Fixed database typo and removed unnecessary class identifier.
This commit is contained in:
parent
00ad49a143
commit
45fb349a7d
5098 changed files with 952558 additions and 85 deletions
93
venv/Lib/site-packages/scipy/special/spfun_stats.py
Normal file
93
venv/Lib/site-packages/scipy/special/spfun_stats.py
Normal file
|
@ -0,0 +1,93 @@
|
|||
# Last Change: Sat Mar 21 02:00 PM 2009 J
|
||||
|
||||
# Copyright (c) 2001, 2002 Enthought, Inc.
|
||||
#
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# a. Redistributions of source code must retain the above copyright notice,
|
||||
# this list of conditions and the following disclaimer.
|
||||
# b. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# c. Neither the name of the Enthought nor the names of its contributors
|
||||
# may be used to endorse or promote products derived from this software
|
||||
# without specific prior written permission.
|
||||
#
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
|
||||
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
||||
# DAMAGE.
|
||||
|
||||
"""Some more special functions which may be useful for multivariate statistical
|
||||
analysis."""
|
||||
|
||||
import numpy as np
|
||||
from scipy.special import gammaln as loggam
|
||||
|
||||
|
||||
__all__ = ['multigammaln']
|
||||
|
||||
|
||||
def multigammaln(a, d):
|
||||
r"""Returns the log of multivariate gamma, also sometimes called the
|
||||
generalized gamma.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : ndarray
|
||||
The multivariate gamma is computed for each item of `a`.
|
||||
d : int
|
||||
The dimension of the space of integration.
|
||||
|
||||
Returns
|
||||
-------
|
||||
res : ndarray
|
||||
The values of the log multivariate gamma at the given points `a`.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The formal definition of the multivariate gamma of dimension d for a real
|
||||
`a` is
|
||||
|
||||
.. math::
|
||||
|
||||
\Gamma_d(a) = \int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA
|
||||
|
||||
with the condition :math:`a > (d-1)/2`, and :math:`A > 0` being the set of
|
||||
all the positive definite matrices of dimension `d`. Note that `a` is a
|
||||
scalar: the integrand only is multivariate, the argument is not (the
|
||||
function is defined over a subset of the real set).
|
||||
|
||||
This can be proven to be equal to the much friendlier equation
|
||||
|
||||
.. math::
|
||||
|
||||
\Gamma_d(a) = \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma(a - (i-1)/2).
|
||||
|
||||
References
|
||||
----------
|
||||
R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in
|
||||
probability and mathematical statistics).
|
||||
|
||||
"""
|
||||
a = np.asarray(a)
|
||||
if not np.isscalar(d) or (np.floor(d) != d):
|
||||
raise ValueError("d should be a positive integer (dimension)")
|
||||
if np.any(a <= 0.5 * (d - 1)):
|
||||
raise ValueError("condition a (%f) > 0.5 * (d-1) (%f) not met"
|
||||
% (a, 0.5 * (d-1)))
|
||||
|
||||
res = (d * (d-1) * 0.25) * np.log(np.pi)
|
||||
res += np.sum(loggam([(a - (j - 1.)/2) for j in range(1, d+1)]), axis=0)
|
||||
return res
|
Loading…
Add table
Add a link
Reference in a new issue