', (0,1), 2, rtol=1e-14),
|
||||
|
||||
data(erf, 'erf_data_ipp-erf_data', 0, 1),
|
||||
data(erf, 'erf_data_ipp-erf_data', 0j, 1, rtol=1e-13),
|
||||
data(erfc, 'erf_data_ipp-erf_data', 0, 2, rtol=6e-15),
|
||||
data(erf, 'erf_large_data_ipp-erf_large_data', 0, 1),
|
||||
data(erf, 'erf_large_data_ipp-erf_large_data', 0j, 1),
|
||||
data(erfc, 'erf_large_data_ipp-erf_large_data', 0, 2, rtol=4e-14),
|
||||
data(erf, 'erf_small_data_ipp-erf_small_data', 0, 1),
|
||||
data(erf, 'erf_small_data_ipp-erf_small_data', 0j, 1, rtol=1e-13),
|
||||
data(erfc, 'erf_small_data_ipp-erf_small_data', 0, 2),
|
||||
|
||||
data(erfinv, 'erf_inv_data_ipp-erf_inv_data', 0, 1),
|
||||
data(erfcinv, 'erfc_inv_data_ipp-erfc_inv_data', 0, 1),
|
||||
data(erfcinv, 'erfc_inv_big_data_ipp-erfc_inv_big_data2', 0, 1),
|
||||
|
||||
data(exp1, 'expint_1_data_ipp-expint_1_data', 1, 2, rtol=1e-13),
|
||||
data(exp1, 'expint_1_data_ipp-expint_1_data', 1j, 2, rtol=5e-9),
|
||||
data(expi, 'expinti_data_ipp-expinti_data', 0, 1, rtol=1e-13),
|
||||
data(expi, 'expinti_data_double_ipp-expinti_data_double', 0, 1, rtol=1e-13),
|
||||
|
||||
data(expn, 'expint_small_data_ipp-expint_small_data', (0,1), 2),
|
||||
data(expn, 'expint_data_ipp-expint_data', (0,1), 2, rtol=1e-14),
|
||||
|
||||
data(gamma, 'test_gamma_data_ipp-near_0', 0, 1),
|
||||
data(gamma, 'test_gamma_data_ipp-near_1', 0, 1),
|
||||
data(gamma, 'test_gamma_data_ipp-near_2', 0, 1),
|
||||
data(gamma, 'test_gamma_data_ipp-near_m10', 0, 1),
|
||||
data(gamma, 'test_gamma_data_ipp-near_m55', 0, 1, rtol=7e-12),
|
||||
data(gamma, 'test_gamma_data_ipp-factorials', 0, 1, rtol=4e-14),
|
||||
data(gamma, 'test_gamma_data_ipp-near_0', 0j, 1, rtol=2e-9),
|
||||
data(gamma, 'test_gamma_data_ipp-near_1', 0j, 1, rtol=2e-9),
|
||||
data(gamma, 'test_gamma_data_ipp-near_2', 0j, 1, rtol=2e-9),
|
||||
data(gamma, 'test_gamma_data_ipp-near_m10', 0j, 1, rtol=2e-9),
|
||||
data(gamma, 'test_gamma_data_ipp-near_m55', 0j, 1, rtol=2e-9),
|
||||
data(gamma, 'test_gamma_data_ipp-factorials', 0j, 1, rtol=2e-13),
|
||||
data(gammaln, 'test_gamma_data_ipp-near_0', 0, 2, rtol=5e-11),
|
||||
data(gammaln, 'test_gamma_data_ipp-near_1', 0, 2, rtol=5e-11),
|
||||
data(gammaln, 'test_gamma_data_ipp-near_2', 0, 2, rtol=2e-10),
|
||||
data(gammaln, 'test_gamma_data_ipp-near_m10', 0, 2, rtol=5e-11),
|
||||
data(gammaln, 'test_gamma_data_ipp-near_m55', 0, 2, rtol=5e-11),
|
||||
data(gammaln, 'test_gamma_data_ipp-factorials', 0, 2),
|
||||
|
||||
data(gammainc, 'igamma_small_data_ipp-igamma_small_data', (0,1), 5, rtol=5e-15),
|
||||
data(gammainc, 'igamma_med_data_ipp-igamma_med_data', (0,1), 5, rtol=2e-13),
|
||||
data(gammainc, 'igamma_int_data_ipp-igamma_int_data', (0,1), 5, rtol=2e-13),
|
||||
data(gammainc, 'igamma_big_data_ipp-igamma_big_data', (0,1), 5, rtol=1e-12),
|
||||
|
||||
data(gdtr_, 'igamma_small_data_ipp-igamma_small_data', (0,1), 5, rtol=1e-13),
|
||||
data(gdtr_, 'igamma_med_data_ipp-igamma_med_data', (0,1), 5, rtol=2e-13),
|
||||
data(gdtr_, 'igamma_int_data_ipp-igamma_int_data', (0,1), 5, rtol=2e-13),
|
||||
data(gdtr_, 'igamma_big_data_ipp-igamma_big_data', (0,1), 5, rtol=2e-9),
|
||||
|
||||
data(gammaincc, 'igamma_small_data_ipp-igamma_small_data', (0,1), 3, rtol=1e-13),
|
||||
data(gammaincc, 'igamma_med_data_ipp-igamma_med_data', (0,1), 3, rtol=2e-13),
|
||||
data(gammaincc, 'igamma_int_data_ipp-igamma_int_data', (0,1), 3, rtol=4e-14),
|
||||
data(gammaincc, 'igamma_big_data_ipp-igamma_big_data', (0,1), 3, rtol=1e-11),
|
||||
|
||||
data(gdtrc_, 'igamma_small_data_ipp-igamma_small_data', (0,1), 3, rtol=1e-13),
|
||||
data(gdtrc_, 'igamma_med_data_ipp-igamma_med_data', (0,1), 3, rtol=2e-13),
|
||||
data(gdtrc_, 'igamma_int_data_ipp-igamma_int_data', (0,1), 3, rtol=4e-14),
|
||||
data(gdtrc_, 'igamma_big_data_ipp-igamma_big_data', (0,1), 3, rtol=1e-11),
|
||||
|
||||
data(gdtrib_, 'igamma_inva_data_ipp-igamma_inva_data', (1,0), 2, rtol=5e-9),
|
||||
data(gdtrib_comp, 'igamma_inva_data_ipp-igamma_inva_data', (1,0), 3, rtol=5e-9),
|
||||
|
||||
data(poch_, 'tgamma_delta_ratio_data_ipp-tgamma_delta_ratio_data', (0,1), 2, rtol=2e-13),
|
||||
data(poch_, 'tgamma_delta_ratio_int_ipp-tgamma_delta_ratio_int', (0,1), 2,),
|
||||
data(poch_, 'tgamma_delta_ratio_int2_ipp-tgamma_delta_ratio_int2', (0,1), 2,),
|
||||
data(poch_minus, 'tgamma_delta_ratio_data_ipp-tgamma_delta_ratio_data', (0,1), 3, rtol=2e-13),
|
||||
data(poch_minus, 'tgamma_delta_ratio_int_ipp-tgamma_delta_ratio_int', (0,1), 3),
|
||||
data(poch_minus, 'tgamma_delta_ratio_int2_ipp-tgamma_delta_ratio_int2', (0,1), 3),
|
||||
|
||||
|
||||
data(eval_hermite_ld, 'hermite_ipp-hermite', (0,1), 2, rtol=2e-14),
|
||||
data(eval_laguerre_ld, 'laguerre2_ipp-laguerre2', (0,1), 2, rtol=7e-12),
|
||||
data(eval_laguerre_dd, 'laguerre2_ipp-laguerre2', (0,1), 2, knownfailure='hyp2f1 insufficiently accurate.'),
|
||||
data(eval_genlaguerre_ldd, 'laguerre3_ipp-laguerre3', (0,1,2), 3, rtol=2e-13),
|
||||
data(eval_genlaguerre_ddd, 'laguerre3_ipp-laguerre3', (0,1,2), 3, knownfailure='hyp2f1 insufficiently accurate.'),
|
||||
|
||||
data(log1p, 'log1p_expm1_data_ipp-log1p_expm1_data', 0, 1),
|
||||
data(expm1, 'log1p_expm1_data_ipp-log1p_expm1_data', 0, 2),
|
||||
|
||||
data(iv, 'bessel_i_data_ipp-bessel_i_data', (0,1), 2, rtol=1e-12),
|
||||
data(iv, 'bessel_i_data_ipp-bessel_i_data', (0,1j), 2, rtol=2e-10, atol=1e-306),
|
||||
data(iv, 'bessel_i_int_data_ipp-bessel_i_int_data', (0,1), 2, rtol=1e-9),
|
||||
data(iv, 'bessel_i_int_data_ipp-bessel_i_int_data', (0,1j), 2, rtol=2e-10),
|
||||
|
||||
data(jn, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1), 2, rtol=1e-12),
|
||||
data(jn, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1j), 2, rtol=1e-12),
|
||||
data(jn, 'bessel_j_large_data_ipp-bessel_j_large_data', (0,1), 2, rtol=6e-11),
|
||||
data(jn, 'bessel_j_large_data_ipp-bessel_j_large_data', (0,1j), 2, rtol=6e-11),
|
||||
|
||||
data(jv, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1), 2, rtol=1e-12),
|
||||
data(jv, 'bessel_j_int_data_ipp-bessel_j_int_data', (0,1j), 2, rtol=1e-12),
|
||||
data(jv, 'bessel_j_data_ipp-bessel_j_data', (0,1), 2, rtol=1e-12),
|
||||
data(jv, 'bessel_j_data_ipp-bessel_j_data', (0,1j), 2, rtol=1e-12),
|
||||
|
||||
data(kn, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1), 2, rtol=1e-12),
|
||||
|
||||
data(kv, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1), 2, rtol=1e-12),
|
||||
data(kv, 'bessel_k_int_data_ipp-bessel_k_int_data', (0,1j), 2, rtol=1e-12),
|
||||
data(kv, 'bessel_k_data_ipp-bessel_k_data', (0,1), 2, rtol=1e-12),
|
||||
data(kv, 'bessel_k_data_ipp-bessel_k_data', (0,1j), 2, rtol=1e-12),
|
||||
|
||||
data(yn, 'bessel_y01_data_ipp-bessel_y01_data', (0,1), 2, rtol=1e-12),
|
||||
data(yn, 'bessel_yn_data_ipp-bessel_yn_data', (0,1), 2, rtol=1e-12),
|
||||
|
||||
data(yv, 'bessel_yn_data_ipp-bessel_yn_data', (0,1), 2, rtol=1e-12),
|
||||
data(yv, 'bessel_yn_data_ipp-bessel_yn_data', (0,1j), 2, rtol=1e-12),
|
||||
data(yv, 'bessel_yv_data_ipp-bessel_yv_data', (0,1), 2, rtol=1e-10),
|
||||
data(yv, 'bessel_yv_data_ipp-bessel_yv_data', (0,1j), 2, rtol=1e-10),
|
||||
|
||||
data(zeta_, 'zeta_data_ipp-zeta_data', 0, 1, param_filter=(lambda s: s > 1)),
|
||||
data(zeta_, 'zeta_neg_data_ipp-zeta_neg_data', 0, 1, param_filter=(lambda s: s > 1)),
|
||||
data(zeta_, 'zeta_1_up_data_ipp-zeta_1_up_data', 0, 1, param_filter=(lambda s: s > 1)),
|
||||
data(zeta_, 'zeta_1_below_data_ipp-zeta_1_below_data', 0, 1, param_filter=(lambda s: s > 1)),
|
||||
|
||||
data(gammaincinv, 'gamma_inv_small_data_ipp-gamma_inv_small_data', (0,1), 2, rtol=1e-11),
|
||||
data(gammaincinv, 'gamma_inv_data_ipp-gamma_inv_data', (0,1), 2, rtol=1e-14),
|
||||
data(gammaincinv, 'gamma_inv_big_data_ipp-gamma_inv_big_data', (0,1), 2, rtol=1e-11),
|
||||
|
||||
data(gammainccinv, 'gamma_inv_small_data_ipp-gamma_inv_small_data', (0,1), 3, rtol=1e-12),
|
||||
data(gammainccinv, 'gamma_inv_data_ipp-gamma_inv_data', (0,1), 3, rtol=1e-14),
|
||||
data(gammainccinv, 'gamma_inv_big_data_ipp-gamma_inv_big_data', (0,1), 3, rtol=1e-14),
|
||||
|
||||
data(gdtrix_, 'gamma_inv_small_data_ipp-gamma_inv_small_data', (0,1), 2, rtol=3e-13, knownfailure='gdtrix unflow some points'),
|
||||
data(gdtrix_, 'gamma_inv_data_ipp-gamma_inv_data', (0,1), 2, rtol=3e-15),
|
||||
data(gdtrix_, 'gamma_inv_big_data_ipp-gamma_inv_big_data', (0,1), 2),
|
||||
data(gdtrix_comp, 'gamma_inv_small_data_ipp-gamma_inv_small_data', (0,1), 2, knownfailure='gdtrix bad some points'),
|
||||
data(gdtrix_comp, 'gamma_inv_data_ipp-gamma_inv_data', (0,1), 3, rtol=6e-15),
|
||||
data(gdtrix_comp, 'gamma_inv_big_data_ipp-gamma_inv_big_data', (0,1), 3),
|
||||
|
||||
data(chndtr, 'nccs_ipp-nccs', (2,0,1), 3, rtol=3e-5),
|
||||
data(chndtr, 'nccs_big_ipp-nccs_big', (2,0,1), 3, rtol=5e-4, knownfailure='chndtr inaccurate some points'),
|
||||
|
||||
data(sph_harm_, 'spherical_harmonic_ipp-spherical_harmonic', (1,0,3,2), (4,5), rtol=5e-11,
|
||||
param_filter=(lambda p: np.ones(p.shape, '?'),
|
||||
lambda p: np.ones(p.shape, '?'),
|
||||
lambda p: np.logical_and(p < 2*np.pi, p >= 0),
|
||||
lambda p: np.logical_and(p < np.pi, p >= 0))),
|
||||
|
||||
data(spherical_jn_, 'sph_bessel_data_ipp-sph_bessel_data', (0,1), 2, rtol=1e-13),
|
||||
data(spherical_yn_, 'sph_neumann_data_ipp-sph_neumann_data', (0,1), 2, rtol=8e-15),
|
||||
|
||||
data(owens_t, 'owenst_data_ipp-owens_t', (0, 1), 2, rtol=5e-14),
|
||||
data(owens_t, 'owenst_data_ipp-owens_t_alarge', (0, 1), 2, rtol=5e-15),
|
||||
|
||||
# -- not used yet (function does not exist in scipy):
|
||||
# 'ellint_pi2_data_ipp-ellint_pi2_data',
|
||||
# 'ellint_pi3_data_ipp-ellint_pi3_data',
|
||||
# 'ellint_pi3_large_data_ipp-ellint_pi3_large_data',
|
||||
# 'ellint_rc_data_ipp-ellint_rc_data',
|
||||
# 'ellint_rd_data_ipp-ellint_rd_data',
|
||||
# 'ellint_rf_data_ipp-ellint_rf_data',
|
||||
# 'ellint_rj_data_ipp-ellint_rj_data',
|
||||
# 'ncbeta_big_ipp-ncbeta_big',
|
||||
# 'ncbeta_ipp-ncbeta',
|
||||
# 'powm1_sqrtp1m1_test_cpp-powm1_data',
|
||||
# 'powm1_sqrtp1m1_test_cpp-sqrtp1m1_data',
|
||||
# 'test_gamma_data_ipp-gammap1m1_data',
|
||||
# 'tgamma_ratio_data_ipp-tgamma_ratio_data',
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize('test', BOOST_TESTS, ids=repr)
|
||||
def test_boost(test):
|
||||
_test_factory(test)
|
||||
|
||||
|
||||
GSL_TESTS = [
|
||||
data_gsl(mathieu_a, 'mathieu_ab', (0, 1), 2, rtol=1e-13, atol=1e-13),
|
||||
data_gsl(mathieu_b, 'mathieu_ab', (0, 1), 3, rtol=1e-13, atol=1e-13),
|
||||
|
||||
# Also the GSL output has limited accuracy...
|
||||
data_gsl(mathieu_ce_rad, 'mathieu_ce_se', (0, 1, 2), 3, rtol=1e-7, atol=1e-13),
|
||||
data_gsl(mathieu_se_rad, 'mathieu_ce_se', (0, 1, 2), 4, rtol=1e-7, atol=1e-13),
|
||||
|
||||
data_gsl(mathieu_mc1_scaled, 'mathieu_mc_ms', (0, 1, 2), 3, rtol=1e-7, atol=1e-13),
|
||||
data_gsl(mathieu_ms1_scaled, 'mathieu_mc_ms', (0, 1, 2), 4, rtol=1e-7, atol=1e-13),
|
||||
|
||||
data_gsl(mathieu_mc2_scaled, 'mathieu_mc_ms', (0, 1, 2), 5, rtol=1e-7, atol=1e-13),
|
||||
data_gsl(mathieu_ms2_scaled, 'mathieu_mc_ms', (0, 1, 2), 6, rtol=1e-7, atol=1e-13),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize('test', GSL_TESTS, ids=repr)
|
||||
def test_gsl(test):
|
||||
_test_factory(test)
|
||||
|
||||
|
||||
LOCAL_TESTS = [
|
||||
data_local(ellipkinc, 'ellipkinc_neg_m', (0, 1), 2),
|
||||
data_local(ellipkm1, 'ellipkm1', 0, 1),
|
||||
data_local(ellipeinc, 'ellipeinc_neg_m', (0, 1), 2),
|
||||
data_local(clog1p, 'log1p_expm1_complex', (0,1), (2,3), rtol=1e-14),
|
||||
data_local(cexpm1, 'log1p_expm1_complex', (0,1), (4,5), rtol=1e-14),
|
||||
data_local(gammainc, 'gammainc', (0, 1), 2, rtol=1e-12),
|
||||
data_local(gammaincc, 'gammaincc', (0, 1), 2, rtol=1e-11),
|
||||
data_local(ellip_harm_2, 'ellip',(0, 1, 2, 3, 4), 6, rtol=1e-10, atol=1e-13),
|
||||
data_local(ellip_harm, 'ellip',(0, 1, 2, 3, 4), 5, rtol=1e-10, atol=1e-13),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize('test', LOCAL_TESTS, ids=repr)
|
||||
def test_local(test):
|
||||
_test_factory(test)
|
||||
|
||||
|
||||
def _test_factory(test, dtype=np.double):
|
||||
"""Boost test"""
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(IntegrationWarning, "The occurrence of roundoff error is detected")
|
||||
with np.errstate(all='ignore'):
|
||||
test.check(dtype=dtype)
|
42
venv/Lib/site-packages/scipy/special/tests/test_digamma.py
Normal file
42
venv/Lib/site-packages/scipy/special/tests/test_digamma.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
import numpy as np
|
||||
from numpy import pi, log, sqrt
|
||||
from numpy.testing import assert_, assert_equal
|
||||
|
||||
from scipy.special._testutils import FuncData
|
||||
import scipy.special as sc
|
||||
|
||||
# Euler-Mascheroni constant
|
||||
euler = 0.57721566490153286
|
||||
|
||||
|
||||
def test_consistency():
|
||||
# Make sure the implementation of digamma for real arguments
|
||||
# agrees with the implementation of digamma for complex arguments.
|
||||
|
||||
# It's all poles after -1e16
|
||||
x = np.r_[-np.logspace(15, -30, 200), np.logspace(-30, 300, 200)]
|
||||
dataset = np.vstack((x + 0j, sc.digamma(x))).T
|
||||
FuncData(sc.digamma, dataset, 0, 1, rtol=5e-14, nan_ok=True).check()
|
||||
|
||||
|
||||
def test_special_values():
|
||||
# Test special values from Gauss's digamma theorem. See
|
||||
#
|
||||
# https://en.wikipedia.org/wiki/Digamma_function
|
||||
|
||||
dataset = [(1, -euler),
|
||||
(0.5, -2*log(2) - euler),
|
||||
(1/3, -pi/(2*sqrt(3)) - 3*log(3)/2 - euler),
|
||||
(1/4, -pi/2 - 3*log(2) - euler),
|
||||
(1/6, -pi*sqrt(3)/2 - 2*log(2) - 3*log(3)/2 - euler),
|
||||
(1/8, -pi/2 - 4*log(2) - (pi + log(2 + sqrt(2)) - log(2 - sqrt(2)))/sqrt(2) - euler)]
|
||||
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(sc.digamma, dataset, 0, 1, rtol=1e-14).check()
|
||||
|
||||
|
||||
def test_nonfinite():
|
||||
pts = [0.0, -0.0, np.inf]
|
||||
std = [-np.inf, np.inf, np.inf]
|
||||
assert_equal(sc.digamma(pts), std)
|
||||
assert_(all(np.isnan(sc.digamma([-np.inf, -1]))))
|
278
venv/Lib/site-packages/scipy/special/tests/test_ellip_harm.py
Normal file
278
venv/Lib/site-packages/scipy/special/tests/test_ellip_harm.py
Normal file
|
@ -0,0 +1,278 @@
|
|||
#
|
||||
# Tests for the Ellipsoidal Harmonic Function,
|
||||
# Distributed under the same license as SciPy itself.
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import (assert_equal, assert_almost_equal, assert_allclose,
|
||||
assert_, suppress_warnings)
|
||||
from scipy.special._testutils import assert_func_equal
|
||||
from scipy.special import ellip_harm, ellip_harm_2, ellip_normal
|
||||
from scipy.integrate import IntegrationWarning
|
||||
from numpy import sqrt, pi
|
||||
|
||||
|
||||
def test_ellip_potential():
|
||||
def change_coefficient(lambda1, mu, nu, h2, k2):
|
||||
x = sqrt(lambda1**2*mu**2*nu**2/(h2*k2))
|
||||
y = sqrt((lambda1**2 - h2)*(mu**2 - h2)*(h2 - nu**2)/(h2*(k2 - h2)))
|
||||
z = sqrt((lambda1**2 - k2)*(k2 - mu**2)*(k2 - nu**2)/(k2*(k2 - h2)))
|
||||
return x, y, z
|
||||
|
||||
def solid_int_ellip(lambda1, mu, nu, n, p, h2, k2):
|
||||
return (ellip_harm(h2, k2, n, p, lambda1)*ellip_harm(h2, k2, n, p, mu)
|
||||
* ellip_harm(h2, k2, n, p, nu))
|
||||
|
||||
def solid_int_ellip2(lambda1, mu, nu, n, p, h2, k2):
|
||||
return (ellip_harm_2(h2, k2, n, p, lambda1)
|
||||
* ellip_harm(h2, k2, n, p, mu)*ellip_harm(h2, k2, n, p, nu))
|
||||
|
||||
def summation(lambda1, mu1, nu1, lambda2, mu2, nu2, h2, k2):
|
||||
tol = 1e-8
|
||||
sum1 = 0
|
||||
for n in range(20):
|
||||
xsum = 0
|
||||
for p in range(1, 2*n+2):
|
||||
xsum += (4*pi*(solid_int_ellip(lambda2, mu2, nu2, n, p, h2, k2)
|
||||
* solid_int_ellip2(lambda1, mu1, nu1, n, p, h2, k2)) /
|
||||
(ellip_normal(h2, k2, n, p)*(2*n + 1)))
|
||||
if abs(xsum) < 0.1*tol*abs(sum1):
|
||||
break
|
||||
sum1 += xsum
|
||||
return sum1, xsum
|
||||
|
||||
def potential(lambda1, mu1, nu1, lambda2, mu2, nu2, h2, k2):
|
||||
x1, y1, z1 = change_coefficient(lambda1, mu1, nu1, h2, k2)
|
||||
x2, y2, z2 = change_coefficient(lambda2, mu2, nu2, h2, k2)
|
||||
res = sqrt((x2 - x1)**2 + (y2 - y1)**2 + (z2 - z1)**2)
|
||||
return 1/res
|
||||
|
||||
pts = [
|
||||
(120, sqrt(19), 2, 41, sqrt(17), 2, 15, 25),
|
||||
(120, sqrt(16), 3.2, 21, sqrt(11), 2.9, 11, 20),
|
||||
]
|
||||
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(IntegrationWarning, "The occurrence of roundoff error")
|
||||
sup.filter(IntegrationWarning, "The maximum number of subdivisions")
|
||||
|
||||
for p in pts:
|
||||
err_msg = repr(p)
|
||||
exact = potential(*p)
|
||||
result, last_term = summation(*p)
|
||||
assert_allclose(exact, result, atol=0, rtol=1e-8, err_msg=err_msg)
|
||||
assert_(abs(result - exact) < 10*abs(last_term), err_msg)
|
||||
|
||||
|
||||
def test_ellip_norm():
|
||||
|
||||
def G01(h2, k2):
|
||||
return 4*pi
|
||||
|
||||
def G11(h2, k2):
|
||||
return 4*pi*h2*k2/3
|
||||
|
||||
def G12(h2, k2):
|
||||
return 4*pi*h2*(k2 - h2)/3
|
||||
|
||||
def G13(h2, k2):
|
||||
return 4*pi*k2*(k2 - h2)/3
|
||||
|
||||
def G22(h2, k2):
|
||||
res = (2*(h2**4 + k2**4) - 4*h2*k2*(h2**2 + k2**2) + 6*h2**2*k2**2 +
|
||||
sqrt(h2**2 + k2**2 - h2*k2)*(-2*(h2**3 + k2**3) + 3*h2*k2*(h2 + k2)))
|
||||
return 16*pi/405*res
|
||||
|
||||
def G21(h2, k2):
|
||||
res = (2*(h2**4 + k2**4) - 4*h2*k2*(h2**2 + k2**2) + 6*h2**2*k2**2
|
||||
+ sqrt(h2**2 + k2**2 - h2*k2)*(2*(h2**3 + k2**3) - 3*h2*k2*(h2 + k2)))
|
||||
return 16*pi/405*res
|
||||
|
||||
def G23(h2, k2):
|
||||
return 4*pi*h2**2*k2*(k2 - h2)/15
|
||||
|
||||
def G24(h2, k2):
|
||||
return 4*pi*h2*k2**2*(k2 - h2)/15
|
||||
|
||||
def G25(h2, k2):
|
||||
return 4*pi*h2*k2*(k2 - h2)**2/15
|
||||
|
||||
def G32(h2, k2):
|
||||
res = (16*(h2**4 + k2**4) - 36*h2*k2*(h2**2 + k2**2) + 46*h2**2*k2**2
|
||||
+ sqrt(4*(h2**2 + k2**2) - 7*h2*k2)*(-8*(h2**3 + k2**3) +
|
||||
11*h2*k2*(h2 + k2)))
|
||||
return 16*pi/13125*k2*h2*res
|
||||
|
||||
def G31(h2, k2):
|
||||
res = (16*(h2**4 + k2**4) - 36*h2*k2*(h2**2 + k2**2) + 46*h2**2*k2**2
|
||||
+ sqrt(4*(h2**2 + k2**2) - 7*h2*k2)*(8*(h2**3 + k2**3) -
|
||||
11*h2*k2*(h2 + k2)))
|
||||
return 16*pi/13125*h2*k2*res
|
||||
|
||||
def G34(h2, k2):
|
||||
res = (6*h2**4 + 16*k2**4 - 12*h2**3*k2 - 28*h2*k2**3 + 34*h2**2*k2**2
|
||||
+ sqrt(h2**2 + 4*k2**2 - h2*k2)*(-6*h2**3 - 8*k2**3 + 9*h2**2*k2 +
|
||||
13*h2*k2**2))
|
||||
return 16*pi/13125*h2*(k2 - h2)*res
|
||||
|
||||
def G33(h2, k2):
|
||||
res = (6*h2**4 + 16*k2**4 - 12*h2**3*k2 - 28*h2*k2**3 + 34*h2**2*k2**2
|
||||
+ sqrt(h2**2 + 4*k2**2 - h2*k2)*(6*h2**3 + 8*k2**3 - 9*h2**2*k2 -
|
||||
13*h2*k2**2))
|
||||
return 16*pi/13125*h2*(k2 - h2)*res
|
||||
|
||||
def G36(h2, k2):
|
||||
res = (16*h2**4 + 6*k2**4 - 28*h2**3*k2 - 12*h2*k2**3 + 34*h2**2*k2**2
|
||||
+ sqrt(4*h2**2 + k2**2 - h2*k2)*(-8*h2**3 - 6*k2**3 + 13*h2**2*k2 +
|
||||
9*h2*k2**2))
|
||||
return 16*pi/13125*k2*(k2 - h2)*res
|
||||
|
||||
def G35(h2, k2):
|
||||
res = (16*h2**4 + 6*k2**4 - 28*h2**3*k2 - 12*h2*k2**3 + 34*h2**2*k2**2
|
||||
+ sqrt(4*h2**2 + k2**2 - h2*k2)*(8*h2**3 + 6*k2**3 - 13*h2**2*k2 -
|
||||
9*h2*k2**2))
|
||||
return 16*pi/13125*k2*(k2 - h2)*res
|
||||
|
||||
def G37(h2, k2):
|
||||
return 4*pi*h2**2*k2**2*(k2 - h2)**2/105
|
||||
|
||||
known_funcs = {(0, 1): G01, (1, 1): G11, (1, 2): G12, (1, 3): G13,
|
||||
(2, 1): G21, (2, 2): G22, (2, 3): G23, (2, 4): G24,
|
||||
(2, 5): G25, (3, 1): G31, (3, 2): G32, (3, 3): G33,
|
||||
(3, 4): G34, (3, 5): G35, (3, 6): G36, (3, 7): G37}
|
||||
|
||||
def _ellip_norm(n, p, h2, k2):
|
||||
func = known_funcs[n, p]
|
||||
return func(h2, k2)
|
||||
_ellip_norm = np.vectorize(_ellip_norm)
|
||||
|
||||
def ellip_normal_known(h2, k2, n, p):
|
||||
return _ellip_norm(n, p, h2, k2)
|
||||
|
||||
# generate both large and small h2 < k2 pairs
|
||||
np.random.seed(1234)
|
||||
h2 = np.random.pareto(0.5, size=1)
|
||||
k2 = h2 * (1 + np.random.pareto(0.5, size=h2.size))
|
||||
|
||||
points = []
|
||||
for n in range(4):
|
||||
for p in range(1, 2*n+2):
|
||||
points.append((h2, k2, np.full(h2.size, n), np.full(h2.size, p)))
|
||||
points = np.array(points)
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(IntegrationWarning, "The occurrence of roundoff error")
|
||||
assert_func_equal(ellip_normal, ellip_normal_known, points, rtol=1e-12)
|
||||
|
||||
|
||||
def test_ellip_harm_2():
|
||||
|
||||
def I1(h2, k2, s):
|
||||
res = (ellip_harm_2(h2, k2, 1, 1, s)/(3 * ellip_harm(h2, k2, 1, 1, s))
|
||||
+ ellip_harm_2(h2, k2, 1, 2, s)/(3 * ellip_harm(h2, k2, 1, 2, s)) +
|
||||
ellip_harm_2(h2, k2, 1, 3, s)/(3 * ellip_harm(h2, k2, 1, 3, s)))
|
||||
return res
|
||||
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(IntegrationWarning, "The occurrence of roundoff error")
|
||||
assert_almost_equal(I1(5, 8, 10), 1/(10*sqrt((100-5)*(100-8))))
|
||||
|
||||
# Values produced by code from arXiv:1204.0267
|
||||
assert_almost_equal(ellip_harm_2(5, 8, 2, 1, 10), 0.00108056853382)
|
||||
assert_almost_equal(ellip_harm_2(5, 8, 2, 2, 10), 0.00105820513809)
|
||||
assert_almost_equal(ellip_harm_2(5, 8, 2, 3, 10), 0.00106058384743)
|
||||
assert_almost_equal(ellip_harm_2(5, 8, 2, 4, 10), 0.00106774492306)
|
||||
assert_almost_equal(ellip_harm_2(5, 8, 2, 5, 10), 0.00107976356454)
|
||||
|
||||
|
||||
def test_ellip_harm():
|
||||
|
||||
def E01(h2, k2, s):
|
||||
return 1
|
||||
|
||||
def E11(h2, k2, s):
|
||||
return s
|
||||
|
||||
def E12(h2, k2, s):
|
||||
return sqrt(abs(s*s - h2))
|
||||
|
||||
def E13(h2, k2, s):
|
||||
return sqrt(abs(s*s - k2))
|
||||
|
||||
def E21(h2, k2, s):
|
||||
return s*s - 1/3*((h2 + k2) + sqrt(abs((h2 + k2)*(h2 + k2)-3*h2*k2)))
|
||||
|
||||
def E22(h2, k2, s):
|
||||
return s*s - 1/3*((h2 + k2) - sqrt(abs((h2 + k2)*(h2 + k2)-3*h2*k2)))
|
||||
|
||||
def E23(h2, k2, s):
|
||||
return s * sqrt(abs(s*s - h2))
|
||||
|
||||
def E24(h2, k2, s):
|
||||
return s * sqrt(abs(s*s - k2))
|
||||
|
||||
def E25(h2, k2, s):
|
||||
return sqrt(abs((s*s - h2)*(s*s - k2)))
|
||||
|
||||
def E31(h2, k2, s):
|
||||
return s*s*s - (s/5)*(2*(h2 + k2) + sqrt(4*(h2 + k2)*(h2 + k2) -
|
||||
15*h2*k2))
|
||||
|
||||
def E32(h2, k2, s):
|
||||
return s*s*s - (s/5)*(2*(h2 + k2) - sqrt(4*(h2 + k2)*(h2 + k2) -
|
||||
15*h2*k2))
|
||||
|
||||
def E33(h2, k2, s):
|
||||
return sqrt(abs(s*s - h2))*(s*s - 1/5*((h2 + 2*k2) + sqrt(abs((h2 +
|
||||
2*k2)*(h2 + 2*k2) - 5*h2*k2))))
|
||||
|
||||
def E34(h2, k2, s):
|
||||
return sqrt(abs(s*s - h2))*(s*s - 1/5*((h2 + 2*k2) - sqrt(abs((h2 +
|
||||
2*k2)*(h2 + 2*k2) - 5*h2*k2))))
|
||||
|
||||
def E35(h2, k2, s):
|
||||
return sqrt(abs(s*s - k2))*(s*s - 1/5*((2*h2 + k2) + sqrt(abs((2*h2
|
||||
+ k2)*(2*h2 + k2) - 5*h2*k2))))
|
||||
|
||||
def E36(h2, k2, s):
|
||||
return sqrt(abs(s*s - k2))*(s*s - 1/5*((2*h2 + k2) - sqrt(abs((2*h2
|
||||
+ k2)*(2*h2 + k2) - 5*h2*k2))))
|
||||
|
||||
def E37(h2, k2, s):
|
||||
return s * sqrt(abs((s*s - h2)*(s*s - k2)))
|
||||
|
||||
assert_equal(ellip_harm(5, 8, 1, 2, 2.5, 1, 1),
|
||||
ellip_harm(5, 8, 1, 2, 2.5))
|
||||
|
||||
known_funcs = {(0, 1): E01, (1, 1): E11, (1, 2): E12, (1, 3): E13,
|
||||
(2, 1): E21, (2, 2): E22, (2, 3): E23, (2, 4): E24,
|
||||
(2, 5): E25, (3, 1): E31, (3, 2): E32, (3, 3): E33,
|
||||
(3, 4): E34, (3, 5): E35, (3, 6): E36, (3, 7): E37}
|
||||
|
||||
point_ref = []
|
||||
|
||||
def ellip_harm_known(h2, k2, n, p, s):
|
||||
for i in range(h2.size):
|
||||
func = known_funcs[(int(n[i]), int(p[i]))]
|
||||
point_ref.append(func(h2[i], k2[i], s[i]))
|
||||
return point_ref
|
||||
|
||||
np.random.seed(1234)
|
||||
h2 = np.random.pareto(0.5, size=30)
|
||||
k2 = h2*(1 + np.random.pareto(0.5, size=h2.size))
|
||||
s = np.random.pareto(0.5, size=h2.size)
|
||||
points = []
|
||||
for i in range(h2.size):
|
||||
for n in range(4):
|
||||
for p in range(1, 2*n+2):
|
||||
points.append((h2[i], k2[i], n, p, s[i]))
|
||||
points = np.array(points)
|
||||
assert_func_equal(ellip_harm, ellip_harm_known, points, rtol=1e-12)
|
||||
|
||||
|
||||
def test_ellip_harm_invalid_p():
|
||||
# Regression test. This should return nan.
|
||||
n = 4
|
||||
# Make p > 2*n + 1.
|
||||
p = 2*n + 2
|
||||
result = ellip_harm(0.5, 2.0, n, p, 0.2)
|
||||
assert np.isnan(result)
|
59
venv/Lib/site-packages/scipy/special/tests/test_erfinv.py
Normal file
59
venv/Lib/site-packages/scipy/special/tests/test_erfinv.py
Normal file
|
@ -0,0 +1,59 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_allclose, assert_equal
|
||||
import pytest
|
||||
|
||||
import scipy.special as sc
|
||||
|
||||
class TestInverseErrorFunction:
|
||||
def test_compliment(self):
|
||||
# Test erfcinv(1 - x) == erfinv(x)
|
||||
x = np.linspace(-1, 1, 101)
|
||||
assert_allclose(sc.erfcinv(1 - x), sc.erfinv(x), rtol=0, atol=1e-15)
|
||||
|
||||
def test_literal_values(self):
|
||||
# calculated via https://keisan.casio.com/exec/system/1180573448
|
||||
# for y = 0, 0.1, ... , 0.9
|
||||
actual = sc.erfinv(np.linspace(0, 0.9, 10))
|
||||
expected = [
|
||||
0,
|
||||
0.08885599049425768701574,
|
||||
0.1791434546212916764928,
|
||||
0.27246271472675435562,
|
||||
0.3708071585935579290583,
|
||||
0.4769362762044698733814,
|
||||
0.5951160814499948500193,
|
||||
0.7328690779592168522188,
|
||||
0.9061938024368232200712,
|
||||
1.163087153676674086726,
|
||||
]
|
||||
assert_allclose(actual, expected, rtol=0, atol=1e-15)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'f, x, y',
|
||||
[
|
||||
(sc.erfinv, -1, -np.inf),
|
||||
(sc.erfinv, 0, 0),
|
||||
(sc.erfinv, 1, np.inf),
|
||||
(sc.erfinv, -100, np.nan),
|
||||
(sc.erfinv, 100, np.nan),
|
||||
(sc.erfcinv, 0, np.inf),
|
||||
(sc.erfcinv, 1, -0.0),
|
||||
(sc.erfcinv, 2, -np.inf),
|
||||
(sc.erfcinv, -100, np.nan),
|
||||
(sc.erfcinv, 100, np.nan),
|
||||
],
|
||||
ids=[
|
||||
'erfinv at lower bound',
|
||||
'erfinv at midpoint',
|
||||
'erfinv at upper bound',
|
||||
'erfinv below lower bound',
|
||||
'erfinv above upper bound',
|
||||
'erfcinv at lower bound',
|
||||
'erfcinv at midpoint',
|
||||
'erfcinv at upper bound',
|
||||
'erfcinv below lower bound',
|
||||
'erfcinv above upper bound',
|
||||
]
|
||||
)
|
||||
def test_domain_bounds(self, f, x, y):
|
||||
assert_equal(f(x), y)
|
|
@ -0,0 +1,75 @@
|
|||
import pytest
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
import scipy.special as sc
|
||||
|
||||
|
||||
class TestExp1(object):
|
||||
|
||||
def test_branch_cut(self):
|
||||
assert np.isnan(sc.exp1(-1))
|
||||
assert sc.exp1(complex(-1, 0)).imag == (
|
||||
-sc.exp1(complex(-1, -0.0)).imag
|
||||
)
|
||||
|
||||
assert_allclose(
|
||||
sc.exp1(complex(-1, 0)),
|
||||
sc.exp1(-1 + 1e-20j),
|
||||
atol=0,
|
||||
rtol=1e-15
|
||||
)
|
||||
assert_allclose(
|
||||
sc.exp1(complex(-1, -0.0)),
|
||||
sc.exp1(-1 - 1e-20j),
|
||||
atol=0,
|
||||
rtol=1e-15
|
||||
)
|
||||
|
||||
def test_834(self):
|
||||
# Regression test for #834
|
||||
a = sc.exp1(-complex(19.9999990))
|
||||
b = sc.exp1(-complex(19.9999991))
|
||||
assert_allclose(a.imag, b.imag, atol=0, rtol=1e-15)
|
||||
|
||||
|
||||
class TestExpi(object):
|
||||
|
||||
@pytest.mark.parametrize('result', [
|
||||
sc.expi(complex(-1, 0)),
|
||||
sc.expi(complex(-1, -0.0)),
|
||||
sc.expi(-1)
|
||||
])
|
||||
def test_branch_cut(self, result):
|
||||
desired = -0.21938393439552027368 # Computed using Mpmath
|
||||
assert_allclose(result, desired, atol=0, rtol=1e-14)
|
||||
|
||||
def test_near_branch_cut(self):
|
||||
lim_from_above = sc.expi(-1 + 1e-20j)
|
||||
lim_from_below = sc.expi(-1 - 1e-20j)
|
||||
assert_allclose(
|
||||
lim_from_above.real,
|
||||
lim_from_below.real,
|
||||
atol=0,
|
||||
rtol=1e-15
|
||||
)
|
||||
assert_allclose(
|
||||
lim_from_above.imag,
|
||||
-lim_from_below.imag,
|
||||
atol=0,
|
||||
rtol=1e-15
|
||||
)
|
||||
|
||||
def test_continuity_on_positive_real_axis(self):
|
||||
assert_allclose(
|
||||
sc.expi(complex(1, 0)),
|
||||
sc.expi(complex(1, -0.0)),
|
||||
atol=0,
|
||||
rtol=1e-15
|
||||
)
|
||||
|
||||
|
||||
class TestExpn(object):
|
||||
|
||||
def test_out_of_domain(self):
|
||||
assert all(np.isnan([sc.expn(-1, 1.0), sc.expn(1, -1.0)]))
|
85
venv/Lib/site-packages/scipy/special/tests/test_faddeeva.py
Normal file
85
venv/Lib/site-packages/scipy/special/tests/test_faddeeva.py
Normal file
|
@ -0,0 +1,85 @@
|
|||
import pytest
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
import scipy.special as sc
|
||||
from scipy.special._testutils import FuncData
|
||||
|
||||
|
||||
class TestVoigtProfile(object):
|
||||
|
||||
@pytest.mark.parametrize('x, sigma, gamma', [
|
||||
(np.nan, 1, 1),
|
||||
(0, np.nan, 1),
|
||||
(0, 1, np.nan),
|
||||
(1, np.nan, 0),
|
||||
(np.nan, 1, 0),
|
||||
(1, 0, np.nan),
|
||||
(np.nan, 0, 1),
|
||||
(np.nan, 0, 0)
|
||||
])
|
||||
def test_nan(self, x, sigma, gamma):
|
||||
assert np.isnan(sc.voigt_profile(x, sigma, gamma))
|
||||
|
||||
@pytest.mark.parametrize('x, desired', [
|
||||
(-np.inf, 0),
|
||||
(np.inf, 0)
|
||||
])
|
||||
def test_inf(self, x, desired):
|
||||
assert sc.voigt_profile(x, 1, 1) == desired
|
||||
|
||||
def test_against_mathematica(self):
|
||||
# Results obtained from Mathematica by computing
|
||||
#
|
||||
# PDF[VoigtDistribution[gamma, sigma], x]
|
||||
#
|
||||
points = np.array([
|
||||
[-7.89, 45.06, 6.66, 0.0077921073660388806401],
|
||||
[-0.05, 7.98, 24.13, 0.012068223646769913478],
|
||||
[-13.98, 16.83, 42.37, 0.0062442236362132357833],
|
||||
[-12.66, 0.21, 6.32, 0.010052516161087379402],
|
||||
[11.34, 4.25, 21.96, 0.0113698923627278917805],
|
||||
[-11.56, 20.40, 30.53, 0.0076332760432097464987],
|
||||
[-9.17, 25.61, 8.32, 0.011646345779083005429],
|
||||
[16.59, 18.05, 2.50, 0.013637768837526809181],
|
||||
[9.11, 2.12, 39.33, 0.0076644040807277677585],
|
||||
[-43.33, 0.30, 45.68, 0.0036680463875330150996]
|
||||
])
|
||||
FuncData(
|
||||
sc.voigt_profile,
|
||||
points,
|
||||
(0, 1, 2),
|
||||
3,
|
||||
atol=0,
|
||||
rtol=1e-15
|
||||
).check()
|
||||
|
||||
def test_symmetry(self):
|
||||
x = np.linspace(0, 10, 20)
|
||||
assert_allclose(
|
||||
sc.voigt_profile(x, 1, 1),
|
||||
sc.voigt_profile(-x, 1, 1),
|
||||
rtol=1e-15,
|
||||
atol=0
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('x, sigma, gamma, desired', [
|
||||
(0, 0, 0, np.inf),
|
||||
(1, 0, 0, 0)
|
||||
])
|
||||
def test_corner_cases(self, x, sigma, gamma, desired):
|
||||
assert sc.voigt_profile(x, sigma, gamma) == desired
|
||||
|
||||
@pytest.mark.parametrize('sigma1, gamma1, sigma2, gamma2', [
|
||||
(0, 1, 1e-16, 1),
|
||||
(1, 0, 1, 1e-16),
|
||||
(0, 0, 1e-16, 1e-16)
|
||||
])
|
||||
def test_continuity(self, sigma1, gamma1, sigma2, gamma2):
|
||||
x = np.linspace(1, 10, 20)
|
||||
assert_allclose(
|
||||
sc.voigt_profile(x, sigma1, gamma1),
|
||||
sc.voigt_profile(x, sigma2, gamma2),
|
||||
rtol=1e-16,
|
||||
atol=1e-16
|
||||
)
|
12
venv/Lib/site-packages/scipy/special/tests/test_gamma.py
Normal file
12
venv/Lib/site-packages/scipy/special/tests/test_gamma.py
Normal file
|
@ -0,0 +1,12 @@
|
|||
import numpy as np
|
||||
import scipy.special as sc
|
||||
|
||||
|
||||
class TestRgamma:
|
||||
|
||||
def test_gh_11315(self):
|
||||
assert sc.rgamma(-35) == 0
|
||||
|
||||
def test_rgamma_zeros(self):
|
||||
x = np.array([0, -10, -100, -1000, -10000])
|
||||
assert np.all(sc.rgamma(x) == 0)
|
136
venv/Lib/site-packages/scipy/special/tests/test_gammainc.py
Normal file
136
venv/Lib/site-packages/scipy/special/tests/test_gammainc.py
Normal file
|
@ -0,0 +1,136 @@
|
|||
import pytest
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_allclose, assert_array_equal
|
||||
|
||||
import scipy.special as sc
|
||||
from scipy.special._testutils import FuncData
|
||||
|
||||
|
||||
INVALID_POINTS = [
|
||||
(1, -1),
|
||||
(0, 0),
|
||||
(-1, 1),
|
||||
(np.nan, 1),
|
||||
(1, np.nan)
|
||||
]
|
||||
|
||||
|
||||
class TestGammainc(object):
|
||||
|
||||
@pytest.mark.parametrize('a, x', INVALID_POINTS)
|
||||
def test_domain(self, a, x):
|
||||
assert np.isnan(sc.gammainc(a, x))
|
||||
|
||||
def test_a_eq_0_x_gt_0(self):
|
||||
assert sc.gammainc(0, 1) == 1
|
||||
|
||||
@pytest.mark.parametrize('a, x, desired', [
|
||||
(np.inf, 1, 0),
|
||||
(np.inf, 0, 0),
|
||||
(np.inf, np.inf, np.nan),
|
||||
(1, np.inf, 1)
|
||||
])
|
||||
def test_infinite_arguments(self, a, x, desired):
|
||||
result = sc.gammainc(a, x)
|
||||
if np.isnan(desired):
|
||||
assert np.isnan(result)
|
||||
else:
|
||||
assert result == desired
|
||||
|
||||
def test_infinite_limits(self):
|
||||
# Test that large arguments converge to the hard-coded limits
|
||||
# at infinity.
|
||||
assert_allclose(
|
||||
sc.gammainc(1000, 100),
|
||||
sc.gammainc(np.inf, 100),
|
||||
atol=1e-200, # Use `atol` since the function converges to 0.
|
||||
rtol=0
|
||||
)
|
||||
assert sc.gammainc(100, 1000) == sc.gammainc(100, np.inf)
|
||||
|
||||
def test_x_zero(self):
|
||||
a = np.arange(1, 10)
|
||||
assert_array_equal(sc.gammainc(a, 0), 0)
|
||||
|
||||
def test_limit_check(self):
|
||||
result = sc.gammainc(1e-10, 1)
|
||||
limit = sc.gammainc(0, 1)
|
||||
assert np.isclose(result, limit)
|
||||
|
||||
def gammainc_line(self, x):
|
||||
# The line a = x where a simpler asymptotic expansion (analog
|
||||
# of DLMF 8.12.15) is available.
|
||||
c = np.array([-1/3, -1/540, 25/6048, 101/155520,
|
||||
-3184811/3695155200, -2745493/8151736420])
|
||||
res = 0
|
||||
xfac = 1
|
||||
for ck in c:
|
||||
res -= ck*xfac
|
||||
xfac /= x
|
||||
res /= np.sqrt(2*np.pi*x)
|
||||
res += 0.5
|
||||
return res
|
||||
|
||||
def test_line(self):
|
||||
x = np.logspace(np.log10(25), 300, 500)
|
||||
a = x
|
||||
dataset = np.vstack((a, x, self.gammainc_line(x))).T
|
||||
FuncData(sc.gammainc, dataset, (0, 1), 2, rtol=1e-11).check()
|
||||
|
||||
def test_roundtrip(self):
|
||||
a = np.logspace(-5, 10, 100)
|
||||
x = np.logspace(-5, 10, 100)
|
||||
|
||||
y = sc.gammaincinv(a, sc.gammainc(a, x))
|
||||
assert_allclose(x, y, rtol=1e-10)
|
||||
|
||||
|
||||
class TestGammaincc(object):
|
||||
|
||||
@pytest.mark.parametrize('a, x', INVALID_POINTS)
|
||||
def test_domain(self, a, x):
|
||||
assert np.isnan(sc.gammaincc(a, x))
|
||||
|
||||
def test_a_eq_0_x_gt_0(self):
|
||||
assert sc.gammaincc(0, 1) == 0
|
||||
|
||||
@pytest.mark.parametrize('a, x, desired', [
|
||||
(np.inf, 1, 1),
|
||||
(np.inf, 0, 1),
|
||||
(np.inf, np.inf, np.nan),
|
||||
(1, np.inf, 0)
|
||||
])
|
||||
def test_infinite_arguments(self, a, x, desired):
|
||||
result = sc.gammaincc(a, x)
|
||||
if np.isnan(desired):
|
||||
assert np.isnan(result)
|
||||
else:
|
||||
assert result == desired
|
||||
|
||||
def test_infinite_limits(self):
|
||||
# Test that large arguments converge to the hard-coded limits
|
||||
# at infinity.
|
||||
assert sc.gammaincc(1000, 100) == sc.gammaincc(np.inf, 100)
|
||||
assert_allclose(
|
||||
sc.gammaincc(100, 1000),
|
||||
sc.gammaincc(100, np.inf),
|
||||
atol=1e-200, # Use `atol` since the function converges to 0.
|
||||
rtol=0
|
||||
)
|
||||
|
||||
def test_limit_check(self):
|
||||
result = sc.gammaincc(1e-10,1)
|
||||
limit = sc.gammaincc(0,1)
|
||||
assert np.isclose(result, limit)
|
||||
|
||||
def test_x_zero(self):
|
||||
a = np.arange(1, 10)
|
||||
assert_array_equal(sc.gammaincc(a, 0), 1)
|
||||
|
||||
def test_roundtrip(self):
|
||||
a = np.logspace(-5, 10, 100)
|
||||
x = np.logspace(-5, 10, 100)
|
||||
|
||||
y = sc.gammainccinv(a, sc.gammaincc(a, x))
|
||||
assert_allclose(x, y, rtol=1e-14)
|
|
@ -0,0 +1,107 @@
|
|||
import pytest
|
||||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
from numpy.testing import assert_equal
|
||||
|
||||
import scipy.special as sc
|
||||
|
||||
|
||||
class TestHyperu(object):
|
||||
|
||||
def test_negative_x(self):
|
||||
a, b, x = np.meshgrid(
|
||||
[-1, -0.5, 0, 0.5, 1],
|
||||
[-1, -0.5, 0, 0.5, 1],
|
||||
np.linspace(-100, -1, 10),
|
||||
)
|
||||
assert np.all(np.isnan(sc.hyperu(a, b, x)))
|
||||
|
||||
def test_special_cases(self):
|
||||
assert sc.hyperu(0, 1, 1) == 1.0
|
||||
|
||||
@pytest.mark.parametrize('a', [0.5, 1, np.nan])
|
||||
@pytest.mark.parametrize('b', [1, 2, np.nan])
|
||||
@pytest.mark.parametrize('x', [0.25, 3, np.nan])
|
||||
def test_nan_inputs(self, a, b, x):
|
||||
assert np.isnan(sc.hyperu(a, b, x)) == np.any(np.isnan([a, b, x]))
|
||||
|
||||
class TestHyp1f1(object):
|
||||
|
||||
@pytest.mark.parametrize('a, b, x', [
|
||||
(np.nan, 1, 1),
|
||||
(1, np.nan, 1),
|
||||
(1, 1, np.nan)
|
||||
])
|
||||
def test_nan_inputs(self, a, b, x):
|
||||
assert np.isnan(sc.hyp1f1(a, b, x))
|
||||
|
||||
def test_poles(self):
|
||||
assert_equal(sc.hyp1f1(1, [0, -1, -2, -3, -4], 0.5), np.infty)
|
||||
|
||||
@pytest.mark.parametrize('a, b, x, result', [
|
||||
(-1, 1, 0.5, 0.5),
|
||||
(1, 1, 0.5, 1.6487212707001281468),
|
||||
(2, 1, 0.5, 2.4730819060501922203),
|
||||
(1, 2, 0.5, 1.2974425414002562937),
|
||||
(-10, 1, 0.5, -0.38937441413785204475)
|
||||
])
|
||||
def test_special_cases(self, a, b, x, result):
|
||||
# Hit all the special case branches at the beginning of the
|
||||
# function. Desired answers computed using Mpmath.
|
||||
assert_allclose(sc.hyp1f1(a, b, x), result, atol=0, rtol=1e-15)
|
||||
|
||||
@pytest.mark.parametrize('a, b, x, result', [
|
||||
(1, 1, 0.44, 1.5527072185113360455),
|
||||
(-1, 1, 0.44, 0.55999999999999999778),
|
||||
(100, 100, 0.89, 2.4351296512898745592),
|
||||
(-100, 100, 0.89, 0.40739062490768104667),
|
||||
(1.5, 100, 59.99, 3.8073513625965598107),
|
||||
(-1.5, 100, 59.99, 0.25099240047125826943)
|
||||
])
|
||||
def test_geometric_convergence(self, a, b, x, result):
|
||||
# Test the region where we are relying on the ratio of
|
||||
#
|
||||
# (|a| + 1) * |x| / |b|
|
||||
#
|
||||
# being small. Desired answers computed using Mpmath
|
||||
assert_allclose(sc.hyp1f1(a, b, x), result, atol=0, rtol=1e-15)
|
||||
|
||||
@pytest.mark.parametrize('a, b, x, result', [
|
||||
(-1, 1, 1.5, -0.5),
|
||||
(-10, 1, 1.5, 0.41801777430943080357),
|
||||
(-25, 1, 1.5, 0.25114491646037839809),
|
||||
(-50, 1, 1.5, -0.25683643975194756115),
|
||||
(-51, 1, 1.5, -0.19843162753845452972)
|
||||
])
|
||||
def test_a_negative_integer(self, a, b, x, result):
|
||||
# Desired answers computed using Mpmath. After -51 the
|
||||
# relative error becomes unsatisfactory and we start returning
|
||||
# NaN.
|
||||
assert_allclose(sc.hyp1f1(a, b, x), result, atol=0, rtol=1e-9)
|
||||
|
||||
def test_gh_3492(self):
|
||||
desired = 0.99973683897677527773 # Computed using Mpmath
|
||||
assert_allclose(
|
||||
sc.hyp1f1(0.01, 150, -4),
|
||||
desired,
|
||||
atol=0,
|
||||
rtol=1e-15
|
||||
)
|
||||
|
||||
def test_gh_3593(self):
|
||||
desired = 1.0020033381011970966 # Computed using Mpmath
|
||||
assert_allclose(
|
||||
sc.hyp1f1(1, 5, 0.01),
|
||||
desired,
|
||||
atol=0,
|
||||
rtol=1e-15
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('a, b, x, desired', [
|
||||
(-1, -2, 2, 2),
|
||||
(-1, -4, 10, 3.5),
|
||||
(-2, -2, 1, 2.5)
|
||||
])
|
||||
def test_gh_11099(self, a, b, x, desired):
|
||||
# All desired results computed using Mpmath
|
||||
assert sc.hyp1f1(a, b, x) == desired
|
412
venv/Lib/site-packages/scipy/special/tests/test_kolmogorov.py
Normal file
412
venv/Lib/site-packages/scipy/special/tests/test_kolmogorov.py
Normal file
|
@ -0,0 +1,412 @@
|
|||
import itertools
|
||||
import sys
|
||||
import pytest
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_
|
||||
from scipy.special._testutils import FuncData
|
||||
|
||||
from scipy.special import kolmogorov, kolmogi, smirnov, smirnovi
|
||||
from scipy.special._ufuncs import (_kolmogc, _kolmogci, _kolmogp,
|
||||
_smirnovc, _smirnovci, _smirnovp)
|
||||
|
||||
_rtol = 1e-10
|
||||
|
||||
class TestSmirnov(object):
|
||||
def test_nan(self):
|
||||
assert_(np.isnan(smirnov(1, np.nan)))
|
||||
|
||||
def test_basic(self):
|
||||
dataset = [(1, 0.1, 0.9),
|
||||
(1, 0.875, 0.125),
|
||||
(2, 0.875, 0.125 * 0.125),
|
||||
(3, 0.875, 0.125 * 0.125 * 0.125)]
|
||||
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, -1] = 1 - dataset[:, -1]
|
||||
FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_x_equals_0(self):
|
||||
dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))]
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, -1] = 1 - dataset[:, -1]
|
||||
FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_x_equals_1(self):
|
||||
dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))]
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, -1] = 1 - dataset[:, -1]
|
||||
FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_x_equals_0point5(self):
|
||||
dataset = [(1, 0.5, 0.5),
|
||||
(2, 0.5, 0.25),
|
||||
(3, 0.5, 0.166666666667),
|
||||
(4, 0.5, 0.09375),
|
||||
(5, 0.5, 0.056),
|
||||
(6, 0.5, 0.0327932098765),
|
||||
(7, 0.5, 0.0191958707681),
|
||||
(8, 0.5, 0.0112953186035),
|
||||
(9, 0.5, 0.00661933257355),
|
||||
(10, 0.5, 0.003888705)]
|
||||
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, -1] = 1 - dataset[:, -1]
|
||||
FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_n_equals_1(self):
|
||||
x = np.linspace(0, 1, 101, endpoint=True)
|
||||
dataset = np.column_stack([[1]*len(x), x, 1-x])
|
||||
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, -1] = 1 - dataset[:, -1]
|
||||
FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_n_equals_2(self):
|
||||
x = np.linspace(0.5, 1, 101, endpoint=True)
|
||||
p = np.power(1-x, 2)
|
||||
n = np.array([2] * len(x))
|
||||
dataset = np.column_stack([n, x, p])
|
||||
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, -1] = 1 - dataset[:, -1]
|
||||
FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_n_equals_3(self):
|
||||
x = np.linspace(0.7, 1, 31, endpoint=True)
|
||||
p = np.power(1-x, 3)
|
||||
n = np.array([3] * len(x))
|
||||
dataset = np.column_stack([n, x, p])
|
||||
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, -1] = 1 - dataset[:, -1]
|
||||
FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_n_large(self):
|
||||
# test for large values of n
|
||||
# Probabilities should go down as n goes up
|
||||
x = 0.4
|
||||
pvals = np.array([smirnov(n, x) for n in range(400, 1100, 20)])
|
||||
dfs = np.diff(pvals)
|
||||
assert_(np.all(dfs <= 0), msg='Not all diffs negative %s' % dfs)
|
||||
|
||||
|
||||
class TestSmirnovi(object):
|
||||
def test_nan(self):
|
||||
assert_(np.isnan(smirnovi(1, np.nan)))
|
||||
|
||||
def test_basic(self):
|
||||
dataset = [(1, 0.4, 0.6),
|
||||
(1, 0.6, 0.4),
|
||||
(1, 0.99, 0.01),
|
||||
(1, 0.01, 0.99),
|
||||
(2, 0.125 * 0.125, 0.875),
|
||||
(3, 0.125 * 0.125 * 0.125, 0.875),
|
||||
(10, 1.0 / 16 ** 10, 1 - 1.0 / 16)]
|
||||
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, 1] = 1 - dataset[:, 1]
|
||||
FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_x_equals_0(self):
|
||||
dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))]
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, 1] = 1 - dataset[:, 1]
|
||||
FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_x_equals_1(self):
|
||||
dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))]
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, 1] = 1 - dataset[:, 1]
|
||||
FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_n_equals_1(self):
|
||||
pp = np.linspace(0, 1, 101, endpoint=True)
|
||||
# dataset = np.array([(1, p, 1-p) for p in pp])
|
||||
dataset = np.column_stack([[1]*len(pp), pp, 1-pp])
|
||||
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, 1] = 1 - dataset[:, 1]
|
||||
FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_n_equals_2(self):
|
||||
x = np.linspace(0.5, 1, 101, endpoint=True)
|
||||
p = np.power(1-x, 2)
|
||||
n = np.array([2] * len(x))
|
||||
dataset = np.column_stack([n, p, x])
|
||||
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, 1] = 1 - dataset[:, 1]
|
||||
FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_n_equals_3(self):
|
||||
x = np.linspace(0.7, 1, 31, endpoint=True)
|
||||
p = np.power(1-x, 3)
|
||||
n = np.array([3] * len(x))
|
||||
dataset = np.column_stack([n, p, x])
|
||||
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, 1] = 1 - dataset[:, 1]
|
||||
FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_round_trip(self):
|
||||
def _sm_smi(n, p):
|
||||
return smirnov(n, smirnovi(n, p))
|
||||
|
||||
def _smc_smci(n, p):
|
||||
return _smirnovc(n, _smirnovci(n, p))
|
||||
|
||||
dataset = [(1, 0.4, 0.4),
|
||||
(1, 0.6, 0.6),
|
||||
(2, 0.875, 0.875),
|
||||
(3, 0.875, 0.875),
|
||||
(3, 0.125, 0.125),
|
||||
(10, 0.999, 0.999),
|
||||
(10, 0.0001, 0.0001)]
|
||||
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(_sm_smi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
FuncData(_smc_smci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_x_equals_0point5(self):
|
||||
dataset = [(1, 0.5, 0.5),
|
||||
(2, 0.5, 0.366025403784),
|
||||
(2, 0.25, 0.5),
|
||||
(3, 0.5, 0.297156508177),
|
||||
(4, 0.5, 0.255520481121),
|
||||
(5, 0.5, 0.234559536069),
|
||||
(6, 0.5, 0.21715965898),
|
||||
(7, 0.5, 0.202722580034),
|
||||
(8, 0.5, 0.190621765256),
|
||||
(9, 0.5, 0.180363501362),
|
||||
(10, 0.5, 0.17157867006)]
|
||||
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
dataset[:, 1] = 1 - dataset[:, 1]
|
||||
FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
|
||||
class TestSmirnovp(object):
|
||||
def test_nan(self):
|
||||
assert_(np.isnan(_smirnovp(1, np.nan)))
|
||||
|
||||
def test_basic(self):
|
||||
# Check derivative at endpoints
|
||||
n1_10 = np.arange(1, 10)
|
||||
dataset0 = np.column_stack([n1_10, np.full_like(n1_10, 0), np.full_like(n1_10, -1)])
|
||||
FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
n2_10 = np.arange(2, 10)
|
||||
dataset1 = np.column_stack([n2_10, np.full_like(n2_10, 1.0), np.full_like(n2_10, 0)])
|
||||
FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_oneminusoneovern(self):
|
||||
# Check derivative at x=1-1/n
|
||||
n = np.arange(1, 20)
|
||||
x = 1.0/n
|
||||
xm1 = 1-1.0/n
|
||||
pp1 = -n * x**(n-1)
|
||||
pp1 -= (1-np.sign(n-2)**2) * 0.5 # n=2, x=0.5, 1-1/n = 0.5, need to adjust
|
||||
dataset1 = np.column_stack([n, xm1, pp1])
|
||||
FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_oneovertwon(self):
|
||||
# Check derivative at x=1/2n (Discontinuous at x=1/n, so check at x=1/2n)
|
||||
n = np.arange(1, 20)
|
||||
x = 1.0/2/n
|
||||
pp = -(n*x+1) * (1+x)**(n-2)
|
||||
dataset0 = np.column_stack([n, x, pp])
|
||||
FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
def test_oneovern(self):
|
||||
# Check derivative at x=1/n (Discontinuous at x=1/n, hard to tell if x==1/n, only use n=power of 2)
|
||||
n = 2**np.arange(1, 10)
|
||||
x = 1.0/n
|
||||
pp = -(n*x+1) * (1+x)**(n-2) + 0.5
|
||||
dataset0 = np.column_stack([n, x, pp])
|
||||
FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
@pytest.mark.xfail(sys.maxsize <= 2**32,
|
||||
reason="requires 64-bit platform")
|
||||
def test_oneovernclose(self):
|
||||
# Check derivative at x=1/n (Discontinuous at x=1/n, test on either side: x=1/n +/- 2epsilon)
|
||||
n = np.arange(3, 20)
|
||||
|
||||
x = 1.0/n - 2*np.finfo(float).eps
|
||||
pp = -(n*x+1) * (1+x)**(n-2)
|
||||
dataset0 = np.column_stack([n, x, pp])
|
||||
FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
x = 1.0/n + 2*np.finfo(float).eps
|
||||
pp = -(n*x+1) * (1+x)**(n-2) + 1
|
||||
dataset1 = np.column_stack([n, x, pp])
|
||||
FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
|
||||
|
||||
|
||||
class TestKolmogorov(object):
|
||||
def test_nan(self):
|
||||
assert_(np.isnan(kolmogorov(np.nan)))
|
||||
|
||||
def test_basic(self):
|
||||
dataset = [(0, 1.0),
|
||||
(0.5, 0.96394524366487511),
|
||||
(0.8275735551899077, 0.5000000000000000),
|
||||
(1, 0.26999967167735456),
|
||||
(2, 0.00067092525577969533)]
|
||||
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
def test_linspace(self):
|
||||
x = np.linspace(0, 2.0, 21)
|
||||
dataset = [1.0000000000000000, 1.0000000000000000, 0.9999999999994950,
|
||||
0.9999906941986655, 0.9971923267772983, 0.9639452436648751,
|
||||
0.8642827790506042, 0.7112351950296890, 0.5441424115741981,
|
||||
0.3927307079406543, 0.2699996716773546, 0.1777181926064012,
|
||||
0.1122496666707249, 0.0680922218447664, 0.0396818795381144,
|
||||
0.0222179626165251, 0.0119520432391966, 0.0061774306344441,
|
||||
0.0030676213475797, 0.0014636048371873, 0.0006709252557797]
|
||||
|
||||
dataset_c = [0.0000000000000000, 6.609305242245699e-53, 5.050407338670114e-13,
|
||||
9.305801334566668e-06, 0.0028076732227017, 0.0360547563351249,
|
||||
0.1357172209493958, 0.2887648049703110, 0.4558575884258019,
|
||||
0.6072692920593457, 0.7300003283226455, 0.8222818073935988,
|
||||
0.8877503333292751, 0.9319077781552336, 0.9603181204618857,
|
||||
0.9777820373834749, 0.9880479567608034, 0.9938225693655559,
|
||||
0.9969323786524203, 0.9985363951628127, 0.9993290747442203]
|
||||
|
||||
dataset = np.column_stack([x, dataset])
|
||||
FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
|
||||
dataset_c = np.column_stack([x, dataset_c])
|
||||
FuncData(_kolmogc, dataset_c, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
def test_linspacei(self):
|
||||
p = np.linspace(0, 1.0, 21, endpoint=True)
|
||||
dataset = [np.inf, 1.3580986393225507, 1.2238478702170823,
|
||||
1.1379465424937751, 1.0727491749396481, 1.0191847202536859,
|
||||
0.9730633753323726, 0.9320695842357622, 0.8947644549851197,
|
||||
0.8601710725555463, 0.8275735551899077, 0.7964065373291559,
|
||||
0.7661855555617682, 0.7364542888171910, 0.7067326523068980,
|
||||
0.6764476915028201, 0.6448126061663567, 0.6105590999244391,
|
||||
0.5711732651063401, 0.5196103791686224, 0.0000000000000000]
|
||||
|
||||
dataset_c = [0.0000000000000000, 0.5196103791686225, 0.5711732651063401,
|
||||
0.6105590999244391, 0.6448126061663567, 0.6764476915028201,
|
||||
0.7067326523068980, 0.7364542888171910, 0.7661855555617682,
|
||||
0.7964065373291559, 0.8275735551899077, 0.8601710725555463,
|
||||
0.8947644549851196, 0.9320695842357622, 0.9730633753323727,
|
||||
1.0191847202536859, 1.0727491749396481, 1.1379465424937754,
|
||||
1.2238478702170825, 1.3580986393225509, np.inf]
|
||||
|
||||
dataset = np.column_stack([p[1:], dataset[1:]])
|
||||
FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
|
||||
dataset_c = np.column_stack([p[:-1], dataset_c[:-1]])
|
||||
FuncData(_kolmogci, dataset_c, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
def test_smallx(self):
|
||||
epsilon = 0.1 ** np.arange(1, 14)
|
||||
x = np.array([0.571173265106, 0.441027698518, 0.374219690278, 0.331392659217,
|
||||
0.300820537459, 0.277539353999, 0.259023494805, 0.243829561254,
|
||||
0.231063086389, 0.220135543236, 0.210641372041, 0.202290283658,
|
||||
0.19487060742])
|
||||
|
||||
dataset = np.column_stack([x, 1-epsilon])
|
||||
FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
def test_round_trip(self):
|
||||
def _ki_k(_x):
|
||||
return kolmogi(kolmogorov(_x))
|
||||
|
||||
def _kci_kc(_x):
|
||||
return _kolmogci(_kolmogc(_x))
|
||||
|
||||
x = np.linspace(0.0, 2.0, 21, endpoint=True)
|
||||
x02 = x[(x == 0) | (x > 0.21)] # Exclude 0.1, 0.2. 0.2 almost makes succeeds, but 0.1 has no chance.
|
||||
dataset02 = np.column_stack([x02, x02])
|
||||
FuncData(_ki_k, dataset02, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
dataset = np.column_stack([x, x])
|
||||
FuncData(_kci_kc, dataset, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
|
||||
class TestKolmogi(object):
|
||||
def test_nan(self):
|
||||
assert_(np.isnan(kolmogi(np.nan)))
|
||||
|
||||
def test_basic(self):
|
||||
dataset = [(1.0, 0),
|
||||
(0.96394524366487511, 0.5),
|
||||
(0.9, 0.571173265106),
|
||||
(0.5000000000000000, 0.8275735551899077),
|
||||
(0.26999967167735456, 1),
|
||||
(0.00067092525577969533, 2)]
|
||||
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
def test_smallpcdf(self):
|
||||
epsilon = 0.5 ** np.arange(1, 55, 3)
|
||||
# kolmogi(1-p) == _kolmogci(p) if 1-(1-p) == p, but not necessarily otherwise
|
||||
# Use epsilon s.t. 1-(1-epsilon)) == epsilon, so can use same x-array for both results
|
||||
|
||||
x = np.array([0.8275735551899077, 0.5345255069097583, 0.4320114038786941,
|
||||
0.3736868442620478, 0.3345161714909591, 0.3057833329315859,
|
||||
0.2835052890528936, 0.2655578150208676, 0.2506869966107999,
|
||||
0.2380971058736669, 0.2272549289962079, 0.2177876361600040,
|
||||
0.2094254686862041, 0.2019676748836232, 0.1952612948137504,
|
||||
0.1891874239646641, 0.1836520225050326, 0.1785795904846466])
|
||||
|
||||
dataset = np.column_stack([1-epsilon, x])
|
||||
FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
dataset = np.column_stack([epsilon, x])
|
||||
FuncData(_kolmogci, dataset, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
def test_smallpsf(self):
|
||||
epsilon = 0.5 ** np.arange(1, 55, 3)
|
||||
# kolmogi(p) == _kolmogci(1-p) if 1-(1-p) == p, but not necessarily otherwise
|
||||
# Use epsilon s.t. 1-(1-epsilon)) == epsilon, so can use same x-array for both results
|
||||
|
||||
x = np.array([0.8275735551899077, 1.3163786275161036, 1.6651092133663343,
|
||||
1.9525136345289607, 2.2027324540033235, 2.4272929437460848,
|
||||
2.6327688477341593, 2.8233300509220260, 3.0018183401530627,
|
||||
3.1702735084088891, 3.3302184446307912, 3.4828258153113318,
|
||||
3.6290214150152051, 3.7695513262825959, 3.9050272690877326,
|
||||
4.0359582187082550, 4.1627730557884890, 4.2858371743264527])
|
||||
|
||||
dataset = np.column_stack([epsilon, x])
|
||||
FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
dataset = np.column_stack([1-epsilon, x])
|
||||
FuncData(_kolmogci, dataset, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
def test_round_trip(self):
|
||||
def _k_ki(_p):
|
||||
return kolmogorov(kolmogi(_p))
|
||||
|
||||
p = np.linspace(0.1, 1.0, 10, endpoint=True)
|
||||
dataset = np.column_stack([p, p])
|
||||
FuncData(_k_ki, dataset, (0,), 1, rtol=_rtol).check()
|
||||
|
||||
|
||||
class TestKolmogp(object):
|
||||
def test_nan(self):
|
||||
assert_(np.isnan(_kolmogp(np.nan)))
|
||||
|
||||
def test_basic(self):
|
||||
dataset = [(0.000000, -0.0),
|
||||
(0.200000, -1.532420541338916e-10),
|
||||
(0.400000, -0.1012254419260496),
|
||||
(0.600000, -1.324123244249925),
|
||||
(0.800000, -1.627024345636592),
|
||||
(1.000000, -1.071948558356941),
|
||||
(1.200000, -0.538512430720529),
|
||||
(1.400000, -0.2222133182429472),
|
||||
(1.600000, -0.07649302775520538),
|
||||
(1.800000, -0.02208687346347873),
|
||||
(2.000000, -0.005367402045629683)]
|
||||
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(_kolmogp, dataset, (0,), 1, rtol=_rtol).check()
|
98
venv/Lib/site-packages/scipy/special/tests/test_lambertw.py
Normal file
98
venv/Lib/site-packages/scipy/special/tests/test_lambertw.py
Normal file
|
@ -0,0 +1,98 @@
|
|||
#
|
||||
# Tests for the lambertw function,
|
||||
# Adapted from the MPMath tests [1] by Yosef Meller, mellerf@netvision.net.il
|
||||
# Distributed under the same license as SciPy itself.
|
||||
#
|
||||
# [1] mpmath source code, Subversion revision 992
|
||||
# http://code.google.com/p/mpmath/source/browse/trunk/mpmath/tests/test_functions2.py?spec=svn994&r=992
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_, assert_equal, assert_array_almost_equal
|
||||
from scipy.special import lambertw
|
||||
from numpy import nan, inf, pi, e, isnan, log, r_, array, complex_
|
||||
|
||||
from scipy.special._testutils import FuncData
|
||||
|
||||
|
||||
def test_values():
|
||||
assert_(isnan(lambertw(nan)))
|
||||
assert_equal(lambertw(inf,1).real, inf)
|
||||
assert_equal(lambertw(inf,1).imag, 2*pi)
|
||||
assert_equal(lambertw(-inf,1).real, inf)
|
||||
assert_equal(lambertw(-inf,1).imag, 3*pi)
|
||||
|
||||
assert_equal(lambertw(1.), lambertw(1., 0))
|
||||
|
||||
data = [
|
||||
(0,0, 0),
|
||||
(0+0j,0, 0),
|
||||
(inf,0, inf),
|
||||
(0,-1, -inf),
|
||||
(0,1, -inf),
|
||||
(0,3, -inf),
|
||||
(e,0, 1),
|
||||
(1,0, 0.567143290409783873),
|
||||
(-pi/2,0, 1j*pi/2),
|
||||
(-log(2)/2,0, -log(2)),
|
||||
(0.25,0, 0.203888354702240164),
|
||||
(-0.25,0, -0.357402956181388903),
|
||||
(-1./10000,0, -0.000100010001500266719),
|
||||
(-0.25,-1, -2.15329236411034965),
|
||||
(0.25,-1, -3.00899800997004620-4.07652978899159763j),
|
||||
(-0.25,-1, -2.15329236411034965),
|
||||
(0.25,1, -3.00899800997004620+4.07652978899159763j),
|
||||
(-0.25,1, -3.48973228422959210+7.41405453009603664j),
|
||||
(-4,0, 0.67881197132094523+1.91195078174339937j),
|
||||
(-4,1, -0.66743107129800988+7.76827456802783084j),
|
||||
(-4,-1, 0.67881197132094523-1.91195078174339937j),
|
||||
(1000,0, 5.24960285240159623),
|
||||
(1000,1, 4.91492239981054535+5.44652615979447070j),
|
||||
(1000,-1, 4.91492239981054535-5.44652615979447070j),
|
||||
(1000,5, 3.5010625305312892+29.9614548941181328j),
|
||||
(3+4j,0, 1.281561806123775878+0.533095222020971071j),
|
||||
(-0.4+0.4j,0, -0.10396515323290657+0.61899273315171632j),
|
||||
(3+4j,1, -0.11691092896595324+5.61888039871282334j),
|
||||
(3+4j,-1, 0.25856740686699742-3.85211668616143559j),
|
||||
(-0.5,-1, -0.794023632344689368-0.770111750510379110j),
|
||||
(-1./10000,1, -11.82350837248724344+6.80546081842002101j),
|
||||
(-1./10000,-1, -11.6671145325663544),
|
||||
(-1./10000,-2, -11.82350837248724344-6.80546081842002101j),
|
||||
(-1./100000,4, -14.9186890769540539+26.1856750178782046j),
|
||||
(-1./100000,5, -15.0931437726379218666+32.5525721210262290086j),
|
||||
((2+1j)/10,0, 0.173704503762911669+0.071781336752835511j),
|
||||
((2+1j)/10,1, -3.21746028349820063+4.56175438896292539j),
|
||||
((2+1j)/10,-1, -3.03781405002993088-3.53946629633505737j),
|
||||
((2+1j)/10,4, -4.6878509692773249+23.8313630697683291j),
|
||||
(-(2+1j)/10,0, -0.226933772515757933-0.164986470020154580j),
|
||||
(-(2+1j)/10,1, -2.43569517046110001+0.76974067544756289j),
|
||||
(-(2+1j)/10,-1, -3.54858738151989450-6.91627921869943589j),
|
||||
(-(2+1j)/10,4, -4.5500846928118151+20.6672982215434637j),
|
||||
(pi,0, 1.073658194796149172092178407024821347547745350410314531),
|
||||
|
||||
# Former bug in generated branch,
|
||||
(-0.5+0.002j,0, -0.78917138132659918344 + 0.76743539379990327749j),
|
||||
(-0.5-0.002j,0, -0.78917138132659918344 - 0.76743539379990327749j),
|
||||
(-0.448+0.4j,0, -0.11855133765652382241 + 0.66570534313583423116j),
|
||||
(-0.448-0.4j,0, -0.11855133765652382241 - 0.66570534313583423116j),
|
||||
]
|
||||
data = array(data, dtype=complex_)
|
||||
|
||||
def w(x, y):
|
||||
return lambertw(x, y.real.astype(int))
|
||||
with np.errstate(all='ignore'):
|
||||
FuncData(w, data, (0,1), 2, rtol=1e-10, atol=1e-13).check()
|
||||
|
||||
|
||||
def test_ufunc():
|
||||
assert_array_almost_equal(
|
||||
lambertw(r_[0., e, 1.]), r_[0., 1., 0.567143290409783873])
|
||||
|
||||
|
||||
def test_lambertw_ufunc_loop_selection():
|
||||
# see https://github.com/scipy/scipy/issues/4895
|
||||
dt = np.dtype(np.complex128)
|
||||
assert_equal(lambertw(0, 0, 0).dtype, dt)
|
||||
assert_equal(lambertw([0], 0, 0).dtype, dt)
|
||||
assert_equal(lambertw(0, [0], 0).dtype, dt)
|
||||
assert_equal(lambertw(0, 0, [0]).dtype, dt)
|
||||
assert_equal(lambertw([0], [0], [0]).dtype, dt)
|
109
venv/Lib/site-packages/scipy/special/tests/test_log_softmax.py
Normal file
109
venv/Lib/site-packages/scipy/special/tests/test_log_softmax.py
Normal file
|
@ -0,0 +1,109 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
|
||||
import pytest
|
||||
|
||||
import scipy.special as sc
|
||||
|
||||
|
||||
@pytest.mark.parametrize('x, expected', [
|
||||
(np.array([1000, 1]), np.array([0, -999])),
|
||||
|
||||
# Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
|
||||
# converted to float.
|
||||
(np.arange(4), np.array([-3.4401896985611953,
|
||||
-2.4401896985611953,
|
||||
-1.4401896985611953,
|
||||
-0.44018969856119533]))
|
||||
])
|
||||
def test_log_softmax(x, expected):
|
||||
assert_allclose(sc.log_softmax(x), expected, rtol=1e-13)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def log_softmax_x():
|
||||
x = np.arange(4)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def log_softmax_expected():
|
||||
# Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
|
||||
# converted to float.
|
||||
expected = np.array([-3.4401896985611953,
|
||||
-2.4401896985611953,
|
||||
-1.4401896985611953,
|
||||
-0.44018969856119533])
|
||||
return expected
|
||||
|
||||
|
||||
def test_log_softmax_translation(log_softmax_x, log_softmax_expected):
|
||||
# Translation property. If all the values are changed by the same amount,
|
||||
# the softmax result does not change.
|
||||
x = log_softmax_x + 100
|
||||
expected = log_softmax_expected
|
||||
assert_allclose(sc.log_softmax(x), expected, rtol=1e-13)
|
||||
|
||||
|
||||
def test_log_softmax_noneaxis(log_softmax_x, log_softmax_expected):
|
||||
# When axis=None, softmax operates on the entire array, and preserves
|
||||
# the shape.
|
||||
x = log_softmax_x.reshape(2, 2)
|
||||
expected = log_softmax_expected.reshape(2, 2)
|
||||
assert_allclose(sc.log_softmax(x), expected, rtol=1e-13)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('axis_2d, expected_2d', [
|
||||
(0, np.log(0.5) * np.ones((2, 2))),
|
||||
(1, np.array([[0, -999], [0, -999]]))
|
||||
])
|
||||
def test_axes(axis_2d, expected_2d):
|
||||
assert_allclose(
|
||||
sc.log_softmax([[1000, 1], [1000, 1]], axis=axis_2d),
|
||||
expected_2d,
|
||||
rtol=1e-13,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def log_softmax_2d_x():
|
||||
x = np.arange(8).reshape(2, 4)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def log_softmax_2d_expected():
|
||||
# Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
|
||||
# converted to float.
|
||||
expected = np.array([[-3.4401896985611953,
|
||||
-2.4401896985611953,
|
||||
-1.4401896985611953,
|
||||
-0.44018969856119533],
|
||||
[-3.4401896985611953,
|
||||
-2.4401896985611953,
|
||||
-1.4401896985611953,
|
||||
-0.44018969856119533]])
|
||||
return expected
|
||||
|
||||
|
||||
def test_log_softmax_2d_axis1(log_softmax_2d_x, log_softmax_2d_expected):
|
||||
x = log_softmax_2d_x
|
||||
expected = log_softmax_2d_expected
|
||||
assert_allclose(sc.log_softmax(x, axis=1), expected, rtol=1e-13)
|
||||
|
||||
|
||||
def test_log_softmax_2d_axis0(log_softmax_2d_x, log_softmax_2d_expected):
|
||||
x = log_softmax_2d_x.T
|
||||
expected = log_softmax_2d_expected.T
|
||||
assert_allclose(sc.log_softmax(x, axis=0), expected, rtol=1e-13)
|
||||
|
||||
|
||||
def test_log_softmax_3d(log_softmax_2d_x, log_softmax_2d_expected):
|
||||
# 3-d input, with a tuple for the axis.
|
||||
x_3d = log_softmax_2d_x.reshape(2, 2, 2)
|
||||
expected_3d = log_softmax_2d_expected.reshape(2, 2, 2)
|
||||
assert_allclose(sc.log_softmax(x_3d, axis=(1, 2)), expected_3d, rtol=1e-13)
|
||||
|
||||
|
||||
def test_log_softmax_scalar():
|
||||
assert_allclose(sc.log_softmax(1.0), 0.0, rtol=1e-13)
|
70
venv/Lib/site-packages/scipy/special/tests/test_loggamma.py
Normal file
70
venv/Lib/site-packages/scipy/special/tests/test_loggamma.py
Normal file
|
@ -0,0 +1,70 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_allclose, assert_
|
||||
|
||||
from scipy.special._testutils import FuncData
|
||||
from scipy.special import gamma, gammaln, loggamma
|
||||
|
||||
|
||||
def test_identities1():
|
||||
# test the identity exp(loggamma(z)) = gamma(z)
|
||||
x = np.array([-99.5, -9.5, -0.5, 0.5, 9.5, 99.5])
|
||||
y = x.copy()
|
||||
x, y = np.meshgrid(x, y)
|
||||
z = (x + 1J*y).flatten()
|
||||
dataset = np.vstack((z, gamma(z))).T
|
||||
|
||||
def f(z):
|
||||
return np.exp(loggamma(z))
|
||||
|
||||
FuncData(f, dataset, 0, 1, rtol=1e-14, atol=1e-14).check()
|
||||
|
||||
|
||||
def test_identities2():
|
||||
# test the identity loggamma(z + 1) = log(z) + loggamma(z)
|
||||
x = np.array([-99.5, -9.5, -0.5, 0.5, 9.5, 99.5])
|
||||
y = x.copy()
|
||||
x, y = np.meshgrid(x, y)
|
||||
z = (x + 1J*y).flatten()
|
||||
dataset = np.vstack((z, np.log(z) + loggamma(z))).T
|
||||
|
||||
def f(z):
|
||||
return loggamma(z + 1)
|
||||
|
||||
FuncData(f, dataset, 0, 1, rtol=1e-14, atol=1e-14).check()
|
||||
|
||||
|
||||
def test_complex_dispatch_realpart():
|
||||
# Test that the real parts of loggamma and gammaln agree on the
|
||||
# real axis.
|
||||
x = np.r_[-np.logspace(10, -10), np.logspace(-10, 10)] + 0.5
|
||||
|
||||
dataset = np.vstack((x, gammaln(x))).T
|
||||
|
||||
def f(z):
|
||||
z = np.array(z, dtype='complex128')
|
||||
return loggamma(z).real
|
||||
|
||||
FuncData(f, dataset, 0, 1, rtol=1e-14, atol=1e-14).check()
|
||||
|
||||
|
||||
def test_real_dispatch():
|
||||
x = np.logspace(-10, 10) + 0.5
|
||||
dataset = np.vstack((x, gammaln(x))).T
|
||||
|
||||
FuncData(loggamma, dataset, 0, 1, rtol=1e-14, atol=1e-14).check()
|
||||
assert_(loggamma(0) == np.inf)
|
||||
assert_(np.isnan(loggamma(-1)))
|
||||
|
||||
|
||||
def test_gh_6536():
|
||||
z = loggamma(complex(-3.4, +0.0))
|
||||
zbar = loggamma(complex(-3.4, -0.0))
|
||||
assert_allclose(z, zbar.conjugate(), rtol=1e-15, atol=0)
|
||||
|
||||
|
||||
def test_branch_cut():
|
||||
# Make sure negative zero is treated correctly
|
||||
x = -np.logspace(300, -30, 100)
|
||||
z = np.asarray([complex(x0, 0.0) for x0 in x])
|
||||
zbar = np.asarray([complex(x0, -0.0) for x0 in x])
|
||||
assert_allclose(z, zbar.conjugate(), rtol=1e-15, atol=0)
|
73
venv/Lib/site-packages/scipy/special/tests/test_logit.py
Normal file
73
venv/Lib/site-packages/scipy/special/tests/test_logit.py
Normal file
|
@ -0,0 +1,73 @@
|
|||
import numpy as np
|
||||
from numpy.testing import (assert_equal, assert_almost_equal,
|
||||
assert_allclose)
|
||||
from scipy.special import logit, expit
|
||||
|
||||
|
||||
class TestLogit(object):
|
||||
def check_logit_out(self, dtype, expected):
|
||||
a = np.linspace(0,1,10)
|
||||
a = np.array(a, dtype=dtype)
|
||||
with np.errstate(divide='ignore'):
|
||||
actual = logit(a)
|
||||
|
||||
assert_almost_equal(actual, expected)
|
||||
|
||||
assert_equal(actual.dtype, np.dtype(dtype))
|
||||
|
||||
def test_float32(self):
|
||||
expected = np.array([-np.inf, -2.07944155,
|
||||
-1.25276291, -0.69314718,
|
||||
-0.22314353, 0.22314365,
|
||||
0.6931473, 1.25276303,
|
||||
2.07944155, np.inf], dtype=np.float32)
|
||||
self.check_logit_out('f4', expected)
|
||||
|
||||
def test_float64(self):
|
||||
expected = np.array([-np.inf, -2.07944154,
|
||||
-1.25276297, -0.69314718,
|
||||
-0.22314355, 0.22314355,
|
||||
0.69314718, 1.25276297,
|
||||
2.07944154, np.inf])
|
||||
self.check_logit_out('f8', expected)
|
||||
|
||||
def test_nan(self):
|
||||
expected = np.array([np.nan]*4)
|
||||
with np.errstate(invalid='ignore'):
|
||||
actual = logit(np.array([-3., -2., 2., 3.]))
|
||||
|
||||
assert_equal(expected, actual)
|
||||
|
||||
|
||||
class TestExpit(object):
|
||||
def check_expit_out(self, dtype, expected):
|
||||
a = np.linspace(-4,4,10)
|
||||
a = np.array(a, dtype=dtype)
|
||||
actual = expit(a)
|
||||
assert_almost_equal(actual, expected)
|
||||
assert_equal(actual.dtype, np.dtype(dtype))
|
||||
|
||||
def test_float32(self):
|
||||
expected = np.array([0.01798621, 0.04265125,
|
||||
0.09777259, 0.20860852,
|
||||
0.39068246, 0.60931754,
|
||||
0.79139149, 0.9022274,
|
||||
0.95734876, 0.98201376], dtype=np.float32)
|
||||
self.check_expit_out('f4',expected)
|
||||
|
||||
def test_float64(self):
|
||||
expected = np.array([0.01798621, 0.04265125,
|
||||
0.0977726, 0.20860853,
|
||||
0.39068246, 0.60931754,
|
||||
0.79139147, 0.9022274,
|
||||
0.95734875, 0.98201379])
|
||||
self.check_expit_out('f8', expected)
|
||||
|
||||
def test_large(self):
|
||||
for dtype in (np.float32, np.float64, np.longdouble):
|
||||
for n in (88, 89, 709, 710, 11356, 11357):
|
||||
n = np.array(n, dtype=dtype)
|
||||
assert_allclose(expit(n), 1.0, atol=1e-20)
|
||||
assert_allclose(expit(-n), 0.0, atol=1e-20)
|
||||
assert_equal(expit(n).dtype, dtype)
|
||||
assert_equal(expit(-n).dtype, dtype)
|
194
venv/Lib/site-packages/scipy/special/tests/test_logsumexp.py
Normal file
194
venv/Lib/site-packages/scipy/special/tests/test_logsumexp.py
Normal file
|
@ -0,0 +1,194 @@
|
|||
import numpy as np
|
||||
from numpy.testing import (assert_almost_equal, assert_equal, assert_allclose,
|
||||
assert_array_almost_equal, assert_)
|
||||
|
||||
from scipy.special import logsumexp, softmax
|
||||
|
||||
|
||||
def test_logsumexp():
|
||||
# Test whether logsumexp() function correctly handles large inputs.
|
||||
a = np.arange(200)
|
||||
desired = np.log(np.sum(np.exp(a)))
|
||||
assert_almost_equal(logsumexp(a), desired)
|
||||
|
||||
# Now test with large numbers
|
||||
b = [1000, 1000]
|
||||
desired = 1000.0 + np.log(2.0)
|
||||
assert_almost_equal(logsumexp(b), desired)
|
||||
|
||||
n = 1000
|
||||
b = np.full(n, 10000, dtype='float64')
|
||||
desired = 10000.0 + np.log(n)
|
||||
assert_almost_equal(logsumexp(b), desired)
|
||||
|
||||
x = np.array([1e-40] * 1000000)
|
||||
logx = np.log(x)
|
||||
|
||||
X = np.vstack([x, x])
|
||||
logX = np.vstack([logx, logx])
|
||||
assert_array_almost_equal(np.exp(logsumexp(logX)), X.sum())
|
||||
assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0))
|
||||
assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1))
|
||||
|
||||
# Handling special values properly
|
||||
assert_equal(logsumexp(np.inf), np.inf)
|
||||
assert_equal(logsumexp(-np.inf), -np.inf)
|
||||
assert_equal(logsumexp(np.nan), np.nan)
|
||||
assert_equal(logsumexp([-np.inf, -np.inf]), -np.inf)
|
||||
|
||||
# Handling an array with different magnitudes on the axes
|
||||
assert_array_almost_equal(logsumexp([[1e10, 1e-10],
|
||||
[-1e10, -np.inf]], axis=-1),
|
||||
[1e10, -1e10])
|
||||
|
||||
# Test keeping dimensions
|
||||
assert_array_almost_equal(logsumexp([[1e10, 1e-10],
|
||||
[-1e10, -np.inf]],
|
||||
axis=-1,
|
||||
keepdims=True),
|
||||
[[1e10], [-1e10]])
|
||||
|
||||
# Test multiple axes
|
||||
assert_array_almost_equal(logsumexp([[1e10, 1e-10],
|
||||
[-1e10, -np.inf]],
|
||||
axis=(-1,-2)),
|
||||
1e10)
|
||||
|
||||
|
||||
def test_logsumexp_b():
|
||||
a = np.arange(200)
|
||||
b = np.arange(200, 0, -1)
|
||||
desired = np.log(np.sum(b*np.exp(a)))
|
||||
assert_almost_equal(logsumexp(a, b=b), desired)
|
||||
|
||||
a = [1000, 1000]
|
||||
b = [1.2, 1.2]
|
||||
desired = 1000 + np.log(2 * 1.2)
|
||||
assert_almost_equal(logsumexp(a, b=b), desired)
|
||||
|
||||
x = np.array([1e-40] * 100000)
|
||||
b = np.linspace(1, 1000, 100000)
|
||||
logx = np.log(x)
|
||||
|
||||
X = np.vstack((x, x))
|
||||
logX = np.vstack((logx, logx))
|
||||
B = np.vstack((b, b))
|
||||
assert_array_almost_equal(np.exp(logsumexp(logX, b=B)), (B * X).sum())
|
||||
assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=0)),
|
||||
(B * X).sum(axis=0))
|
||||
assert_array_almost_equal(np.exp(logsumexp(logX, b=B, axis=1)),
|
||||
(B * X).sum(axis=1))
|
||||
|
||||
|
||||
def test_logsumexp_sign():
|
||||
a = [1,1,1]
|
||||
b = [1,-1,-1]
|
||||
|
||||
r, s = logsumexp(a, b=b, return_sign=True)
|
||||
assert_almost_equal(r,1)
|
||||
assert_equal(s,-1)
|
||||
|
||||
|
||||
def test_logsumexp_sign_zero():
|
||||
a = [1,1]
|
||||
b = [1,-1]
|
||||
|
||||
r, s = logsumexp(a, b=b, return_sign=True)
|
||||
assert_(not np.isfinite(r))
|
||||
assert_(not np.isnan(r))
|
||||
assert_(r < 0)
|
||||
assert_equal(s,0)
|
||||
|
||||
|
||||
def test_logsumexp_sign_shape():
|
||||
a = np.ones((1,2,3,4))
|
||||
b = np.ones_like(a)
|
||||
|
||||
r, s = logsumexp(a, axis=2, b=b, return_sign=True)
|
||||
|
||||
assert_equal(r.shape, s.shape)
|
||||
assert_equal(r.shape, (1,2,4))
|
||||
|
||||
r, s = logsumexp(a, axis=(1,3), b=b, return_sign=True)
|
||||
|
||||
assert_equal(r.shape, s.shape)
|
||||
assert_equal(r.shape, (1,3))
|
||||
|
||||
|
||||
def test_logsumexp_shape():
|
||||
a = np.ones((1, 2, 3, 4))
|
||||
b = np.ones_like(a)
|
||||
|
||||
r = logsumexp(a, axis=2, b=b)
|
||||
assert_equal(r.shape, (1, 2, 4))
|
||||
|
||||
r = logsumexp(a, axis=(1, 3), b=b)
|
||||
assert_equal(r.shape, (1, 3))
|
||||
|
||||
|
||||
def test_logsumexp_b_zero():
|
||||
a = [1,10000]
|
||||
b = [1,0]
|
||||
|
||||
assert_almost_equal(logsumexp(a, b=b), 1)
|
||||
|
||||
|
||||
def test_logsumexp_b_shape():
|
||||
a = np.zeros((4,1,2,1))
|
||||
b = np.ones((3,1,5))
|
||||
|
||||
logsumexp(a, b=b)
|
||||
|
||||
|
||||
def test_softmax_fixtures():
|
||||
assert_allclose(softmax([1000, 0, 0, 0]), np.array([1, 0, 0, 0]),
|
||||
rtol=1e-13)
|
||||
assert_allclose(softmax([1, 1]), np.array([.5, .5]), rtol=1e-13)
|
||||
assert_allclose(softmax([0, 1]), np.array([1, np.e])/(1 + np.e),
|
||||
rtol=1e-13)
|
||||
|
||||
# Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
|
||||
# converted to float.
|
||||
x = np.arange(4)
|
||||
expected = np.array([0.03205860328008499,
|
||||
0.08714431874203256,
|
||||
0.23688281808991013,
|
||||
0.6439142598879722])
|
||||
|
||||
assert_allclose(softmax(x), expected, rtol=1e-13)
|
||||
|
||||
# Translation property. If all the values are changed by the same amount,
|
||||
# the softmax result does not change.
|
||||
assert_allclose(softmax(x + 100), expected, rtol=1e-13)
|
||||
|
||||
# When axis=None, softmax operates on the entire array, and preserves
|
||||
# the shape.
|
||||
assert_allclose(softmax(x.reshape(2, 2)), expected.reshape(2, 2),
|
||||
rtol=1e-13)
|
||||
|
||||
|
||||
def test_softmax_multi_axes():
|
||||
assert_allclose(softmax([[1000, 0], [1000, 0]], axis=0),
|
||||
np.array([[.5, .5], [.5, .5]]), rtol=1e-13)
|
||||
assert_allclose(softmax([[1000, 0], [1000, 0]], axis=1),
|
||||
np.array([[1, 0], [1, 0]]), rtol=1e-13)
|
||||
|
||||
# Expected value computed using mpmath (with mpmath.mp.dps = 200) and then
|
||||
# converted to float.
|
||||
x = np.array([[-25, 0, 25, 50],
|
||||
[1, 325, 749, 750]])
|
||||
expected = np.array([[2.678636961770877e-33,
|
||||
1.9287498479371314e-22,
|
||||
1.3887943864771144e-11,
|
||||
0.999999999986112],
|
||||
[0.0,
|
||||
1.9444526359919372e-185,
|
||||
0.2689414213699951,
|
||||
0.7310585786300048]])
|
||||
assert_allclose(softmax(x, axis=1), expected, rtol=1e-13)
|
||||
assert_allclose(softmax(x.T, axis=0), expected.T, rtol=1e-13)
|
||||
|
||||
# 3-d input, with a tuple for the axis.
|
||||
x3d = x.reshape(2, 2, 2)
|
||||
assert_allclose(softmax(x3d, axis=(1, 2)), expected.reshape(2, 2, 2),
|
||||
rtol=1e-13)
|
2024
venv/Lib/site-packages/scipy/special/tests/test_mpmath.py
Normal file
2024
venv/Lib/site-packages/scipy/special/tests/test_mpmath.py
Normal file
File diff suppressed because it is too large
Load diff
|
@ -0,0 +1,64 @@
|
|||
"""Test how the ufuncs in special handle nan inputs.
|
||||
|
||||
"""
|
||||
from typing import Callable, Dict
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_equal, assert_, suppress_warnings
|
||||
import pytest
|
||||
import scipy.special as sc
|
||||
|
||||
|
||||
KNOWNFAILURES: Dict[str, Callable] = {}
|
||||
|
||||
POSTPROCESSING: Dict[str, Callable] = {}
|
||||
|
||||
|
||||
def _get_ufuncs():
|
||||
ufuncs = []
|
||||
ufunc_names = []
|
||||
for name in sorted(sc.__dict__):
|
||||
obj = sc.__dict__[name]
|
||||
if not isinstance(obj, np.ufunc):
|
||||
continue
|
||||
msg = KNOWNFAILURES.get(obj)
|
||||
if msg is None:
|
||||
ufuncs.append(obj)
|
||||
ufunc_names.append(name)
|
||||
else:
|
||||
fail = pytest.mark.xfail(run=False, reason=msg)
|
||||
ufuncs.append(pytest.param(obj, marks=fail))
|
||||
ufunc_names.append(name)
|
||||
return ufuncs, ufunc_names
|
||||
|
||||
|
||||
UFUNCS, UFUNC_NAMES = _get_ufuncs()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("func", UFUNCS, ids=UFUNC_NAMES)
|
||||
def test_nan_inputs(func):
|
||||
args = (np.nan,)*func.nin
|
||||
with suppress_warnings() as sup:
|
||||
# Ignore warnings about unsafe casts from legacy wrappers
|
||||
sup.filter(RuntimeWarning,
|
||||
"floating point number truncated to an integer")
|
||||
try:
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(DeprecationWarning)
|
||||
res = func(*args)
|
||||
except TypeError:
|
||||
# One of the arguments doesn't take real inputs
|
||||
return
|
||||
if func in POSTPROCESSING:
|
||||
res = POSTPROCESSING[func](*res)
|
||||
|
||||
msg = "got {} instead of nan".format(res)
|
||||
assert_array_equal(np.isnan(res), True, err_msg=msg)
|
||||
|
||||
|
||||
def test_legacy_cast():
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(RuntimeWarning,
|
||||
"floating point number truncated to an integer")
|
||||
res = sc.bdtrc(np.nan, 1, 0.5)
|
||||
assert_(np.isnan(res))
|
20
venv/Lib/site-packages/scipy/special/tests/test_ndtr.py
Normal file
20
venv/Lib/site-packages/scipy/special/tests/test_ndtr.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_equal, assert_almost_equal
|
||||
import scipy.special as sc
|
||||
|
||||
|
||||
def test_ndtr():
|
||||
assert_equal(sc.ndtr(0), 0.5)
|
||||
assert_almost_equal(sc.ndtr(1), 0.84134474606)
|
||||
|
||||
|
||||
class TestNdtri:
|
||||
|
||||
def test_zero(self):
|
||||
assert sc.ndtri(0.5) == 0.0
|
||||
|
||||
def test_asymptotes(self):
|
||||
assert_equal(sc.ndtri([0.0, 1.0]), [-np.inf, np.inf])
|
||||
|
||||
def test_outside_of_domain(self):
|
||||
assert all(np.isnan(sc.ndtri([-1.5, 1.5])))
|
748
venv/Lib/site-packages/scipy/special/tests/test_orthogonal.py
Normal file
748
venv/Lib/site-packages/scipy/special/tests/test_orthogonal.py
Normal file
|
@ -0,0 +1,748 @@
|
|||
import numpy as np
|
||||
from numpy import array, sqrt
|
||||
from numpy.testing import (assert_array_almost_equal, assert_equal,
|
||||
assert_almost_equal, assert_allclose)
|
||||
from pytest import raises as assert_raises
|
||||
|
||||
from scipy import integrate
|
||||
import scipy.special as sc
|
||||
from scipy.special import gamma
|
||||
import scipy.special.orthogonal as orth
|
||||
|
||||
|
||||
class TestCheby(object):
|
||||
def test_chebyc(self):
|
||||
C0 = orth.chebyc(0)
|
||||
C1 = orth.chebyc(1)
|
||||
with np.errstate(all='ignore'):
|
||||
C2 = orth.chebyc(2)
|
||||
C3 = orth.chebyc(3)
|
||||
C4 = orth.chebyc(4)
|
||||
C5 = orth.chebyc(5)
|
||||
|
||||
assert_array_almost_equal(C0.c,[2],13)
|
||||
assert_array_almost_equal(C1.c,[1,0],13)
|
||||
assert_array_almost_equal(C2.c,[1,0,-2],13)
|
||||
assert_array_almost_equal(C3.c,[1,0,-3,0],13)
|
||||
assert_array_almost_equal(C4.c,[1,0,-4,0,2],13)
|
||||
assert_array_almost_equal(C5.c,[1,0,-5,0,5,0],13)
|
||||
|
||||
def test_chebys(self):
|
||||
S0 = orth.chebys(0)
|
||||
S1 = orth.chebys(1)
|
||||
S2 = orth.chebys(2)
|
||||
S3 = orth.chebys(3)
|
||||
S4 = orth.chebys(4)
|
||||
S5 = orth.chebys(5)
|
||||
assert_array_almost_equal(S0.c,[1],13)
|
||||
assert_array_almost_equal(S1.c,[1,0],13)
|
||||
assert_array_almost_equal(S2.c,[1,0,-1],13)
|
||||
assert_array_almost_equal(S3.c,[1,0,-2,0],13)
|
||||
assert_array_almost_equal(S4.c,[1,0,-3,0,1],13)
|
||||
assert_array_almost_equal(S5.c,[1,0,-4,0,3,0],13)
|
||||
|
||||
def test_chebyt(self):
|
||||
T0 = orth.chebyt(0)
|
||||
T1 = orth.chebyt(1)
|
||||
T2 = orth.chebyt(2)
|
||||
T3 = orth.chebyt(3)
|
||||
T4 = orth.chebyt(4)
|
||||
T5 = orth.chebyt(5)
|
||||
assert_array_almost_equal(T0.c,[1],13)
|
||||
assert_array_almost_equal(T1.c,[1,0],13)
|
||||
assert_array_almost_equal(T2.c,[2,0,-1],13)
|
||||
assert_array_almost_equal(T3.c,[4,0,-3,0],13)
|
||||
assert_array_almost_equal(T4.c,[8,0,-8,0,1],13)
|
||||
assert_array_almost_equal(T5.c,[16,0,-20,0,5,0],13)
|
||||
|
||||
def test_chebyu(self):
|
||||
U0 = orth.chebyu(0)
|
||||
U1 = orth.chebyu(1)
|
||||
U2 = orth.chebyu(2)
|
||||
U3 = orth.chebyu(3)
|
||||
U4 = orth.chebyu(4)
|
||||
U5 = orth.chebyu(5)
|
||||
assert_array_almost_equal(U0.c,[1],13)
|
||||
assert_array_almost_equal(U1.c,[2,0],13)
|
||||
assert_array_almost_equal(U2.c,[4,0,-1],13)
|
||||
assert_array_almost_equal(U3.c,[8,0,-4,0],13)
|
||||
assert_array_almost_equal(U4.c,[16,0,-12,0,1],13)
|
||||
assert_array_almost_equal(U5.c,[32,0,-32,0,6,0],13)
|
||||
|
||||
|
||||
class TestGegenbauer(object):
|
||||
|
||||
def test_gegenbauer(self):
|
||||
a = 5*np.random.random() - 0.5
|
||||
if np.any(a == 0):
|
||||
a = -0.2
|
||||
Ca0 = orth.gegenbauer(0,a)
|
||||
Ca1 = orth.gegenbauer(1,a)
|
||||
Ca2 = orth.gegenbauer(2,a)
|
||||
Ca3 = orth.gegenbauer(3,a)
|
||||
Ca4 = orth.gegenbauer(4,a)
|
||||
Ca5 = orth.gegenbauer(5,a)
|
||||
|
||||
assert_array_almost_equal(Ca0.c,array([1]),13)
|
||||
assert_array_almost_equal(Ca1.c,array([2*a,0]),13)
|
||||
assert_array_almost_equal(Ca2.c,array([2*a*(a+1),0,-a]),13)
|
||||
assert_array_almost_equal(Ca3.c,array([4*sc.poch(a,3),0,-6*a*(a+1),
|
||||
0])/3.0,11)
|
||||
assert_array_almost_equal(Ca4.c,array([4*sc.poch(a,4),0,-12*sc.poch(a,3),
|
||||
0,3*a*(a+1)])/6.0,11)
|
||||
assert_array_almost_equal(Ca5.c,array([4*sc.poch(a,5),0,-20*sc.poch(a,4),
|
||||
0,15*sc.poch(a,3),0])/15.0,11)
|
||||
|
||||
|
||||
class TestHermite(object):
|
||||
def test_hermite(self):
|
||||
H0 = orth.hermite(0)
|
||||
H1 = orth.hermite(1)
|
||||
H2 = orth.hermite(2)
|
||||
H3 = orth.hermite(3)
|
||||
H4 = orth.hermite(4)
|
||||
H5 = orth.hermite(5)
|
||||
assert_array_almost_equal(H0.c,[1],13)
|
||||
assert_array_almost_equal(H1.c,[2,0],13)
|
||||
assert_array_almost_equal(H2.c,[4,0,-2],13)
|
||||
assert_array_almost_equal(H3.c,[8,0,-12,0],13)
|
||||
assert_array_almost_equal(H4.c,[16,0,-48,0,12],12)
|
||||
assert_array_almost_equal(H5.c,[32,0,-160,0,120,0],12)
|
||||
|
||||
def test_hermitenorm(self):
|
||||
# He_n(x) = 2**(-n/2) H_n(x/sqrt(2))
|
||||
psub = np.poly1d([1.0/sqrt(2),0])
|
||||
H0 = orth.hermitenorm(0)
|
||||
H1 = orth.hermitenorm(1)
|
||||
H2 = orth.hermitenorm(2)
|
||||
H3 = orth.hermitenorm(3)
|
||||
H4 = orth.hermitenorm(4)
|
||||
H5 = orth.hermitenorm(5)
|
||||
he0 = orth.hermite(0)(psub)
|
||||
he1 = orth.hermite(1)(psub) / sqrt(2)
|
||||
he2 = orth.hermite(2)(psub) / 2.0
|
||||
he3 = orth.hermite(3)(psub) / (2*sqrt(2))
|
||||
he4 = orth.hermite(4)(psub) / 4.0
|
||||
he5 = orth.hermite(5)(psub) / (4.0*sqrt(2))
|
||||
|
||||
assert_array_almost_equal(H0.c,he0.c,13)
|
||||
assert_array_almost_equal(H1.c,he1.c,13)
|
||||
assert_array_almost_equal(H2.c,he2.c,13)
|
||||
assert_array_almost_equal(H3.c,he3.c,13)
|
||||
assert_array_almost_equal(H4.c,he4.c,13)
|
||||
assert_array_almost_equal(H5.c,he5.c,13)
|
||||
|
||||
|
||||
class _test_sh_legendre(object):
|
||||
|
||||
def test_sh_legendre(self):
|
||||
# P*_n(x) = P_n(2x-1)
|
||||
psub = np.poly1d([2,-1])
|
||||
Ps0 = orth.sh_legendre(0)
|
||||
Ps1 = orth.sh_legendre(1)
|
||||
Ps2 = orth.sh_legendre(2)
|
||||
Ps3 = orth.sh_legendre(3)
|
||||
Ps4 = orth.sh_legendre(4)
|
||||
Ps5 = orth.sh_legendre(5)
|
||||
pse0 = orth.legendre(0)(psub)
|
||||
pse1 = orth.legendre(1)(psub)
|
||||
pse2 = orth.legendre(2)(psub)
|
||||
pse3 = orth.legendre(3)(psub)
|
||||
pse4 = orth.legendre(4)(psub)
|
||||
pse5 = orth.legendre(5)(psub)
|
||||
assert_array_almost_equal(Ps0.c,pse0.c,13)
|
||||
assert_array_almost_equal(Ps1.c,pse1.c,13)
|
||||
assert_array_almost_equal(Ps2.c,pse2.c,13)
|
||||
assert_array_almost_equal(Ps3.c,pse3.c,13)
|
||||
assert_array_almost_equal(Ps4.c,pse4.c,12)
|
||||
assert_array_almost_equal(Ps5.c,pse5.c,12)
|
||||
|
||||
|
||||
class _test_sh_chebyt(object):
|
||||
|
||||
def test_sh_chebyt(self):
|
||||
# T*_n(x) = T_n(2x-1)
|
||||
psub = np.poly1d([2,-1])
|
||||
Ts0 = orth.sh_chebyt(0)
|
||||
Ts1 = orth.sh_chebyt(1)
|
||||
Ts2 = orth.sh_chebyt(2)
|
||||
Ts3 = orth.sh_chebyt(3)
|
||||
Ts4 = orth.sh_chebyt(4)
|
||||
Ts5 = orth.sh_chebyt(5)
|
||||
tse0 = orth.chebyt(0)(psub)
|
||||
tse1 = orth.chebyt(1)(psub)
|
||||
tse2 = orth.chebyt(2)(psub)
|
||||
tse3 = orth.chebyt(3)(psub)
|
||||
tse4 = orth.chebyt(4)(psub)
|
||||
tse5 = orth.chebyt(5)(psub)
|
||||
assert_array_almost_equal(Ts0.c,tse0.c,13)
|
||||
assert_array_almost_equal(Ts1.c,tse1.c,13)
|
||||
assert_array_almost_equal(Ts2.c,tse2.c,13)
|
||||
assert_array_almost_equal(Ts3.c,tse3.c,13)
|
||||
assert_array_almost_equal(Ts4.c,tse4.c,12)
|
||||
assert_array_almost_equal(Ts5.c,tse5.c,12)
|
||||
|
||||
|
||||
class _test_sh_chebyu(object):
|
||||
|
||||
def test_sh_chebyu(self):
|
||||
# U*_n(x) = U_n(2x-1)
|
||||
psub = np.poly1d([2,-1])
|
||||
Us0 = orth.sh_chebyu(0)
|
||||
Us1 = orth.sh_chebyu(1)
|
||||
Us2 = orth.sh_chebyu(2)
|
||||
Us3 = orth.sh_chebyu(3)
|
||||
Us4 = orth.sh_chebyu(4)
|
||||
Us5 = orth.sh_chebyu(5)
|
||||
use0 = orth.chebyu(0)(psub)
|
||||
use1 = orth.chebyu(1)(psub)
|
||||
use2 = orth.chebyu(2)(psub)
|
||||
use3 = orth.chebyu(3)(psub)
|
||||
use4 = orth.chebyu(4)(psub)
|
||||
use5 = orth.chebyu(5)(psub)
|
||||
assert_array_almost_equal(Us0.c,use0.c,13)
|
||||
assert_array_almost_equal(Us1.c,use1.c,13)
|
||||
assert_array_almost_equal(Us2.c,use2.c,13)
|
||||
assert_array_almost_equal(Us3.c,use3.c,13)
|
||||
assert_array_almost_equal(Us4.c,use4.c,12)
|
||||
assert_array_almost_equal(Us5.c,use5.c,11)
|
||||
|
||||
|
||||
class _test_sh_jacobi(object):
|
||||
def test_sh_jacobi(self):
|
||||
# G^(p,q)_n(x) = n! gamma(n+p)/gamma(2*n+p) * P^(p-q,q-1)_n(2*x-1)
|
||||
conv = lambda n,p: gamma(n+1)*gamma(n+p)/gamma(2*n+p)
|
||||
psub = np.poly1d([2,-1])
|
||||
q = 4 * np.random.random()
|
||||
p = q-1 + 2*np.random.random()
|
||||
# print("shifted jacobi p,q = ", p, q)
|
||||
G0 = orth.sh_jacobi(0,p,q)
|
||||
G1 = orth.sh_jacobi(1,p,q)
|
||||
G2 = orth.sh_jacobi(2,p,q)
|
||||
G3 = orth.sh_jacobi(3,p,q)
|
||||
G4 = orth.sh_jacobi(4,p,q)
|
||||
G5 = orth.sh_jacobi(5,p,q)
|
||||
ge0 = orth.jacobi(0,p-q,q-1)(psub) * conv(0,p)
|
||||
ge1 = orth.jacobi(1,p-q,q-1)(psub) * conv(1,p)
|
||||
ge2 = orth.jacobi(2,p-q,q-1)(psub) * conv(2,p)
|
||||
ge3 = orth.jacobi(3,p-q,q-1)(psub) * conv(3,p)
|
||||
ge4 = orth.jacobi(4,p-q,q-1)(psub) * conv(4,p)
|
||||
ge5 = orth.jacobi(5,p-q,q-1)(psub) * conv(5,p)
|
||||
|
||||
assert_array_almost_equal(G0.c,ge0.c,13)
|
||||
assert_array_almost_equal(G1.c,ge1.c,13)
|
||||
assert_array_almost_equal(G2.c,ge2.c,13)
|
||||
assert_array_almost_equal(G3.c,ge3.c,13)
|
||||
assert_array_almost_equal(G4.c,ge4.c,13)
|
||||
assert_array_almost_equal(G5.c,ge5.c,13)
|
||||
|
||||
|
||||
class TestCall(object):
|
||||
def test_call(self):
|
||||
poly = []
|
||||
for n in range(5):
|
||||
poly.extend([x.strip() for x in
|
||||
("""
|
||||
orth.jacobi(%(n)d,0.3,0.9)
|
||||
orth.sh_jacobi(%(n)d,0.3,0.9)
|
||||
orth.genlaguerre(%(n)d,0.3)
|
||||
orth.laguerre(%(n)d)
|
||||
orth.hermite(%(n)d)
|
||||
orth.hermitenorm(%(n)d)
|
||||
orth.gegenbauer(%(n)d,0.3)
|
||||
orth.chebyt(%(n)d)
|
||||
orth.chebyu(%(n)d)
|
||||
orth.chebyc(%(n)d)
|
||||
orth.chebys(%(n)d)
|
||||
orth.sh_chebyt(%(n)d)
|
||||
orth.sh_chebyu(%(n)d)
|
||||
orth.legendre(%(n)d)
|
||||
orth.sh_legendre(%(n)d)
|
||||
""" % dict(n=n)).split()
|
||||
])
|
||||
with np.errstate(all='ignore'):
|
||||
for pstr in poly:
|
||||
p = eval(pstr)
|
||||
assert_almost_equal(p(0.315), np.poly1d(p.coef)(0.315),
|
||||
err_msg=pstr)
|
||||
|
||||
|
||||
class TestGenlaguerre(object):
|
||||
def test_regression(self):
|
||||
assert_equal(orth.genlaguerre(1, 1, monic=False)(0), 2.)
|
||||
assert_equal(orth.genlaguerre(1, 1, monic=True)(0), -2.)
|
||||
assert_equal(orth.genlaguerre(1, 1, monic=False), np.poly1d([-1, 2]))
|
||||
assert_equal(orth.genlaguerre(1, 1, monic=True), np.poly1d([1, -2]))
|
||||
|
||||
|
||||
def verify_gauss_quad(root_func, eval_func, weight_func, a, b, N,
|
||||
rtol=1e-15, atol=1e-14):
|
||||
# this test is copied from numpy's TestGauss in test_hermite.py
|
||||
x, w, mu = root_func(N, True)
|
||||
|
||||
n = np.arange(N)
|
||||
v = eval_func(n[:,np.newaxis], x)
|
||||
vv = np.dot(v*w, v.T)
|
||||
vd = 1 / np.sqrt(vv.diagonal())
|
||||
vv = vd[:, np.newaxis] * vv * vd
|
||||
assert_allclose(vv, np.eye(N), rtol, atol)
|
||||
|
||||
# check that the integral of 1 is correct
|
||||
assert_allclose(w.sum(), mu, rtol, atol)
|
||||
|
||||
# compare the results of integrating a function with quad.
|
||||
f = lambda x: x**3 - 3*x**2 + x - 2
|
||||
resI = integrate.quad(lambda x: f(x)*weight_func(x), a, b)
|
||||
resG = np.vdot(f(x), w)
|
||||
rtol = 1e-6 if 1e-6 < resI[1] else resI[1] * 10
|
||||
assert_allclose(resI[0], resG, rtol=rtol)
|
||||
|
||||
def test_roots_jacobi():
|
||||
rf = lambda a, b: lambda n, mu: sc.roots_jacobi(n, a, b, mu)
|
||||
ef = lambda a, b: lambda n, x: sc.eval_jacobi(n, a, b, x)
|
||||
wf = lambda a, b: lambda x: (1 - x)**a * (1 + x)**b
|
||||
|
||||
vgq = verify_gauss_quad
|
||||
vgq(rf(-0.5, -0.75), ef(-0.5, -0.75), wf(-0.5, -0.75), -1., 1., 5)
|
||||
vgq(rf(-0.5, -0.75), ef(-0.5, -0.75), wf(-0.5, -0.75), -1., 1.,
|
||||
25, atol=1e-12)
|
||||
vgq(rf(-0.5, -0.75), ef(-0.5, -0.75), wf(-0.5, -0.75), -1., 1.,
|
||||
100, atol=1e-11)
|
||||
|
||||
vgq(rf(0.5, -0.5), ef(0.5, -0.5), wf(0.5, -0.5), -1., 1., 5)
|
||||
vgq(rf(0.5, -0.5), ef(0.5, -0.5), wf(0.5, -0.5), -1., 1., 25, atol=1.5e-13)
|
||||
vgq(rf(0.5, -0.5), ef(0.5, -0.5), wf(0.5, -0.5), -1., 1., 100, atol=2e-12)
|
||||
|
||||
vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), -1., 1., 5, atol=2e-13)
|
||||
vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), -1., 1., 25, atol=2e-13)
|
||||
vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), -1., 1., 100, atol=1e-12)
|
||||
|
||||
vgq(rf(0.9, 2), ef(0.9, 2), wf(0.9, 2), -1., 1., 5)
|
||||
vgq(rf(0.9, 2), ef(0.9, 2), wf(0.9, 2), -1., 1., 25, atol=1e-13)
|
||||
vgq(rf(0.9, 2), ef(0.9, 2), wf(0.9, 2), -1., 1., 100, atol=3e-13)
|
||||
|
||||
vgq(rf(18.24, 27.3), ef(18.24, 27.3), wf(18.24, 27.3), -1., 1., 5)
|
||||
vgq(rf(18.24, 27.3), ef(18.24, 27.3), wf(18.24, 27.3), -1., 1., 25,
|
||||
atol=1.1e-14)
|
||||
vgq(rf(18.24, 27.3), ef(18.24, 27.3), wf(18.24, 27.3), -1., 1.,
|
||||
100, atol=1e-13)
|
||||
|
||||
vgq(rf(47.1, -0.2), ef(47.1, -0.2), wf(47.1, -0.2), -1., 1., 5, atol=1e-13)
|
||||
vgq(rf(47.1, -0.2), ef(47.1, -0.2), wf(47.1, -0.2), -1., 1., 25, atol=2e-13)
|
||||
vgq(rf(47.1, -0.2), ef(47.1, -0.2), wf(47.1, -0.2), -1., 1.,
|
||||
100, atol=1e-11)
|
||||
|
||||
vgq(rf(2.25, 68.9), ef(2.25, 68.9), wf(2.25, 68.9), -1., 1., 5)
|
||||
vgq(rf(2.25, 68.9), ef(2.25, 68.9), wf(2.25, 68.9), -1., 1., 25, atol=1e-13)
|
||||
vgq(rf(2.25, 68.9), ef(2.25, 68.9), wf(2.25, 68.9), -1., 1.,
|
||||
100, atol=1e-13)
|
||||
|
||||
# when alpha == beta == 0, P_n^{a,b}(x) == P_n(x)
|
||||
xj, wj = sc.roots_jacobi(6, 0.0, 0.0)
|
||||
xl, wl = sc.roots_legendre(6)
|
||||
assert_allclose(xj, xl, 1e-14, 1e-14)
|
||||
assert_allclose(wj, wl, 1e-14, 1e-14)
|
||||
|
||||
# when alpha == beta != 0, P_n^{a,b}(x) == C_n^{alpha+0.5}(x)
|
||||
xj, wj = sc.roots_jacobi(6, 4.0, 4.0)
|
||||
xc, wc = sc.roots_gegenbauer(6, 4.5)
|
||||
assert_allclose(xj, xc, 1e-14, 1e-14)
|
||||
assert_allclose(wj, wc, 1e-14, 1e-14)
|
||||
|
||||
x, w = sc.roots_jacobi(5, 2, 3, False)
|
||||
y, v, m = sc.roots_jacobi(5, 2, 3, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(wf(2,3), -1, 1)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_jacobi, 0, 1, 1)
|
||||
assert_raises(ValueError, sc.roots_jacobi, 3.3, 1, 1)
|
||||
assert_raises(ValueError, sc.roots_jacobi, 3, -2, 1)
|
||||
assert_raises(ValueError, sc.roots_jacobi, 3, 1, -2)
|
||||
assert_raises(ValueError, sc.roots_jacobi, 3, -2, -2)
|
||||
|
||||
def test_roots_sh_jacobi():
|
||||
rf = lambda a, b: lambda n, mu: sc.roots_sh_jacobi(n, a, b, mu)
|
||||
ef = lambda a, b: lambda n, x: sc.eval_sh_jacobi(n, a, b, x)
|
||||
wf = lambda a, b: lambda x: (1. - x)**(a - b) * (x)**(b - 1.)
|
||||
|
||||
vgq = verify_gauss_quad
|
||||
vgq(rf(-0.5, 0.25), ef(-0.5, 0.25), wf(-0.5, 0.25), 0., 1., 5)
|
||||
vgq(rf(-0.5, 0.25), ef(-0.5, 0.25), wf(-0.5, 0.25), 0., 1.,
|
||||
25, atol=1e-12)
|
||||
vgq(rf(-0.5, 0.25), ef(-0.5, 0.25), wf(-0.5, 0.25), 0., 1.,
|
||||
100, atol=1e-11)
|
||||
|
||||
vgq(rf(0.5, 0.5), ef(0.5, 0.5), wf(0.5, 0.5), 0., 1., 5)
|
||||
vgq(rf(0.5, 0.5), ef(0.5, 0.5), wf(0.5, 0.5), 0., 1., 25, atol=1e-13)
|
||||
vgq(rf(0.5, 0.5), ef(0.5, 0.5), wf(0.5, 0.5), 0., 1., 100, atol=1e-12)
|
||||
|
||||
vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), 0., 1., 5)
|
||||
vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), 0., 1., 25, atol=1.5e-13)
|
||||
vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), 0., 1., 100, atol=2e-12)
|
||||
|
||||
vgq(rf(2, 0.9), ef(2, 0.9), wf(2, 0.9), 0., 1., 5)
|
||||
vgq(rf(2, 0.9), ef(2, 0.9), wf(2, 0.9), 0., 1., 25, atol=1e-13)
|
||||
vgq(rf(2, 0.9), ef(2, 0.9), wf(2, 0.9), 0., 1., 100, atol=1e-12)
|
||||
|
||||
vgq(rf(27.3, 18.24), ef(27.3, 18.24), wf(27.3, 18.24), 0., 1., 5)
|
||||
vgq(rf(27.3, 18.24), ef(27.3, 18.24), wf(27.3, 18.24), 0., 1., 25)
|
||||
vgq(rf(27.3, 18.24), ef(27.3, 18.24), wf(27.3, 18.24), 0., 1.,
|
||||
100, atol=1e-13)
|
||||
|
||||
vgq(rf(47.1, 0.2), ef(47.1, 0.2), wf(47.1, 0.2), 0., 1., 5, atol=1e-12)
|
||||
vgq(rf(47.1, 0.2), ef(47.1, 0.2), wf(47.1, 0.2), 0., 1., 25, atol=1e-11)
|
||||
vgq(rf(47.1, 0.2), ef(47.1, 0.2), wf(47.1, 0.2), 0., 1., 100, atol=1e-10)
|
||||
|
||||
vgq(rf(68.9, 2.25), ef(68.9, 2.25), wf(68.9, 2.25), 0., 1., 5, atol=3.5e-14)
|
||||
vgq(rf(68.9, 2.25), ef(68.9, 2.25), wf(68.9, 2.25), 0., 1., 25, atol=2e-13)
|
||||
vgq(rf(68.9, 2.25), ef(68.9, 2.25), wf(68.9, 2.25), 0., 1.,
|
||||
100, atol=1e-12)
|
||||
|
||||
x, w = sc.roots_sh_jacobi(5, 3, 2, False)
|
||||
y, v, m = sc.roots_sh_jacobi(5, 3, 2, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(wf(3,2), 0, 1)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_sh_jacobi, 0, 1, 1)
|
||||
assert_raises(ValueError, sc.roots_sh_jacobi, 3.3, 1, 1)
|
||||
assert_raises(ValueError, sc.roots_sh_jacobi, 3, 1, 2) # p - q <= -1
|
||||
assert_raises(ValueError, sc.roots_sh_jacobi, 3, 2, -1) # q <= 0
|
||||
assert_raises(ValueError, sc.roots_sh_jacobi, 3, -2, -1) # both
|
||||
|
||||
def test_roots_hermite():
|
||||
rootf = sc.roots_hermite
|
||||
evalf = sc.eval_hermite
|
||||
weightf = orth.hermite(5).weight_func
|
||||
|
||||
verify_gauss_quad(rootf, evalf, weightf, -np.inf, np.inf, 5)
|
||||
verify_gauss_quad(rootf, evalf, weightf, -np.inf, np.inf, 25, atol=1e-13)
|
||||
verify_gauss_quad(rootf, evalf, weightf, -np.inf, np.inf, 100, atol=1e-12)
|
||||
|
||||
# Golub-Welsch branch
|
||||
x, w = sc.roots_hermite(5, False)
|
||||
y, v, m = sc.roots_hermite(5, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf, -np.inf, np.inf)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
# Asymptotic branch (switch over at n >= 150)
|
||||
x, w = sc.roots_hermite(200, False)
|
||||
y, v, m = sc.roots_hermite(200, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
assert_allclose(sum(v), m, 1e-14, 1e-14)
|
||||
|
||||
assert_raises(ValueError, sc.roots_hermite, 0)
|
||||
assert_raises(ValueError, sc.roots_hermite, 3.3)
|
||||
|
||||
def test_roots_hermite_asy():
|
||||
# Recursion for Hermite functions
|
||||
def hermite_recursion(n, nodes):
|
||||
H = np.zeros((n, nodes.size))
|
||||
H[0,:] = np.pi**(-0.25) * np.exp(-0.5*nodes**2)
|
||||
if n > 1:
|
||||
H[1,:] = sqrt(2.0) * nodes * H[0,:]
|
||||
for k in range(2, n):
|
||||
H[k,:] = sqrt(2.0/k) * nodes * H[k-1,:] - sqrt((k-1.0)/k) * H[k-2,:]
|
||||
return H
|
||||
|
||||
# This tests only the nodes
|
||||
def test(N, rtol=1e-15, atol=1e-14):
|
||||
x, w = orth._roots_hermite_asy(N)
|
||||
H = hermite_recursion(N+1, x)
|
||||
assert_allclose(H[-1,:], np.zeros(N), rtol, atol)
|
||||
assert_allclose(sum(w), sqrt(np.pi), rtol, atol)
|
||||
|
||||
test(150, atol=1e-12)
|
||||
test(151, atol=1e-12)
|
||||
test(300, atol=1e-12)
|
||||
test(301, atol=1e-12)
|
||||
test(500, atol=1e-12)
|
||||
test(501, atol=1e-12)
|
||||
test(999, atol=1e-12)
|
||||
test(1000, atol=1e-12)
|
||||
test(2000, atol=1e-12)
|
||||
test(5000, atol=1e-12)
|
||||
|
||||
def test_roots_hermitenorm():
|
||||
rootf = sc.roots_hermitenorm
|
||||
evalf = sc.eval_hermitenorm
|
||||
weightf = orth.hermitenorm(5).weight_func
|
||||
|
||||
verify_gauss_quad(rootf, evalf, weightf, -np.inf, np.inf, 5)
|
||||
verify_gauss_quad(rootf, evalf, weightf, -np.inf, np.inf, 25, atol=1e-13)
|
||||
verify_gauss_quad(rootf, evalf, weightf, -np.inf, np.inf, 100, atol=1e-12)
|
||||
|
||||
x, w = sc.roots_hermitenorm(5, False)
|
||||
y, v, m = sc.roots_hermitenorm(5, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf, -np.inf, np.inf)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_hermitenorm, 0)
|
||||
assert_raises(ValueError, sc.roots_hermitenorm, 3.3)
|
||||
|
||||
def test_roots_gegenbauer():
|
||||
rootf = lambda a: lambda n, mu: sc.roots_gegenbauer(n, a, mu)
|
||||
evalf = lambda a: lambda n, x: sc.eval_gegenbauer(n, a, x)
|
||||
weightf = lambda a: lambda x: (1 - x**2)**(a - 0.5)
|
||||
|
||||
vgq = verify_gauss_quad
|
||||
vgq(rootf(-0.25), evalf(-0.25), weightf(-0.25), -1., 1., 5)
|
||||
vgq(rootf(-0.25), evalf(-0.25), weightf(-0.25), -1., 1., 25, atol=1e-12)
|
||||
vgq(rootf(-0.25), evalf(-0.25), weightf(-0.25), -1., 1., 100, atol=1e-11)
|
||||
|
||||
vgq(rootf(0.1), evalf(0.1), weightf(0.1), -1., 1., 5)
|
||||
vgq(rootf(0.1), evalf(0.1), weightf(0.1), -1., 1., 25, atol=1e-13)
|
||||
vgq(rootf(0.1), evalf(0.1), weightf(0.1), -1., 1., 100, atol=1e-12)
|
||||
|
||||
vgq(rootf(1), evalf(1), weightf(1), -1., 1., 5)
|
||||
vgq(rootf(1), evalf(1), weightf(1), -1., 1., 25, atol=1e-13)
|
||||
vgq(rootf(1), evalf(1), weightf(1), -1., 1., 100, atol=1e-12)
|
||||
|
||||
vgq(rootf(10), evalf(10), weightf(10), -1., 1., 5)
|
||||
vgq(rootf(10), evalf(10), weightf(10), -1., 1., 25, atol=1e-13)
|
||||
vgq(rootf(10), evalf(10), weightf(10), -1., 1., 100, atol=1e-12)
|
||||
|
||||
vgq(rootf(50), evalf(50), weightf(50), -1., 1., 5, atol=1e-13)
|
||||
vgq(rootf(50), evalf(50), weightf(50), -1., 1., 25, atol=1e-12)
|
||||
vgq(rootf(50), evalf(50), weightf(50), -1., 1., 100, atol=1e-11)
|
||||
|
||||
# this is a special case that the old code supported.
|
||||
# when alpha = 0, the gegenbauer polynomial is uniformly 0. but it goes
|
||||
# to a scaled down copy of T_n(x) there.
|
||||
vgq(rootf(0), sc.eval_chebyt, weightf(0), -1., 1., 5)
|
||||
vgq(rootf(0), sc.eval_chebyt, weightf(0), -1., 1., 25)
|
||||
vgq(rootf(0), sc.eval_chebyt, weightf(0), -1., 1., 100, atol=1e-12)
|
||||
|
||||
x, w = sc.roots_gegenbauer(5, 2, False)
|
||||
y, v, m = sc.roots_gegenbauer(5, 2, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf(2), -1, 1)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_gegenbauer, 0, 2)
|
||||
assert_raises(ValueError, sc.roots_gegenbauer, 3.3, 2)
|
||||
assert_raises(ValueError, sc.roots_gegenbauer, 3, -.75)
|
||||
|
||||
def test_roots_chebyt():
|
||||
weightf = orth.chebyt(5).weight_func
|
||||
verify_gauss_quad(sc.roots_chebyt, sc.eval_chebyt, weightf, -1., 1., 5)
|
||||
verify_gauss_quad(sc.roots_chebyt, sc.eval_chebyt, weightf, -1., 1., 25)
|
||||
verify_gauss_quad(sc.roots_chebyt, sc.eval_chebyt, weightf, -1., 1., 100, atol=1e-12)
|
||||
|
||||
x, w = sc.roots_chebyt(5, False)
|
||||
y, v, m = sc.roots_chebyt(5, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf, -1, 1)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_chebyt, 0)
|
||||
assert_raises(ValueError, sc.roots_chebyt, 3.3)
|
||||
|
||||
def test_chebyt_symmetry():
|
||||
x, w = sc.roots_chebyt(21)
|
||||
pos, neg = x[:10], x[11:]
|
||||
assert_equal(neg, -pos[::-1])
|
||||
assert_equal(x[10], 0)
|
||||
|
||||
def test_roots_chebyu():
|
||||
weightf = orth.chebyu(5).weight_func
|
||||
verify_gauss_quad(sc.roots_chebyu, sc.eval_chebyu, weightf, -1., 1., 5)
|
||||
verify_gauss_quad(sc.roots_chebyu, sc.eval_chebyu, weightf, -1., 1., 25)
|
||||
verify_gauss_quad(sc.roots_chebyu, sc.eval_chebyu, weightf, -1., 1., 100)
|
||||
|
||||
x, w = sc.roots_chebyu(5, False)
|
||||
y, v, m = sc.roots_chebyu(5, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf, -1, 1)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_chebyu, 0)
|
||||
assert_raises(ValueError, sc.roots_chebyu, 3.3)
|
||||
|
||||
def test_roots_chebyc():
|
||||
weightf = orth.chebyc(5).weight_func
|
||||
verify_gauss_quad(sc.roots_chebyc, sc.eval_chebyc, weightf, -2., 2., 5)
|
||||
verify_gauss_quad(sc.roots_chebyc, sc.eval_chebyc, weightf, -2., 2., 25)
|
||||
verify_gauss_quad(sc.roots_chebyc, sc.eval_chebyc, weightf, -2., 2., 100, atol=1e-12)
|
||||
|
||||
x, w = sc.roots_chebyc(5, False)
|
||||
y, v, m = sc.roots_chebyc(5, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf, -2, 2)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_chebyc, 0)
|
||||
assert_raises(ValueError, sc.roots_chebyc, 3.3)
|
||||
|
||||
def test_roots_chebys():
|
||||
weightf = orth.chebys(5).weight_func
|
||||
verify_gauss_quad(sc.roots_chebys, sc.eval_chebys, weightf, -2., 2., 5)
|
||||
verify_gauss_quad(sc.roots_chebys, sc.eval_chebys, weightf, -2., 2., 25)
|
||||
verify_gauss_quad(sc.roots_chebys, sc.eval_chebys, weightf, -2., 2., 100)
|
||||
|
||||
x, w = sc.roots_chebys(5, False)
|
||||
y, v, m = sc.roots_chebys(5, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf, -2, 2)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_chebys, 0)
|
||||
assert_raises(ValueError, sc.roots_chebys, 3.3)
|
||||
|
||||
def test_roots_sh_chebyt():
|
||||
weightf = orth.sh_chebyt(5).weight_func
|
||||
verify_gauss_quad(sc.roots_sh_chebyt, sc.eval_sh_chebyt, weightf, 0., 1., 5)
|
||||
verify_gauss_quad(sc.roots_sh_chebyt, sc.eval_sh_chebyt, weightf, 0., 1., 25)
|
||||
verify_gauss_quad(sc.roots_sh_chebyt, sc.eval_sh_chebyt, weightf, 0., 1.,
|
||||
100, atol=1e-13)
|
||||
|
||||
x, w = sc.roots_sh_chebyt(5, False)
|
||||
y, v, m = sc.roots_sh_chebyt(5, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf, 0, 1)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_sh_chebyt, 0)
|
||||
assert_raises(ValueError, sc.roots_sh_chebyt, 3.3)
|
||||
|
||||
def test_roots_sh_chebyu():
|
||||
weightf = orth.sh_chebyu(5).weight_func
|
||||
verify_gauss_quad(sc.roots_sh_chebyu, sc.eval_sh_chebyu, weightf, 0., 1., 5)
|
||||
verify_gauss_quad(sc.roots_sh_chebyu, sc.eval_sh_chebyu, weightf, 0., 1., 25)
|
||||
verify_gauss_quad(sc.roots_sh_chebyu, sc.eval_sh_chebyu, weightf, 0., 1.,
|
||||
100, atol=1e-13)
|
||||
|
||||
x, w = sc.roots_sh_chebyu(5, False)
|
||||
y, v, m = sc.roots_sh_chebyu(5, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf, 0, 1)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_sh_chebyu, 0)
|
||||
assert_raises(ValueError, sc.roots_sh_chebyu, 3.3)
|
||||
|
||||
def test_roots_legendre():
|
||||
weightf = orth.legendre(5).weight_func
|
||||
verify_gauss_quad(sc.roots_legendre, sc.eval_legendre, weightf, -1., 1., 5)
|
||||
verify_gauss_quad(sc.roots_legendre, sc.eval_legendre, weightf, -1., 1.,
|
||||
25, atol=1e-13)
|
||||
verify_gauss_quad(sc.roots_legendre, sc.eval_legendre, weightf, -1., 1.,
|
||||
100, atol=1e-12)
|
||||
|
||||
x, w = sc.roots_legendre(5, False)
|
||||
y, v, m = sc.roots_legendre(5, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf, -1, 1)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_legendre, 0)
|
||||
assert_raises(ValueError, sc.roots_legendre, 3.3)
|
||||
|
||||
def test_roots_sh_legendre():
|
||||
weightf = orth.sh_legendre(5).weight_func
|
||||
verify_gauss_quad(sc.roots_sh_legendre, sc.eval_sh_legendre, weightf, 0., 1., 5)
|
||||
verify_gauss_quad(sc.roots_sh_legendre, sc.eval_sh_legendre, weightf, 0., 1.,
|
||||
25, atol=1e-13)
|
||||
verify_gauss_quad(sc.roots_sh_legendre, sc.eval_sh_legendre, weightf, 0., 1.,
|
||||
100, atol=1e-12)
|
||||
|
||||
x, w = sc.roots_sh_legendre(5, False)
|
||||
y, v, m = sc.roots_sh_legendre(5, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf, 0, 1)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_sh_legendre, 0)
|
||||
assert_raises(ValueError, sc.roots_sh_legendre, 3.3)
|
||||
|
||||
def test_roots_laguerre():
|
||||
weightf = orth.laguerre(5).weight_func
|
||||
verify_gauss_quad(sc.roots_laguerre, sc.eval_laguerre, weightf, 0., np.inf, 5)
|
||||
verify_gauss_quad(sc.roots_laguerre, sc.eval_laguerre, weightf, 0., np.inf,
|
||||
25, atol=1e-13)
|
||||
verify_gauss_quad(sc.roots_laguerre, sc.eval_laguerre, weightf, 0., np.inf,
|
||||
100, atol=1e-12)
|
||||
|
||||
x, w = sc.roots_laguerre(5, False)
|
||||
y, v, m = sc.roots_laguerre(5, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf, 0, np.inf)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_laguerre, 0)
|
||||
assert_raises(ValueError, sc.roots_laguerre, 3.3)
|
||||
|
||||
def test_roots_genlaguerre():
|
||||
rootf = lambda a: lambda n, mu: sc.roots_genlaguerre(n, a, mu)
|
||||
evalf = lambda a: lambda n, x: sc.eval_genlaguerre(n, a, x)
|
||||
weightf = lambda a: lambda x: x**a * np.exp(-x)
|
||||
|
||||
vgq = verify_gauss_quad
|
||||
vgq(rootf(-0.5), evalf(-0.5), weightf(-0.5), 0., np.inf, 5)
|
||||
vgq(rootf(-0.5), evalf(-0.5), weightf(-0.5), 0., np.inf, 25, atol=1e-13)
|
||||
vgq(rootf(-0.5), evalf(-0.5), weightf(-0.5), 0., np.inf, 100, atol=1e-12)
|
||||
|
||||
vgq(rootf(0.1), evalf(0.1), weightf(0.1), 0., np.inf, 5)
|
||||
vgq(rootf(0.1), evalf(0.1), weightf(0.1), 0., np.inf, 25, atol=1e-13)
|
||||
vgq(rootf(0.1), evalf(0.1), weightf(0.1), 0., np.inf, 100, atol=1.6e-13)
|
||||
|
||||
vgq(rootf(1), evalf(1), weightf(1), 0., np.inf, 5)
|
||||
vgq(rootf(1), evalf(1), weightf(1), 0., np.inf, 25, atol=1e-13)
|
||||
vgq(rootf(1), evalf(1), weightf(1), 0., np.inf, 100, atol=1.03e-13)
|
||||
|
||||
vgq(rootf(10), evalf(10), weightf(10), 0., np.inf, 5)
|
||||
vgq(rootf(10), evalf(10), weightf(10), 0., np.inf, 25, atol=1e-13)
|
||||
vgq(rootf(10), evalf(10), weightf(10), 0., np.inf, 100, atol=1e-12)
|
||||
|
||||
vgq(rootf(50), evalf(50), weightf(50), 0., np.inf, 5)
|
||||
vgq(rootf(50), evalf(50), weightf(50), 0., np.inf, 25, atol=1e-13)
|
||||
vgq(rootf(50), evalf(50), weightf(50), 0., np.inf, 100, rtol=1e-14, atol=2e-13)
|
||||
|
||||
x, w = sc.roots_genlaguerre(5, 2, False)
|
||||
y, v, m = sc.roots_genlaguerre(5, 2, True)
|
||||
assert_allclose(x, y, 1e-14, 1e-14)
|
||||
assert_allclose(w, v, 1e-14, 1e-14)
|
||||
|
||||
muI, muI_err = integrate.quad(weightf(2.), 0., np.inf)
|
||||
assert_allclose(m, muI, rtol=muI_err)
|
||||
|
||||
assert_raises(ValueError, sc.roots_genlaguerre, 0, 2)
|
||||
assert_raises(ValueError, sc.roots_genlaguerre, 3.3, 2)
|
||||
assert_raises(ValueError, sc.roots_genlaguerre, 3, -1.1)
|
||||
|
||||
|
||||
def test_gh_6721():
|
||||
# Regresssion test for gh_6721. This should not raise.
|
||||
sc.chebyt(65)(0.2)
|
|
@ -0,0 +1,266 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_, assert_allclose
|
||||
import pytest
|
||||
|
||||
import scipy.special.orthogonal as orth
|
||||
from scipy.special._testutils import FuncData
|
||||
|
||||
|
||||
def test_eval_chebyt():
|
||||
n = np.arange(0, 10000, 7)
|
||||
x = 2*np.random.rand() - 1
|
||||
v1 = np.cos(n*np.arccos(x))
|
||||
v2 = orth.eval_chebyt(n, x)
|
||||
assert_(np.allclose(v1, v2, rtol=1e-15))
|
||||
|
||||
|
||||
def test_eval_genlaguerre_restriction():
|
||||
# check it returns nan for alpha <= -1
|
||||
assert_(np.isnan(orth.eval_genlaguerre(0, -1, 0)))
|
||||
assert_(np.isnan(orth.eval_genlaguerre(0.1, -1, 0)))
|
||||
|
||||
|
||||
def test_warnings():
|
||||
# ticket 1334
|
||||
with np.errstate(all='raise'):
|
||||
# these should raise no fp warnings
|
||||
orth.eval_legendre(1, 0)
|
||||
orth.eval_laguerre(1, 1)
|
||||
orth.eval_gegenbauer(1, 1, 0)
|
||||
|
||||
|
||||
class TestPolys(object):
|
||||
"""
|
||||
Check that the eval_* functions agree with the constructed polynomials
|
||||
|
||||
"""
|
||||
|
||||
def check_poly(self, func, cls, param_ranges=[], x_range=[], nn=10,
|
||||
nparam=10, nx=10, rtol=1e-8):
|
||||
np.random.seed(1234)
|
||||
|
||||
dataset = []
|
||||
for n in np.arange(nn):
|
||||
params = [a + (b-a)*np.random.rand(nparam) for a,b in param_ranges]
|
||||
params = np.asarray(params).T
|
||||
if not param_ranges:
|
||||
params = [0]
|
||||
for p in params:
|
||||
if param_ranges:
|
||||
p = (n,) + tuple(p)
|
||||
else:
|
||||
p = (n,)
|
||||
x = x_range[0] + (x_range[1] - x_range[0])*np.random.rand(nx)
|
||||
x[0] = x_range[0] # always include domain start point
|
||||
x[1] = x_range[1] # always include domain end point
|
||||
poly = np.poly1d(cls(*p).coef)
|
||||
z = np.c_[np.tile(p, (nx,1)), x, poly(x)]
|
||||
dataset.append(z)
|
||||
|
||||
dataset = np.concatenate(dataset, axis=0)
|
||||
|
||||
def polyfunc(*p):
|
||||
p = (p[0].astype(int),) + p[1:]
|
||||
return func(*p)
|
||||
|
||||
with np.errstate(all='raise'):
|
||||
ds = FuncData(polyfunc, dataset, list(range(len(param_ranges)+2)), -1,
|
||||
rtol=rtol)
|
||||
ds.check()
|
||||
|
||||
def test_jacobi(self):
|
||||
self.check_poly(orth.eval_jacobi, orth.jacobi,
|
||||
param_ranges=[(-0.99, 10), (-0.99, 10)], x_range=[-1, 1],
|
||||
rtol=1e-5)
|
||||
|
||||
def test_sh_jacobi(self):
|
||||
self.check_poly(orth.eval_sh_jacobi, orth.sh_jacobi,
|
||||
param_ranges=[(1, 10), (0, 1)], x_range=[0, 1],
|
||||
rtol=1e-5)
|
||||
|
||||
def test_gegenbauer(self):
|
||||
self.check_poly(orth.eval_gegenbauer, orth.gegenbauer,
|
||||
param_ranges=[(-0.499, 10)], x_range=[-1, 1],
|
||||
rtol=1e-7)
|
||||
|
||||
def test_chebyt(self):
|
||||
self.check_poly(orth.eval_chebyt, orth.chebyt,
|
||||
param_ranges=[], x_range=[-1, 1])
|
||||
|
||||
def test_chebyu(self):
|
||||
self.check_poly(orth.eval_chebyu, orth.chebyu,
|
||||
param_ranges=[], x_range=[-1, 1])
|
||||
|
||||
def test_chebys(self):
|
||||
self.check_poly(orth.eval_chebys, orth.chebys,
|
||||
param_ranges=[], x_range=[-2, 2])
|
||||
|
||||
def test_chebyc(self):
|
||||
self.check_poly(orth.eval_chebyc, orth.chebyc,
|
||||
param_ranges=[], x_range=[-2, 2])
|
||||
|
||||
def test_sh_chebyt(self):
|
||||
with np.errstate(all='ignore'):
|
||||
self.check_poly(orth.eval_sh_chebyt, orth.sh_chebyt,
|
||||
param_ranges=[], x_range=[0, 1])
|
||||
|
||||
def test_sh_chebyu(self):
|
||||
self.check_poly(orth.eval_sh_chebyu, orth.sh_chebyu,
|
||||
param_ranges=[], x_range=[0, 1])
|
||||
|
||||
def test_legendre(self):
|
||||
self.check_poly(orth.eval_legendre, orth.legendre,
|
||||
param_ranges=[], x_range=[-1, 1])
|
||||
|
||||
def test_sh_legendre(self):
|
||||
with np.errstate(all='ignore'):
|
||||
self.check_poly(orth.eval_sh_legendre, orth.sh_legendre,
|
||||
param_ranges=[], x_range=[0, 1])
|
||||
|
||||
def test_genlaguerre(self):
|
||||
self.check_poly(orth.eval_genlaguerre, orth.genlaguerre,
|
||||
param_ranges=[(-0.99, 10)], x_range=[0, 100])
|
||||
|
||||
def test_laguerre(self):
|
||||
self.check_poly(orth.eval_laguerre, orth.laguerre,
|
||||
param_ranges=[], x_range=[0, 100])
|
||||
|
||||
def test_hermite(self):
|
||||
self.check_poly(orth.eval_hermite, orth.hermite,
|
||||
param_ranges=[], x_range=[-100, 100])
|
||||
|
||||
def test_hermitenorm(self):
|
||||
self.check_poly(orth.eval_hermitenorm, orth.hermitenorm,
|
||||
param_ranges=[], x_range=[-100, 100])
|
||||
|
||||
|
||||
class TestRecurrence(object):
|
||||
"""
|
||||
Check that the eval_* functions sig='ld->d' and 'dd->d' agree.
|
||||
|
||||
"""
|
||||
|
||||
def check_poly(self, func, param_ranges=[], x_range=[], nn=10,
|
||||
nparam=10, nx=10, rtol=1e-8):
|
||||
np.random.seed(1234)
|
||||
|
||||
dataset = []
|
||||
for n in np.arange(nn):
|
||||
params = [a + (b-a)*np.random.rand(nparam) for a,b in param_ranges]
|
||||
params = np.asarray(params).T
|
||||
if not param_ranges:
|
||||
params = [0]
|
||||
for p in params:
|
||||
if param_ranges:
|
||||
p = (n,) + tuple(p)
|
||||
else:
|
||||
p = (n,)
|
||||
x = x_range[0] + (x_range[1] - x_range[0])*np.random.rand(nx)
|
||||
x[0] = x_range[0] # always include domain start point
|
||||
x[1] = x_range[1] # always include domain end point
|
||||
kw = dict(sig=(len(p)+1)*'d'+'->d')
|
||||
z = np.c_[np.tile(p, (nx,1)), x, func(*(p + (x,)), **kw)]
|
||||
dataset.append(z)
|
||||
|
||||
dataset = np.concatenate(dataset, axis=0)
|
||||
|
||||
def polyfunc(*p):
|
||||
p = (p[0].astype(int),) + p[1:]
|
||||
kw = dict(sig='l'+(len(p)-1)*'d'+'->d')
|
||||
return func(*p, **kw)
|
||||
|
||||
with np.errstate(all='raise'):
|
||||
ds = FuncData(polyfunc, dataset, list(range(len(param_ranges)+2)), -1,
|
||||
rtol=rtol)
|
||||
ds.check()
|
||||
|
||||
def test_jacobi(self):
|
||||
self.check_poly(orth.eval_jacobi,
|
||||
param_ranges=[(-0.99, 10), (-0.99, 10)], x_range=[-1, 1])
|
||||
|
||||
def test_sh_jacobi(self):
|
||||
self.check_poly(orth.eval_sh_jacobi,
|
||||
param_ranges=[(1, 10), (0, 1)], x_range=[0, 1])
|
||||
|
||||
def test_gegenbauer(self):
|
||||
self.check_poly(orth.eval_gegenbauer,
|
||||
param_ranges=[(-0.499, 10)], x_range=[-1, 1])
|
||||
|
||||
def test_chebyt(self):
|
||||
self.check_poly(orth.eval_chebyt,
|
||||
param_ranges=[], x_range=[-1, 1])
|
||||
|
||||
def test_chebyu(self):
|
||||
self.check_poly(orth.eval_chebyu,
|
||||
param_ranges=[], x_range=[-1, 1])
|
||||
|
||||
def test_chebys(self):
|
||||
self.check_poly(orth.eval_chebys,
|
||||
param_ranges=[], x_range=[-2, 2])
|
||||
|
||||
def test_chebyc(self):
|
||||
self.check_poly(orth.eval_chebyc,
|
||||
param_ranges=[], x_range=[-2, 2])
|
||||
|
||||
def test_sh_chebyt(self):
|
||||
self.check_poly(orth.eval_sh_chebyt,
|
||||
param_ranges=[], x_range=[0, 1])
|
||||
|
||||
def test_sh_chebyu(self):
|
||||
self.check_poly(orth.eval_sh_chebyu,
|
||||
param_ranges=[], x_range=[0, 1])
|
||||
|
||||
def test_legendre(self):
|
||||
self.check_poly(orth.eval_legendre,
|
||||
param_ranges=[], x_range=[-1, 1])
|
||||
|
||||
def test_sh_legendre(self):
|
||||
self.check_poly(orth.eval_sh_legendre,
|
||||
param_ranges=[], x_range=[0, 1])
|
||||
|
||||
def test_genlaguerre(self):
|
||||
self.check_poly(orth.eval_genlaguerre,
|
||||
param_ranges=[(-0.99, 10)], x_range=[0, 100])
|
||||
|
||||
def test_laguerre(self):
|
||||
self.check_poly(orth.eval_laguerre,
|
||||
param_ranges=[], x_range=[0, 100])
|
||||
|
||||
def test_hermite(self):
|
||||
v = orth.eval_hermite(70, 1.0)
|
||||
a = -1.457076485701412e60
|
||||
assert_allclose(v,a)
|
||||
|
||||
|
||||
def test_hermite_domain():
|
||||
# Regression test for gh-11091.
|
||||
assert np.isnan(orth.eval_hermite(-1, 1.0))
|
||||
assert np.isnan(orth.eval_hermitenorm(-1, 1.0))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n", [0, 1, 2])
|
||||
@pytest.mark.parametrize("x", [0, 1, np.nan])
|
||||
def test_hermite_nan(n, x):
|
||||
# Regression test for gh-11369.
|
||||
assert np.isnan(orth.eval_hermite(n, x)) == np.any(np.isnan([n, x]))
|
||||
assert np.isnan(orth.eval_hermitenorm(n, x)) == np.any(np.isnan([n, x]))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('n', [0, 1, 2, 3.2])
|
||||
@pytest.mark.parametrize('alpha', [1, np.nan])
|
||||
@pytest.mark.parametrize('x', [2, np.nan])
|
||||
def test_genlaguerre_nan(n, alpha, x):
|
||||
# Regression test for gh-11361.
|
||||
nan_laguerre = np.isnan(orth.eval_genlaguerre(n, alpha, x))
|
||||
nan_arg = np.any(np.isnan([n, alpha, x]))
|
||||
assert nan_laguerre == nan_arg
|
||||
|
||||
|
||||
@pytest.mark.parametrize('n', [0, 1, 2, 3.2])
|
||||
@pytest.mark.parametrize('alpha', [0.0, 1, np.nan])
|
||||
@pytest.mark.parametrize('x', [1e-6, 2, np.nan])
|
||||
def test_gegenbauer_nan(n, alpha, x):
|
||||
# Regression test for gh-11370.
|
||||
nan_gegenbauer = np.isnan(orth.eval_gegenbauer(n, alpha, x))
|
||||
nan_arg = np.any(np.isnan([n, alpha, x]))
|
||||
assert nan_gegenbauer == nan_arg
|
42
venv/Lib/site-packages/scipy/special/tests/test_owens_t.py
Normal file
42
venv/Lib/site-packages/scipy/special/tests/test_owens_t.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_equal, assert_allclose
|
||||
|
||||
import scipy.special as sc
|
||||
|
||||
|
||||
def test_symmetries():
|
||||
np.random.seed(1234)
|
||||
a, h = np.random.rand(100), np.random.rand(100)
|
||||
assert_equal(sc.owens_t(h, a), sc.owens_t(-h, a))
|
||||
assert_equal(sc.owens_t(h, a), -sc.owens_t(h, -a))
|
||||
|
||||
|
||||
def test_special_cases():
|
||||
assert_equal(sc.owens_t(5, 0), 0)
|
||||
assert_allclose(sc.owens_t(0, 5), 0.5*np.arctan(5)/np.pi,
|
||||
rtol=5e-14)
|
||||
# Target value is 0.5*Phi(5)*(1 - Phi(5)) for Phi the CDF of the
|
||||
# standard normal distribution
|
||||
assert_allclose(sc.owens_t(5, 1), 1.4332574485503512543e-07,
|
||||
rtol=5e-14)
|
||||
|
||||
|
||||
def test_nans():
|
||||
assert_equal(sc.owens_t(20, np.nan), np.nan)
|
||||
assert_equal(sc.owens_t(np.nan, 20), np.nan)
|
||||
assert_equal(sc.owens_t(np.nan, np.nan), np.nan)
|
||||
|
||||
|
||||
def test_infs():
|
||||
h = 1
|
||||
res = 0.5*sc.erfc(h/np.sqrt(2))
|
||||
assert_allclose(sc.owens_t(h, np.inf), res, rtol=5e-14)
|
||||
assert_allclose(sc.owens_t(h, -np.inf), -res, rtol=5e-14)
|
||||
|
||||
assert_equal(sc.owens_t(np.inf, 1), 0)
|
||||
assert_equal(sc.owens_t(-np.inf, 1), 0)
|
||||
|
||||
assert_equal(sc.owens_t(np.inf, np.inf), 0)
|
||||
assert_equal(sc.owens_t(-np.inf, np.inf), 0)
|
||||
assert_equal(sc.owens_t(np.inf, -np.inf), -0.0)
|
||||
assert_equal(sc.owens_t(-np.inf, -np.inf), -0.0)
|
24
venv/Lib/site-packages/scipy/special/tests/test_pcf.py
Normal file
24
venv/Lib/site-packages/scipy/special/tests/test_pcf.py
Normal file
|
@ -0,0 +1,24 @@
|
|||
"""Tests for parabolic cylinder functions.
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
from numpy.testing import assert_allclose, assert_equal
|
||||
import scipy.special as sc
|
||||
|
||||
|
||||
def test_pbwa_segfault():
|
||||
# Regression test for https://github.com/scipy/scipy/issues/6208.
|
||||
#
|
||||
# Data generated by mpmath.
|
||||
#
|
||||
w = 1.02276567211316867161
|
||||
wp = -0.48887053372346189882
|
||||
assert_allclose(sc.pbwa(0, 0), (w, wp), rtol=1e-13, atol=0)
|
||||
|
||||
|
||||
def test_pbwa_nan():
|
||||
# Check that NaN's are returned outside of the range in which the
|
||||
# implementation is accurate.
|
||||
pts = [(-6, -6), (-6, 6), (6, -6), (6, 6)]
|
||||
for p in pts:
|
||||
assert_equal(sc.pbwa(*p), (np.nan, np.nan))
|
48
venv/Lib/site-packages/scipy/special/tests/test_pdtr.py
Normal file
48
venv/Lib/site-packages/scipy/special/tests/test_pdtr.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
import numpy as np
|
||||
import scipy.special as sc
|
||||
from numpy.testing import assert_almost_equal, assert_array_equal
|
||||
|
||||
|
||||
class TestPdtr(object):
|
||||
def test(self):
|
||||
val = sc.pdtr(0, 1)
|
||||
assert_almost_equal(val, np.exp(-1))
|
||||
|
||||
def test_m_zero(self):
|
||||
val = sc.pdtr([0, 1, 2], 0)
|
||||
assert_array_equal(val, [1, 1, 1])
|
||||
|
||||
def test_rounding(self):
|
||||
double_val = sc.pdtr([0.1, 1.1, 2.1], 1.0)
|
||||
int_val = sc.pdtr([0, 1, 2], 1.0)
|
||||
assert_array_equal(double_val, int_val)
|
||||
|
||||
def test_inf(self):
|
||||
val = sc.pdtr(np.inf, 1.0)
|
||||
assert_almost_equal(val, 1.0)
|
||||
|
||||
def test_domain(self):
|
||||
val = sc.pdtr(-1.1, 1.0)
|
||||
assert np.isnan(val)
|
||||
|
||||
class TestPdtrc(object):
|
||||
def test_value(self):
|
||||
val = sc.pdtrc(0, 1)
|
||||
assert_almost_equal(val, 1 - np.exp(-1))
|
||||
|
||||
def test_m_zero(self):
|
||||
val = sc.pdtrc([0, 1, 2], 0.0)
|
||||
assert_array_equal(val, [0, 0, 0])
|
||||
|
||||
def test_rounding(self):
|
||||
double_val = sc.pdtrc([0.1, 1.1, 2.1], 1.0)
|
||||
int_val = sc.pdtrc([0, 1, 2], 1.0)
|
||||
assert_array_equal(double_val, int_val)
|
||||
|
||||
def test_inf(self):
|
||||
val = sc.pdtrc(np.inf, 1.0)
|
||||
assert_almost_equal(val, 0.0)
|
||||
|
||||
def test_domain(self):
|
||||
val = sc.pdtrc(-1.1, 1.0)
|
||||
assert np.isnan(val)
|
|
@ -0,0 +1,24 @@
|
|||
from numpy.testing import assert_equal
|
||||
|
||||
from scipy.special._testutils import check_version, MissingModule
|
||||
from scipy.special._precompute.expn_asy import generate_A
|
||||
|
||||
try:
|
||||
import sympy # type: ignore[import]
|
||||
from sympy import Poly
|
||||
except ImportError:
|
||||
sympy = MissingModule("sympy")
|
||||
|
||||
|
||||
@check_version(sympy, "1.0")
|
||||
def test_generate_A():
|
||||
# Data from DLMF 8.20.5
|
||||
x = sympy.symbols('x')
|
||||
Astd = [Poly(1, x),
|
||||
Poly(1, x),
|
||||
Poly(1 - 2*x),
|
||||
Poly(1 - 8*x + 6*x**2)]
|
||||
Ares = generate_A(len(Astd))
|
||||
|
||||
for p, q in zip(Astd, Ares):
|
||||
assert_equal(p, q)
|
|
@ -0,0 +1,109 @@
|
|||
import numpy as np # np is actually used, in the decorators below.
|
||||
import pytest
|
||||
|
||||
from scipy.special._testutils import MissingModule, check_version
|
||||
from scipy.special._mptestutils import (
|
||||
Arg, IntArg, mp_assert_allclose, assert_mpmath_equal)
|
||||
from scipy.special._precompute.gammainc_asy import (
|
||||
compute_g, compute_alpha, compute_d)
|
||||
from scipy.special._precompute.gammainc_data import gammainc, gammaincc
|
||||
|
||||
try:
|
||||
import sympy # type: ignore[import]
|
||||
except ImportError:
|
||||
sympy = MissingModule('sympy')
|
||||
|
||||
try:
|
||||
import mpmath as mp # type: ignore[import]
|
||||
except ImportError:
|
||||
mp = MissingModule('mpmath')
|
||||
|
||||
|
||||
@check_version(mp, '0.19')
|
||||
def test_g():
|
||||
# Test data for the g_k. See DLMF 5.11.4.
|
||||
with mp.workdps(30):
|
||||
g = [mp.mpf(1), mp.mpf(1)/12, mp.mpf(1)/288,
|
||||
-mp.mpf(139)/51840, -mp.mpf(571)/2488320,
|
||||
mp.mpf(163879)/209018880, mp.mpf(5246819)/75246796800]
|
||||
mp_assert_allclose(compute_g(7), g)
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@check_version(mp, '0.19')
|
||||
@check_version(sympy, '0.7')
|
||||
@pytest.mark.xfail_on_32bit("rtol only 2e-11, see gh-6938")
|
||||
def test_alpha():
|
||||
# Test data for the alpha_k. See DLMF 8.12.14.
|
||||
with mp.workdps(30):
|
||||
alpha = [mp.mpf(0), mp.mpf(1), mp.mpf(1)/3, mp.mpf(1)/36,
|
||||
-mp.mpf(1)/270, mp.mpf(1)/4320, mp.mpf(1)/17010,
|
||||
-mp.mpf(139)/5443200, mp.mpf(1)/204120]
|
||||
mp_assert_allclose(compute_alpha(9), alpha)
|
||||
|
||||
|
||||
@pytest.mark.xslow
|
||||
@check_version(mp, '0.19')
|
||||
@check_version(sympy, '0.7')
|
||||
def test_d():
|
||||
# Compare the d_{k, n} to the results in appendix F of [1].
|
||||
#
|
||||
# Sources
|
||||
# -------
|
||||
# [1] DiDonato and Morris, Computation of the Incomplete Gamma
|
||||
# Function Ratios and their Inverse, ACM Transactions on
|
||||
# Mathematical Software, 1986.
|
||||
|
||||
with mp.workdps(50):
|
||||
dataset = [(0, 0, -mp.mpf('0.333333333333333333333333333333')),
|
||||
(0, 12, mp.mpf('0.102618097842403080425739573227e-7')),
|
||||
(1, 0, -mp.mpf('0.185185185185185185185185185185e-2')),
|
||||
(1, 12, mp.mpf('0.119516285997781473243076536700e-7')),
|
||||
(2, 0, mp.mpf('0.413359788359788359788359788360e-2')),
|
||||
(2, 12, -mp.mpf('0.140925299108675210532930244154e-7')),
|
||||
(3, 0, mp.mpf('0.649434156378600823045267489712e-3')),
|
||||
(3, 12, -mp.mpf('0.191111684859736540606728140873e-7')),
|
||||
(4, 0, -mp.mpf('0.861888290916711698604702719929e-3')),
|
||||
(4, 12, mp.mpf('0.288658297427087836297341274604e-7')),
|
||||
(5, 0, -mp.mpf('0.336798553366358150308767592718e-3')),
|
||||
(5, 12, mp.mpf('0.482409670378941807563762631739e-7')),
|
||||
(6, 0, mp.mpf('0.531307936463992223165748542978e-3')),
|
||||
(6, 12, -mp.mpf('0.882860074633048352505085243179e-7')),
|
||||
(7, 0, mp.mpf('0.344367606892377671254279625109e-3')),
|
||||
(7, 12, -mp.mpf('0.175629733590604619378669693914e-6')),
|
||||
(8, 0, -mp.mpf('0.652623918595309418922034919727e-3')),
|
||||
(8, 12, mp.mpf('0.377358774161109793380344937299e-6')),
|
||||
(9, 0, -mp.mpf('0.596761290192746250124390067179e-3')),
|
||||
(9, 12, mp.mpf('0.870823417786464116761231237189e-6'))]
|
||||
d = compute_d(10, 13)
|
||||
res = [d[k][n] for k, n, std in dataset]
|
||||
std = map(lambda x: x[2], dataset)
|
||||
mp_assert_allclose(res, std)
|
||||
|
||||
|
||||
@check_version(mp, '0.19')
|
||||
def test_gammainc():
|
||||
# Quick check that the gammainc in
|
||||
# special._precompute.gammainc_data agrees with mpmath's
|
||||
# gammainc.
|
||||
assert_mpmath_equal(gammainc,
|
||||
lambda a, x: mp.gammainc(a, b=x, regularized=True),
|
||||
[Arg(0, 100, inclusive_a=False), Arg(0, 100)],
|
||||
nan_ok=False, rtol=1e-17, n=50, dps=50)
|
||||
|
||||
|
||||
@pytest.mark.xslow
|
||||
@check_version(mp, '0.19')
|
||||
def test_gammaincc():
|
||||
# Check that the gammaincc in special._precompute.gammainc_data
|
||||
# agrees with mpmath's gammainc.
|
||||
assert_mpmath_equal(lambda a, x: gammaincc(a, x, dps=1000),
|
||||
lambda a, x: mp.gammainc(a, a=x, regularized=True),
|
||||
[Arg(20, 100), Arg(20, 100)],
|
||||
nan_ok=False, rtol=1e-17, n=50, dps=1000)
|
||||
|
||||
# Test the fast integer path
|
||||
assert_mpmath_equal(gammaincc,
|
||||
lambda a, x: mp.gammainc(a, a=x, regularized=True),
|
||||
[IntArg(1, 100), Arg(0, 100)],
|
||||
nan_ok=False, rtol=1e-17, n=50, dps=50)
|
|
@ -0,0 +1,36 @@
|
|||
import pytest
|
||||
|
||||
from scipy.special._testutils import MissingModule, check_version
|
||||
from scipy.special._mptestutils import mp_assert_allclose
|
||||
from scipy.special._precompute.utils import lagrange_inversion
|
||||
|
||||
try:
|
||||
import sympy # type: ignore[import]
|
||||
except ImportError:
|
||||
sympy = MissingModule('sympy')
|
||||
|
||||
try:
|
||||
import mpmath as mp # type: ignore[import]
|
||||
except ImportError:
|
||||
mp = MissingModule('mpmath')
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@check_version(sympy, '0.7')
|
||||
@check_version(mp, '0.19')
|
||||
class TestInversion(object):
|
||||
@pytest.mark.xfail_on_32bit("rtol only 2e-9, see gh-6938")
|
||||
def test_log(self):
|
||||
with mp.workdps(30):
|
||||
logcoeffs = mp.taylor(lambda x: mp.log(1 + x), 0, 10)
|
||||
expcoeffs = mp.taylor(lambda x: mp.exp(x) - 1, 0, 10)
|
||||
invlogcoeffs = lagrange_inversion(logcoeffs)
|
||||
mp_assert_allclose(invlogcoeffs, expcoeffs)
|
||||
|
||||
@pytest.mark.xfail_on_32bit("rtol only 1e-15, see gh-6938")
|
||||
def test_sin(self):
|
||||
with mp.workdps(30):
|
||||
sincoeffs = mp.taylor(mp.sin, 0, 10)
|
||||
asincoeffs = mp.taylor(mp.asin, 0, 10)
|
||||
invsincoeffs = lagrange_inversion(sincoeffs)
|
||||
mp_assert_allclose(invsincoeffs, asincoeffs, atol=1e-30)
|
16
venv/Lib/site-packages/scipy/special/tests/test_round.py
Normal file
16
venv/Lib/site-packages/scipy/special/tests/test_round.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from scipy.special import _test_round
|
||||
|
||||
|
||||
@pytest.mark.skipif(not _test_round.have_fenv(), reason="no fenv()")
|
||||
def test_add_round_up():
|
||||
np.random.seed(1234)
|
||||
_test_round.test_add_round(10**5, 'up')
|
||||
|
||||
|
||||
@pytest.mark.skipif(not _test_round.have_fenv(), reason="no fenv()")
|
||||
def test_add_round_down():
|
||||
np.random.seed(1234)
|
||||
_test_round.test_add_round(10**5, 'down')
|
112
venv/Lib/site-packages/scipy/special/tests/test_sf_error.py
Normal file
112
venv/Lib/site-packages/scipy/special/tests/test_sf_error.py
Normal file
|
@ -0,0 +1,112 @@
|
|||
import warnings
|
||||
|
||||
from numpy.testing import assert_, assert_equal
|
||||
import pytest
|
||||
from pytest import raises as assert_raises
|
||||
|
||||
import scipy.special as sc
|
||||
from scipy.special._ufuncs import _sf_error_test_function
|
||||
|
||||
_sf_error_code_map = {
|
||||
# skip 'ok'
|
||||
'singular': 1,
|
||||
'underflow': 2,
|
||||
'overflow': 3,
|
||||
'slow': 4,
|
||||
'loss': 5,
|
||||
'no_result': 6,
|
||||
'domain': 7,
|
||||
'arg': 8,
|
||||
'other': 9
|
||||
}
|
||||
|
||||
_sf_error_actions = [
|
||||
'ignore',
|
||||
'warn',
|
||||
'raise'
|
||||
]
|
||||
|
||||
|
||||
def _check_action(fun, args, action):
|
||||
if action == 'warn':
|
||||
with pytest.warns(sc.SpecialFunctionWarning):
|
||||
fun(*args)
|
||||
elif action == 'raise':
|
||||
with assert_raises(sc.SpecialFunctionError):
|
||||
fun(*args)
|
||||
else:
|
||||
# action == 'ignore', make sure there are no warnings/exceptions
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("error")
|
||||
fun(*args)
|
||||
|
||||
|
||||
def test_geterr():
|
||||
err = sc.geterr()
|
||||
for key, value in err.items():
|
||||
assert_(key in _sf_error_code_map.keys())
|
||||
assert_(value in _sf_error_actions)
|
||||
|
||||
|
||||
def test_seterr():
|
||||
entry_err = sc.geterr()
|
||||
try:
|
||||
for category in _sf_error_code_map.keys():
|
||||
for action in _sf_error_actions:
|
||||
geterr_olderr = sc.geterr()
|
||||
seterr_olderr = sc.seterr(**{category: action})
|
||||
assert_(geterr_olderr == seterr_olderr)
|
||||
newerr = sc.geterr()
|
||||
assert_(newerr[category] == action)
|
||||
geterr_olderr.pop(category)
|
||||
newerr.pop(category)
|
||||
assert_(geterr_olderr == newerr)
|
||||
_check_action(_sf_error_test_function,
|
||||
(_sf_error_code_map[category],),
|
||||
action)
|
||||
finally:
|
||||
sc.seterr(**entry_err)
|
||||
|
||||
|
||||
def test_errstate_pyx_basic():
|
||||
olderr = sc.geterr()
|
||||
with sc.errstate(singular='raise'):
|
||||
with assert_raises(sc.SpecialFunctionError):
|
||||
sc.loggamma(0)
|
||||
assert_equal(olderr, sc.geterr())
|
||||
|
||||
|
||||
def test_errstate_c_basic():
|
||||
olderr = sc.geterr()
|
||||
with sc.errstate(domain='raise'):
|
||||
with assert_raises(sc.SpecialFunctionError):
|
||||
sc.spence(-1)
|
||||
assert_equal(olderr, sc.geterr())
|
||||
|
||||
|
||||
def test_errstate_cpp_basic():
|
||||
olderr = sc.geterr()
|
||||
with sc.errstate(underflow='raise'):
|
||||
with assert_raises(sc.SpecialFunctionError):
|
||||
sc.wrightomega(-1000)
|
||||
assert_equal(olderr, sc.geterr())
|
||||
|
||||
|
||||
def test_errstate():
|
||||
for category in _sf_error_code_map.keys():
|
||||
for action in _sf_error_actions:
|
||||
olderr = sc.geterr()
|
||||
with sc.errstate(**{category: action}):
|
||||
_check_action(_sf_error_test_function,
|
||||
(_sf_error_code_map[category],),
|
||||
action)
|
||||
assert_equal(olderr, sc.geterr())
|
||||
|
||||
|
||||
def test_errstate_all_but_one():
|
||||
olderr = sc.geterr()
|
||||
with sc.errstate(all='raise', singular='ignore'):
|
||||
sc.gammaln(0)
|
||||
with assert_raises(sc.SpecialFunctionError):
|
||||
sc.spence(-1.0)
|
||||
assert_equal(olderr, sc.geterr())
|
36
venv/Lib/site-packages/scipy/special/tests/test_sici.py
Normal file
36
venv/Lib/site-packages/scipy/special/tests/test_sici.py
Normal file
|
@ -0,0 +1,36 @@
|
|||
import numpy as np
|
||||
|
||||
import scipy.special as sc
|
||||
from scipy.special._testutils import FuncData
|
||||
|
||||
|
||||
def test_sici_consistency():
|
||||
# Make sure the implementation of sici for real arguments agrees
|
||||
# with the implementation of sici for complex arguments.
|
||||
|
||||
# On the negative real axis Cephes drops the imaginary part in ci
|
||||
def sici(x):
|
||||
si, ci = sc.sici(x + 0j)
|
||||
return si.real, ci.real
|
||||
|
||||
x = np.r_[-np.logspace(8, -30, 200), 0, np.logspace(-30, 8, 200)]
|
||||
si, ci = sc.sici(x)
|
||||
dataset = np.column_stack((x, si, ci))
|
||||
FuncData(sici, dataset, 0, (1, 2), rtol=1e-12).check()
|
||||
|
||||
|
||||
def test_shichi_consistency():
|
||||
# Make sure the implementation of shichi for real arguments agrees
|
||||
# with the implementation of shichi for complex arguments.
|
||||
|
||||
# On the negative real axis Cephes drops the imaginary part in chi
|
||||
def shichi(x):
|
||||
shi, chi = sc.shichi(x + 0j)
|
||||
return shi.real, chi.real
|
||||
|
||||
# Overflow happens quickly, so limit range
|
||||
x = np.r_[-np.logspace(np.log10(700), -30, 200), 0,
|
||||
np.logspace(-30, np.log10(700), 200)]
|
||||
shi, chi = sc.shichi(x)
|
||||
dataset = np.column_stack((x, shi, chi))
|
||||
FuncData(shichi, dataset, 0, (1, 2), rtol=1e-14).check()
|
32
venv/Lib/site-packages/scipy/special/tests/test_spence.py
Normal file
32
venv/Lib/site-packages/scipy/special/tests/test_spence.py
Normal file
|
@ -0,0 +1,32 @@
|
|||
import numpy as np
|
||||
from numpy import sqrt, log, pi
|
||||
from scipy.special._testutils import FuncData
|
||||
from scipy.special import spence
|
||||
|
||||
|
||||
def test_consistency():
|
||||
# Make sure the implementation of spence for real arguments
|
||||
# agrees with the implementation of spence for imaginary arguments.
|
||||
|
||||
x = np.logspace(-30, 300, 200)
|
||||
dataset = np.vstack((x + 0j, spence(x))).T
|
||||
FuncData(spence, dataset, 0, 1, rtol=1e-14).check()
|
||||
|
||||
|
||||
def test_special_points():
|
||||
# Check against known values of Spence's function.
|
||||
|
||||
phi = (1 + sqrt(5))/2
|
||||
dataset = [(1, 0),
|
||||
(2, -pi**2/12),
|
||||
(0.5, pi**2/12 - log(2)**2/2),
|
||||
(0, pi**2/6),
|
||||
(-1, pi**2/4 - 1j*pi*log(2)),
|
||||
((-1 + sqrt(5))/2, pi**2/15 - log(phi)**2),
|
||||
((3 - sqrt(5))/2, pi**2/10 - log(phi)**2),
|
||||
(phi, -pi**2/15 + log(phi)**2/2),
|
||||
# Corrected from Zagier, "The Dilogarithm Function"
|
||||
((3 + sqrt(5))/2, -pi**2/10 - log(phi)**2)]
|
||||
|
||||
dataset = np.asarray(dataset)
|
||||
FuncData(spence, dataset, 0, 1, rtol=1e-14).check()
|
|
@ -0,0 +1,61 @@
|
|||
import numpy as np
|
||||
from numpy.testing import (assert_array_equal,
|
||||
assert_array_almost_equal_nulp, assert_almost_equal)
|
||||
from pytest import raises as assert_raises
|
||||
|
||||
from scipy.special import gammaln, multigammaln
|
||||
|
||||
|
||||
class TestMultiGammaLn(object):
|
||||
|
||||
def test1(self):
|
||||
# A test of the identity
|
||||
# Gamma_1(a) = Gamma(a)
|
||||
np.random.seed(1234)
|
||||
a = np.abs(np.random.randn())
|
||||
assert_array_equal(multigammaln(a, 1), gammaln(a))
|
||||
|
||||
def test2(self):
|
||||
# A test of the identity
|
||||
# Gamma_2(a) = sqrt(pi) * Gamma(a) * Gamma(a - 0.5)
|
||||
a = np.array([2.5, 10.0])
|
||||
result = multigammaln(a, 2)
|
||||
expected = np.log(np.sqrt(np.pi)) + gammaln(a) + gammaln(a - 0.5)
|
||||
assert_almost_equal(result, expected)
|
||||
|
||||
def test_bararg(self):
|
||||
assert_raises(ValueError, multigammaln, 0.5, 1.2)
|
||||
|
||||
|
||||
def _check_multigammaln_array_result(a, d):
|
||||
# Test that the shape of the array returned by multigammaln
|
||||
# matches the input shape, and that all the values match
|
||||
# the value computed when multigammaln is called with a scalar.
|
||||
result = multigammaln(a, d)
|
||||
assert_array_equal(a.shape, result.shape)
|
||||
a1 = a.ravel()
|
||||
result1 = result.ravel()
|
||||
for i in range(a.size):
|
||||
assert_array_almost_equal_nulp(result1[i], multigammaln(a1[i], d))
|
||||
|
||||
|
||||
def test_multigammaln_array_arg():
|
||||
# Check that the array returned by multigammaln has the correct
|
||||
# shape and contains the correct values. The cases have arrays
|
||||
# with several differnent shapes.
|
||||
# The cases include a regression test for ticket #1849
|
||||
# (a = np.array([2.0]), an array with a single element).
|
||||
np.random.seed(1234)
|
||||
|
||||
cases = [
|
||||
# a, d
|
||||
(np.abs(np.random.randn(3, 2)) + 5, 5),
|
||||
(np.abs(np.random.randn(1, 2)) + 5, 5),
|
||||
(np.arange(10.0, 18.0).reshape(2, 2, 2), 3),
|
||||
(np.array([2.0]), 3),
|
||||
(np.float64(2.0), 3),
|
||||
]
|
||||
|
||||
for a, d in cases:
|
||||
_check_multigammaln_array_result(a, d)
|
||||
|
37
venv/Lib/site-packages/scipy/special/tests/test_sph_harm.py
Normal file
37
venv/Lib/site-packages/scipy/special/tests/test_sph_harm.py
Normal file
|
@ -0,0 +1,37 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_allclose
|
||||
import scipy.special as sc
|
||||
|
||||
|
||||
def test_first_harmonics():
|
||||
# Test against explicit representations of the first four
|
||||
# spherical harmonics which use `theta` as the azimuthal angle,
|
||||
# `phi` as the polar angle, and include the Condon-Shortley
|
||||
# phase.
|
||||
|
||||
# Notation is Ymn
|
||||
def Y00(theta, phi):
|
||||
return 0.5*np.sqrt(1/np.pi)
|
||||
|
||||
def Yn11(theta, phi):
|
||||
return 0.5*np.sqrt(3/(2*np.pi))*np.exp(-1j*theta)*np.sin(phi)
|
||||
|
||||
def Y01(theta, phi):
|
||||
return 0.5*np.sqrt(3/np.pi)*np.cos(phi)
|
||||
|
||||
def Y11(theta, phi):
|
||||
return -0.5*np.sqrt(3/(2*np.pi))*np.exp(1j*theta)*np.sin(phi)
|
||||
|
||||
harms = [Y00, Yn11, Y01, Y11]
|
||||
m = [0, -1, 0, 1]
|
||||
n = [0, 1, 1, 1]
|
||||
|
||||
theta = np.linspace(0, 2*np.pi)
|
||||
phi = np.linspace(0, np.pi)
|
||||
theta, phi = np.meshgrid(theta, phi)
|
||||
|
||||
for harm, m, n in zip(harms, m, n):
|
||||
assert_allclose(sc.sph_harm(m, n, theta, phi),
|
||||
harm(theta, phi),
|
||||
rtol=1e-15, atol=1e-15,
|
||||
err_msg="Y^{}_{} incorrect".format(m, n))
|
|
@ -0,0 +1,379 @@
|
|||
#
|
||||
# Tests of spherical Bessel functions.
|
||||
#
|
||||
import numpy as np
|
||||
from numpy.testing import (assert_almost_equal, assert_allclose,
|
||||
assert_array_almost_equal, suppress_warnings)
|
||||
import pytest
|
||||
from numpy import sin, cos, sinh, cosh, exp, inf, nan, r_, pi
|
||||
|
||||
from scipy.special import spherical_jn, spherical_yn, spherical_in, spherical_kn
|
||||
from scipy.integrate import quad
|
||||
|
||||
|
||||
class TestSphericalJn:
|
||||
def test_spherical_jn_exact(self):
|
||||
# https://dlmf.nist.gov/10.49.E3
|
||||
# Note: exact expression is numerically stable only for small
|
||||
# n or z >> n.
|
||||
x = np.array([0.12, 1.23, 12.34, 123.45, 1234.5])
|
||||
assert_allclose(spherical_jn(2, x),
|
||||
(-1/x + 3/x**3)*sin(x) - 3/x**2*cos(x))
|
||||
|
||||
def test_spherical_jn_recurrence_complex(self):
|
||||
# https://dlmf.nist.gov/10.51.E1
|
||||
n = np.array([1, 2, 3, 7, 12])
|
||||
x = 1.1 + 1.5j
|
||||
assert_allclose(spherical_jn(n - 1, x) + spherical_jn(n + 1, x),
|
||||
(2*n + 1)/x*spherical_jn(n, x))
|
||||
|
||||
def test_spherical_jn_recurrence_real(self):
|
||||
# https://dlmf.nist.gov/10.51.E1
|
||||
n = np.array([1, 2, 3, 7, 12])
|
||||
x = 0.12
|
||||
assert_allclose(spherical_jn(n - 1, x) + spherical_jn(n + 1,x),
|
||||
(2*n + 1)/x*spherical_jn(n, x))
|
||||
|
||||
def test_spherical_jn_inf_real(self):
|
||||
# https://dlmf.nist.gov/10.52.E3
|
||||
n = 6
|
||||
x = np.array([-inf, inf])
|
||||
assert_allclose(spherical_jn(n, x), np.array([0, 0]))
|
||||
|
||||
def test_spherical_jn_inf_complex(self):
|
||||
# https://dlmf.nist.gov/10.52.E3
|
||||
n = 7
|
||||
x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)])
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(RuntimeWarning, "invalid value encountered in multiply")
|
||||
assert_allclose(spherical_jn(n, x), np.array([0, 0, inf*(1+1j)]))
|
||||
|
||||
def test_spherical_jn_large_arg_1(self):
|
||||
# https://github.com/scipy/scipy/issues/2165
|
||||
# Reference value computed using mpmath, via
|
||||
# besselj(n + mpf(1)/2, z)*sqrt(pi/(2*z))
|
||||
assert_allclose(spherical_jn(2, 3350.507), -0.00029846226538040747)
|
||||
|
||||
def test_spherical_jn_large_arg_2(self):
|
||||
# https://github.com/scipy/scipy/issues/1641
|
||||
# Reference value computed using mpmath, via
|
||||
# besselj(n + mpf(1)/2, z)*sqrt(pi/(2*z))
|
||||
assert_allclose(spherical_jn(2, 10000), 3.0590002633029811e-05)
|
||||
|
||||
def test_spherical_jn_at_zero(self):
|
||||
# https://dlmf.nist.gov/10.52.E1
|
||||
# But note that n = 0 is a special case: j0 = sin(x)/x -> 1
|
||||
n = np.array([0, 1, 2, 5, 10, 100])
|
||||
x = 0
|
||||
assert_allclose(spherical_jn(n, x), np.array([1, 0, 0, 0, 0, 0]))
|
||||
|
||||
|
||||
class TestSphericalYn:
|
||||
def test_spherical_yn_exact(self):
|
||||
# https://dlmf.nist.gov/10.49.E5
|
||||
# Note: exact expression is numerically stable only for small
|
||||
# n or z >> n.
|
||||
x = np.array([0.12, 1.23, 12.34, 123.45, 1234.5])
|
||||
assert_allclose(spherical_yn(2, x),
|
||||
(1/x - 3/x**3)*cos(x) - 3/x**2*sin(x))
|
||||
|
||||
def test_spherical_yn_recurrence_real(self):
|
||||
# https://dlmf.nist.gov/10.51.E1
|
||||
n = np.array([1, 2, 3, 7, 12])
|
||||
x = 0.12
|
||||
assert_allclose(spherical_yn(n - 1, x) + spherical_yn(n + 1,x),
|
||||
(2*n + 1)/x*spherical_yn(n, x))
|
||||
|
||||
def test_spherical_yn_recurrence_complex(self):
|
||||
# https://dlmf.nist.gov/10.51.E1
|
||||
n = np.array([1, 2, 3, 7, 12])
|
||||
x = 1.1 + 1.5j
|
||||
assert_allclose(spherical_yn(n - 1, x) + spherical_yn(n + 1, x),
|
||||
(2*n + 1)/x*spherical_yn(n, x))
|
||||
|
||||
def test_spherical_yn_inf_real(self):
|
||||
# https://dlmf.nist.gov/10.52.E3
|
||||
n = 6
|
||||
x = np.array([-inf, inf])
|
||||
assert_allclose(spherical_yn(n, x), np.array([0, 0]))
|
||||
|
||||
def test_spherical_yn_inf_complex(self):
|
||||
# https://dlmf.nist.gov/10.52.E3
|
||||
n = 7
|
||||
x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)])
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(RuntimeWarning, "invalid value encountered in multiply")
|
||||
assert_allclose(spherical_yn(n, x), np.array([0, 0, inf*(1+1j)]))
|
||||
|
||||
def test_spherical_yn_at_zero(self):
|
||||
# https://dlmf.nist.gov/10.52.E2
|
||||
n = np.array([0, 1, 2, 5, 10, 100])
|
||||
x = 0
|
||||
assert_allclose(spherical_yn(n, x), np.full(n.shape, -inf))
|
||||
|
||||
def test_spherical_yn_at_zero_complex(self):
|
||||
# Consistently with numpy:
|
||||
# >>> -np.cos(0)/0
|
||||
# -inf
|
||||
# >>> -np.cos(0+0j)/(0+0j)
|
||||
# (-inf + nan*j)
|
||||
n = np.array([0, 1, 2, 5, 10, 100])
|
||||
x = 0 + 0j
|
||||
assert_allclose(spherical_yn(n, x), np.full(n.shape, nan))
|
||||
|
||||
|
||||
class TestSphericalJnYnCrossProduct:
|
||||
def test_spherical_jn_yn_cross_product_1(self):
|
||||
# https://dlmf.nist.gov/10.50.E3
|
||||
n = np.array([1, 5, 8])
|
||||
x = np.array([0.1, 1, 10])
|
||||
left = (spherical_jn(n + 1, x) * spherical_yn(n, x) -
|
||||
spherical_jn(n, x) * spherical_yn(n + 1, x))
|
||||
right = 1/x**2
|
||||
assert_allclose(left, right)
|
||||
|
||||
def test_spherical_jn_yn_cross_product_2(self):
|
||||
# https://dlmf.nist.gov/10.50.E3
|
||||
n = np.array([1, 5, 8])
|
||||
x = np.array([0.1, 1, 10])
|
||||
left = (spherical_jn(n + 2, x) * spherical_yn(n, x) -
|
||||
spherical_jn(n, x) * spherical_yn(n + 2, x))
|
||||
right = (2*n + 3)/x**3
|
||||
assert_allclose(left, right)
|
||||
|
||||
|
||||
class TestSphericalIn:
|
||||
def test_spherical_in_exact(self):
|
||||
# https://dlmf.nist.gov/10.49.E9
|
||||
x = np.array([0.12, 1.23, 12.34, 123.45])
|
||||
assert_allclose(spherical_in(2, x),
|
||||
(1/x + 3/x**3)*sinh(x) - 3/x**2*cosh(x))
|
||||
|
||||
def test_spherical_in_recurrence_real(self):
|
||||
# https://dlmf.nist.gov/10.51.E4
|
||||
n = np.array([1, 2, 3, 7, 12])
|
||||
x = 0.12
|
||||
assert_allclose(spherical_in(n - 1, x) - spherical_in(n + 1,x),
|
||||
(2*n + 1)/x*spherical_in(n, x))
|
||||
|
||||
def test_spherical_in_recurrence_complex(self):
|
||||
# https://dlmf.nist.gov/10.51.E1
|
||||
n = np.array([1, 2, 3, 7, 12])
|
||||
x = 1.1 + 1.5j
|
||||
assert_allclose(spherical_in(n - 1, x) - spherical_in(n + 1,x),
|
||||
(2*n + 1)/x*spherical_in(n, x))
|
||||
|
||||
def test_spherical_in_inf_real(self):
|
||||
# https://dlmf.nist.gov/10.52.E3
|
||||
n = 5
|
||||
x = np.array([-inf, inf])
|
||||
assert_allclose(spherical_in(n, x), np.array([-inf, inf]))
|
||||
|
||||
def test_spherical_in_inf_complex(self):
|
||||
# https://dlmf.nist.gov/10.52.E5
|
||||
# Ideally, i1n(n, 1j*inf) = 0 and i1n(n, (1+1j)*inf) = (1+1j)*inf, but
|
||||
# this appears impossible to achieve because C99 regards any complex
|
||||
# value with at least one infinite part as a complex infinity, so
|
||||
# 1j*inf cannot be distinguished from (1+1j)*inf. Therefore, nan is
|
||||
# the correct return value.
|
||||
n = 7
|
||||
x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)])
|
||||
assert_allclose(spherical_in(n, x), np.array([-inf, inf, nan]))
|
||||
|
||||
def test_spherical_in_at_zero(self):
|
||||
# https://dlmf.nist.gov/10.52.E1
|
||||
# But note that n = 0 is a special case: i0 = sinh(x)/x -> 1
|
||||
n = np.array([0, 1, 2, 5, 10, 100])
|
||||
x = 0
|
||||
assert_allclose(spherical_in(n, x), np.array([1, 0, 0, 0, 0, 0]))
|
||||
|
||||
|
||||
class TestSphericalKn:
|
||||
def test_spherical_kn_exact(self):
|
||||
# https://dlmf.nist.gov/10.49.E13
|
||||
x = np.array([0.12, 1.23, 12.34, 123.45])
|
||||
assert_allclose(spherical_kn(2, x),
|
||||
pi/2*exp(-x)*(1/x + 3/x**2 + 3/x**3))
|
||||
|
||||
def test_spherical_kn_recurrence_real(self):
|
||||
# https://dlmf.nist.gov/10.51.E4
|
||||
n = np.array([1, 2, 3, 7, 12])
|
||||
x = 0.12
|
||||
assert_allclose((-1)**(n - 1)*spherical_kn(n - 1, x) - (-1)**(n + 1)*spherical_kn(n + 1,x),
|
||||
(-1)**n*(2*n + 1)/x*spherical_kn(n, x))
|
||||
|
||||
def test_spherical_kn_recurrence_complex(self):
|
||||
# https://dlmf.nist.gov/10.51.E4
|
||||
n = np.array([1, 2, 3, 7, 12])
|
||||
x = 1.1 + 1.5j
|
||||
assert_allclose((-1)**(n - 1)*spherical_kn(n - 1, x) - (-1)**(n + 1)*spherical_kn(n + 1,x),
|
||||
(-1)**n*(2*n + 1)/x*spherical_kn(n, x))
|
||||
|
||||
def test_spherical_kn_inf_real(self):
|
||||
# https://dlmf.nist.gov/10.52.E6
|
||||
n = 5
|
||||
x = np.array([-inf, inf])
|
||||
assert_allclose(spherical_kn(n, x), np.array([-inf, 0]))
|
||||
|
||||
def test_spherical_kn_inf_complex(self):
|
||||
# https://dlmf.nist.gov/10.52.E6
|
||||
# The behavior at complex infinity depends on the sign of the real
|
||||
# part: if Re(z) >= 0, then the limit is 0; if Re(z) < 0, then it's
|
||||
# z*inf. This distinction cannot be captured, so we return nan.
|
||||
n = 7
|
||||
x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)])
|
||||
assert_allclose(spherical_kn(n, x), np.array([-inf, 0, nan]))
|
||||
|
||||
def test_spherical_kn_at_zero(self):
|
||||
# https://dlmf.nist.gov/10.52.E2
|
||||
n = np.array([0, 1, 2, 5, 10, 100])
|
||||
x = 0
|
||||
assert_allclose(spherical_kn(n, x), np.full(n.shape, inf))
|
||||
|
||||
def test_spherical_kn_at_zero_complex(self):
|
||||
# https://dlmf.nist.gov/10.52.E2
|
||||
n = np.array([0, 1, 2, 5, 10, 100])
|
||||
x = 0 + 0j
|
||||
assert_allclose(spherical_kn(n, x), np.full(n.shape, nan))
|
||||
|
||||
|
||||
class SphericalDerivativesTestCase:
|
||||
def fundamental_theorem(self, n, a, b):
|
||||
integral, tolerance = quad(lambda z: self.df(n, z), a, b)
|
||||
assert_allclose(integral,
|
||||
self.f(n, b) - self.f(n, a),
|
||||
atol=tolerance)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_fundamental_theorem_0(self):
|
||||
self.fundamental_theorem(0, 3.0, 15.0)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_fundamental_theorem_7(self):
|
||||
self.fundamental_theorem(7, 0.5, 1.2)
|
||||
|
||||
|
||||
class TestSphericalJnDerivatives(SphericalDerivativesTestCase):
|
||||
def f(self, n, z):
|
||||
return spherical_jn(n, z)
|
||||
|
||||
def df(self, n, z):
|
||||
return spherical_jn(n, z, derivative=True)
|
||||
|
||||
def test_spherical_jn_d_zero(self):
|
||||
n = np.array([0, 1, 2, 3, 7, 15])
|
||||
assert_allclose(spherical_jn(n, 0, derivative=True),
|
||||
np.array([0, 1/3, 0, 0, 0, 0]))
|
||||
|
||||
|
||||
class TestSphericalYnDerivatives(SphericalDerivativesTestCase):
|
||||
def f(self, n, z):
|
||||
return spherical_yn(n, z)
|
||||
|
||||
def df(self, n, z):
|
||||
return spherical_yn(n, z, derivative=True)
|
||||
|
||||
|
||||
class TestSphericalInDerivatives(SphericalDerivativesTestCase):
|
||||
def f(self, n, z):
|
||||
return spherical_in(n, z)
|
||||
|
||||
def df(self, n, z):
|
||||
return spherical_in(n, z, derivative=True)
|
||||
|
||||
def test_spherical_in_d_zero(self):
|
||||
n = np.array([1, 2, 3, 7, 15])
|
||||
assert_allclose(spherical_in(n, 0, derivative=True),
|
||||
np.zeros(5))
|
||||
|
||||
|
||||
class TestSphericalKnDerivatives(SphericalDerivativesTestCase):
|
||||
def f(self, n, z):
|
||||
return spherical_kn(n, z)
|
||||
|
||||
def df(self, n, z):
|
||||
return spherical_kn(n, z, derivative=True)
|
||||
|
||||
|
||||
class TestSphericalOld:
|
||||
# These are tests from the TestSpherical class of test_basic.py,
|
||||
# rewritten to use spherical_* instead of sph_* but otherwise unchanged.
|
||||
|
||||
def test_sph_in(self):
|
||||
# This test reproduces test_basic.TestSpherical.test_sph_in.
|
||||
i1n = np.empty((2,2))
|
||||
x = 0.2
|
||||
|
||||
i1n[0][0] = spherical_in(0, x)
|
||||
i1n[0][1] = spherical_in(1, x)
|
||||
i1n[1][0] = spherical_in(0, x, derivative=True)
|
||||
i1n[1][1] = spherical_in(1, x, derivative=True)
|
||||
|
||||
inp0 = (i1n[0][1])
|
||||
inp1 = (i1n[0][0] - 2.0/0.2 * i1n[0][1])
|
||||
assert_array_almost_equal(i1n[0],np.array([1.0066800127054699381,
|
||||
0.066933714568029540839]),12)
|
||||
assert_array_almost_equal(i1n[1],[inp0,inp1],12)
|
||||
|
||||
def test_sph_in_kn_order0(self):
|
||||
x = 1.
|
||||
sph_i0 = np.empty((2,))
|
||||
sph_i0[0] = spherical_in(0, x)
|
||||
sph_i0[1] = spherical_in(0, x, derivative=True)
|
||||
sph_i0_expected = np.array([np.sinh(x)/x,
|
||||
np.cosh(x)/x-np.sinh(x)/x**2])
|
||||
assert_array_almost_equal(r_[sph_i0], sph_i0_expected)
|
||||
|
||||
sph_k0 = np.empty((2,))
|
||||
sph_k0[0] = spherical_kn(0, x)
|
||||
sph_k0[1] = spherical_kn(0, x, derivative=True)
|
||||
sph_k0_expected = np.array([0.5*pi*exp(-x)/x,
|
||||
-0.5*pi*exp(-x)*(1/x+1/x**2)])
|
||||
assert_array_almost_equal(r_[sph_k0], sph_k0_expected)
|
||||
|
||||
def test_sph_jn(self):
|
||||
s1 = np.empty((2,3))
|
||||
x = 0.2
|
||||
|
||||
s1[0][0] = spherical_jn(0, x)
|
||||
s1[0][1] = spherical_jn(1, x)
|
||||
s1[0][2] = spherical_jn(2, x)
|
||||
s1[1][0] = spherical_jn(0, x, derivative=True)
|
||||
s1[1][1] = spherical_jn(1, x, derivative=True)
|
||||
s1[1][2] = spherical_jn(2, x, derivative=True)
|
||||
|
||||
s10 = -s1[0][1]
|
||||
s11 = s1[0][0]-2.0/0.2*s1[0][1]
|
||||
s12 = s1[0][1]-3.0/0.2*s1[0][2]
|
||||
assert_array_almost_equal(s1[0],[0.99334665397530607731,
|
||||
0.066400380670322230863,
|
||||
0.0026590560795273856680],12)
|
||||
assert_array_almost_equal(s1[1],[s10,s11,s12],12)
|
||||
|
||||
def test_sph_kn(self):
|
||||
kn = np.empty((2,3))
|
||||
x = 0.2
|
||||
|
||||
kn[0][0] = spherical_kn(0, x)
|
||||
kn[0][1] = spherical_kn(1, x)
|
||||
kn[0][2] = spherical_kn(2, x)
|
||||
kn[1][0] = spherical_kn(0, x, derivative=True)
|
||||
kn[1][1] = spherical_kn(1, x, derivative=True)
|
||||
kn[1][2] = spherical_kn(2, x, derivative=True)
|
||||
|
||||
kn0 = -kn[0][1]
|
||||
kn1 = -kn[0][0]-2.0/0.2*kn[0][1]
|
||||
kn2 = -kn[0][1]-3.0/0.2*kn[0][2]
|
||||
assert_array_almost_equal(kn[0],[6.4302962978445670140,
|
||||
38.581777787067402086,
|
||||
585.15696310385559829],12)
|
||||
assert_array_almost_equal(kn[1],[kn0,kn1,kn2],9)
|
||||
|
||||
def test_sph_yn(self):
|
||||
sy1 = spherical_yn(2, 0.2)
|
||||
sy2 = spherical_yn(0, 0.2)
|
||||
assert_almost_equal(sy1,-377.52483,5) # previous values in the system
|
||||
assert_almost_equal(sy2,-4.9003329,5)
|
||||
sphpy = (spherical_yn(0, 0.2) - 2*spherical_yn(2, 0.2))/3
|
||||
sy3 = spherical_yn(1, 0.2, derivative=True)
|
||||
assert_almost_equal(sy3,sphpy,4) # compare correct derivative val. (correct =-system val).
|
66
venv/Lib/site-packages/scipy/special/tests/test_trig.py
Normal file
66
venv/Lib/site-packages/scipy/special/tests/test_trig.py
Normal file
|
@ -0,0 +1,66 @@
|
|||
import numpy as np
|
||||
from numpy.testing import assert_equal, assert_allclose, suppress_warnings
|
||||
|
||||
from scipy.special._ufuncs import _sinpi as sinpi
|
||||
from scipy.special._ufuncs import _cospi as cospi
|
||||
|
||||
|
||||
def test_integer_real_part():
|
||||
x = np.arange(-100, 101)
|
||||
y = np.hstack((-np.linspace(310, -30, 10), np.linspace(-30, 310, 10)))
|
||||
x, y = np.meshgrid(x, y)
|
||||
z = x + 1j*y
|
||||
# In the following we should be *exactly* right
|
||||
res = sinpi(z)
|
||||
assert_equal(res.real, 0.0)
|
||||
res = cospi(z)
|
||||
assert_equal(res.imag, 0.0)
|
||||
|
||||
|
||||
def test_half_integer_real_part():
|
||||
x = np.arange(-100, 101) + 0.5
|
||||
y = np.hstack((-np.linspace(310, -30, 10), np.linspace(-30, 310, 10)))
|
||||
x, y = np.meshgrid(x, y)
|
||||
z = x + 1j*y
|
||||
# In the following we should be *exactly* right
|
||||
res = sinpi(z)
|
||||
assert_equal(res.imag, 0.0)
|
||||
res = cospi(z)
|
||||
assert_equal(res.real, 0.0)
|
||||
|
||||
|
||||
def test_intermediate_overlow():
|
||||
# Make sure we avoid overflow in situations where cosh/sinh would
|
||||
# overflow but the product with sin/cos would not
|
||||
sinpi_pts = [complex(1 + 1e-14, 227),
|
||||
complex(1e-35, 250),
|
||||
complex(1e-301, 445)]
|
||||
# Data generated with mpmath
|
||||
sinpi_std = [complex(-8.113438309924894e+295, -np.inf),
|
||||
complex(1.9507801934611995e+306, np.inf),
|
||||
complex(2.205958493464539e+306, np.inf)]
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(RuntimeWarning, "invalid value encountered in multiply")
|
||||
for p, std in zip(sinpi_pts, sinpi_std):
|
||||
assert_allclose(sinpi(p), std)
|
||||
|
||||
# Test for cosine, less interesting because cos(0) = 1.
|
||||
p = complex(0.5 + 1e-14, 227)
|
||||
std = complex(-8.113438309924894e+295, -np.inf)
|
||||
with suppress_warnings() as sup:
|
||||
sup.filter(RuntimeWarning, "invalid value encountered in multiply")
|
||||
assert_allclose(cospi(p), std)
|
||||
|
||||
|
||||
def test_zero_sign():
|
||||
y = sinpi(-0.0)
|
||||
assert y == 0.0
|
||||
assert np.signbit(y)
|
||||
|
||||
y = sinpi(0.0)
|
||||
assert y == 0.0
|
||||
assert not np.signbit(y)
|
||||
|
||||
y = cospi(0.5)
|
||||
assert y == 0.0
|
||||
assert not np.signbit(y)
|
117
venv/Lib/site-packages/scipy/special/tests/test_wrightomega.py
Normal file
117
venv/Lib/site-packages/scipy/special/tests/test_wrightomega.py
Normal file
|
@ -0,0 +1,117 @@
|
|||
import pytest
|
||||
import numpy as np
|
||||
from numpy.testing import assert_, assert_equal, assert_allclose
|
||||
|
||||
import scipy.special as sc
|
||||
from scipy.special._testutils import assert_func_equal
|
||||
|
||||
|
||||
def test_wrightomega_nan():
|
||||
pts = [complex(np.nan, 0),
|
||||
complex(0, np.nan),
|
||||
complex(np.nan, np.nan),
|
||||
complex(np.nan, 1),
|
||||
complex(1, np.nan)]
|
||||
for p in pts:
|
||||
res = sc.wrightomega(p)
|
||||
assert_(np.isnan(res.real))
|
||||
assert_(np.isnan(res.imag))
|
||||
|
||||
|
||||
def test_wrightomega_inf_branch():
|
||||
pts = [complex(-np.inf, np.pi/4),
|
||||
complex(-np.inf, -np.pi/4),
|
||||
complex(-np.inf, 3*np.pi/4),
|
||||
complex(-np.inf, -3*np.pi/4)]
|
||||
expected_results = [complex(0.0, 0.0),
|
||||
complex(0.0, -0.0),
|
||||
complex(-0.0, 0.0),
|
||||
complex(-0.0, -0.0)]
|
||||
for p, expected in zip(pts, expected_results):
|
||||
res = sc.wrightomega(p)
|
||||
# We can't use assert_equal(res, expected) because in older versions of
|
||||
# numpy, assert_equal doesn't check the sign of the real and imaginary
|
||||
# parts when comparing complex zeros. It does check the sign when the
|
||||
# arguments are *real* scalars.
|
||||
assert_equal(res.real, expected.real)
|
||||
assert_equal(res.imag, expected.imag)
|
||||
|
||||
|
||||
def test_wrightomega_inf():
|
||||
pts = [complex(np.inf, 10),
|
||||
complex(-np.inf, 10),
|
||||
complex(10, np.inf),
|
||||
complex(10, -np.inf)]
|
||||
for p in pts:
|
||||
assert_equal(sc.wrightomega(p), p)
|
||||
|
||||
|
||||
def test_wrightomega_singular():
|
||||
pts = [complex(-1.0, np.pi),
|
||||
complex(-1.0, -np.pi)]
|
||||
for p in pts:
|
||||
res = sc.wrightomega(p)
|
||||
assert_equal(res, -1.0)
|
||||
assert_(np.signbit(res.imag) == False)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('x, desired', [
|
||||
(-np.inf, 0),
|
||||
(np.inf, np.inf),
|
||||
])
|
||||
def test_wrightomega_real_infinities(x, desired):
|
||||
assert sc.wrightomega(x) == desired
|
||||
|
||||
|
||||
def test_wrightomega_real_nan():
|
||||
assert np.isnan(sc.wrightomega(np.nan))
|
||||
|
||||
|
||||
def test_wrightomega_real_series_crossover():
|
||||
desired_error = 2 * np.finfo(float).eps
|
||||
crossover = 1e20
|
||||
x_before_crossover = np.nextafter(crossover, -np.inf)
|
||||
x_after_crossover = np.nextafter(crossover, np.inf)
|
||||
# Computed using Mpmath
|
||||
desired_before_crossover = 99999999999999983569.948
|
||||
desired_after_crossover = 100000000000000016337.948
|
||||
assert_allclose(
|
||||
sc.wrightomega(x_before_crossover),
|
||||
desired_before_crossover,
|
||||
atol=0,
|
||||
rtol=desired_error,
|
||||
)
|
||||
assert_allclose(
|
||||
sc.wrightomega(x_after_crossover),
|
||||
desired_after_crossover,
|
||||
atol=0,
|
||||
rtol=desired_error,
|
||||
)
|
||||
|
||||
|
||||
def test_wrightomega_exp_approximation_crossover():
|
||||
desired_error = 2 * np.finfo(float).eps
|
||||
crossover = -50
|
||||
x_before_crossover = np.nextafter(crossover, np.inf)
|
||||
x_after_crossover = np.nextafter(crossover, -np.inf)
|
||||
# Computed using Mpmath
|
||||
desired_before_crossover = 1.9287498479639314876e-22
|
||||
desired_after_crossover = 1.9287498479639040784e-22
|
||||
assert_allclose(
|
||||
sc.wrightomega(x_before_crossover),
|
||||
desired_before_crossover,
|
||||
atol=0,
|
||||
rtol=desired_error,
|
||||
)
|
||||
assert_allclose(
|
||||
sc.wrightomega(x_after_crossover),
|
||||
desired_after_crossover,
|
||||
atol=0,
|
||||
rtol=desired_error,
|
||||
)
|
||||
|
||||
|
||||
def test_wrightomega_real_versus_complex():
|
||||
x = np.linspace(-500, 500, 1001)
|
||||
results = sc.wrightomega(x + 0j).real
|
||||
assert_func_equal(sc.wrightomega, results, x, atol=0, rtol=1e-14)
|
49
venv/Lib/site-packages/scipy/special/tests/test_zeta.py
Normal file
49
venv/Lib/site-packages/scipy/special/tests/test_zeta.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
import scipy.special as sc
|
||||
import numpy as np
|
||||
from numpy.testing import assert_equal, assert_allclose
|
||||
|
||||
|
||||
def test_zeta():
|
||||
assert_allclose(sc.zeta(2,2), np.pi**2/6 - 1, rtol=1e-12)
|
||||
|
||||
|
||||
def test_zetac():
|
||||
# Expected values in the following were computed using Wolfram
|
||||
# Alpha's `Zeta[x] - 1`
|
||||
x = [-2.1, 0.8, 0.9999, 9, 50, 75]
|
||||
desired = [
|
||||
-0.9972705002153750,
|
||||
-5.437538415895550,
|
||||
-10000.42279161673,
|
||||
0.002008392826082214,
|
||||
8.881784210930816e-16,
|
||||
2.646977960169853e-23,
|
||||
]
|
||||
assert_allclose(sc.zetac(x), desired, rtol=1e-12)
|
||||
|
||||
|
||||
def test_zetac_special_cases():
|
||||
assert sc.zetac(np.inf) == 0
|
||||
assert np.isnan(sc.zetac(-np.inf))
|
||||
assert sc.zetac(0) == -1.5
|
||||
assert sc.zetac(1.0) == np.inf
|
||||
|
||||
assert_equal(sc.zetac([-2, -50, -100]), -1)
|
||||
|
||||
|
||||
def test_riemann_zeta_special_cases():
|
||||
assert np.isnan(sc.zeta(np.nan))
|
||||
assert sc.zeta(np.inf) == 1
|
||||
assert sc.zeta(0) == -0.5
|
||||
|
||||
# Riemann zeta is zero add negative even integers.
|
||||
assert_equal(sc.zeta([-2, -4, -6, -8, -10]), 0)
|
||||
|
||||
assert_allclose(sc.zeta(2), np.pi**2/6, rtol=1e-12)
|
||||
assert_allclose(sc.zeta(4), np.pi**4/90, rtol=1e-12)
|
||||
|
||||
|
||||
def test_riemann_zeta_avoid_overflow():
|
||||
s = -260.00000000001
|
||||
desired = -5.6966307844402683127e+297 # Computed with Mpmath
|
||||
assert_allclose(sc.zeta(s), desired, atol=0, rtol=5e-14)
|
Loading…
Add table
Add a link
Reference in a new issue